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Abstract: This study compares results obtained from the application of Classical Least Squares with that 

obtained from the two major biased estimation methods: Ridge and Principal Component Regressions in 

multicollinear situations using gynecological data from University College Hospital, Ibadan, Oyo State, 

Nigeria. Numerical values of baby’s weights (less than 2.5kg) at birth were considered as response variable 

while mother’s age, weight and height, as well as preterm delivery, multiple pregnancies, parity, graphidity, 

maternal infections such as malaria, tuberculosis, sexually transmitted diseases, anaemia/shortage of blood, 

intra-uterine infections, congenital abnormalities, etc and fetal infections serve as explanatory variables. 

Regression method is used as the statistical tool. A number of assumptions of the regression analysis were 

inspected. Normality assumption was confirmed by plotting Normal Q-Q Plot and Histogram of the 

Standardized Residuals. The data sets were also inspected for homoscedasticity of error variances using 

Residual Plot and Fligner-Killeen Test; it was established that homoscedasticity assumption was not violated. 

Autocorrelation problem on the data set was checked by Durbin-Watson statistic. The test revealed that 

autocorrelation problem can be tolerated. Existence of multicollinearity problem was further checked in the 

data set using Farrar-Glauber Chi-squared test. It was established that some predictors are highly correlated; 

this was also true when correlation matrix table was obtained. Shrinkage estimator of Ridge Regression was 

obtained by Iterative Method of Hoerl and Kennard. Ridge Regression coefficients were later computed. 

Kaiser’s and Cattell’s Screen Criteria were employed for determining number of principal components to be 

retained in the analysis. The two criteria suggested that the first three components should be retained but only 

one component is significant. Thereafter, Ridge Regression was finally recommended as the best method to 

handle multicollinearity problem under Frequentist Approach. 

Keywords: Classical Least Squares, Ridge and Principal Component Regressions, Normal Q-Q Plot, Fligner-

Killeen and Farrar-Glauber Tests, Durbin-Watson statistic and Shrinkage estimator. 

 

I. Introduction: 
Every parent hopes for a healthy baby and a newborn’s weight is an excellent indicator of it. Weight at 

birth is a good indicator not only of a mother’s health and nutritional status but also of the newborn’s chances 

for survival, growth, long-term health and psychological development. The incidence of Low Birth Weight, 

especially in Nigeria, varies from about (5-40) percent of live births (Martin, 2007). It’s been reported that about 

one-third of the infants weigh less than 2.5kg, which is the mean birth weight of all the newborn babies 

(Berghella, 2007). 

Low Birth Weight (LBW) is a major determinant of infant mortality and morbidity. In fact, it is 

considered the single most important predictor of infant mortality, especially of deaths within the first month of 

life. It is generally believed that the etiology of Low Birth Weight is multifactorial. Hence, Low Birth Weight is 

an important indicator of reproductive health and general health status of population. It continues to remain a 

major public health problem worldwide especially in the developing countries. 

According to World Health Organization (WHO) estimation (2009), it has been reported that about 

twenty-five million low birth weight babies are born each year, nearly ninety-five percent of them in developing 

nations. Across the world, neonatal mortality is twenty times more likely for low birth weight babies compared 

to heavier babies. Then, Low Birth Weight is as a result of preterm birth, intra-uterine growth restriction, or a 

combination of both pathophysiological conditions. There are numerous factors contributing to Low Birth 

Weight both maternal and fetal. Low birth weight babies are at higher risk of death (stillborn), disease, 

miscarriage and disability. The data was extracted from the past records of the obstetrics and gynecology at the 
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Medical Record Unit of the University College Hospital (UCH), Ibadan, Oyo State over a period of sixty 

months. It covers two thousand patients whose medical records of delivery were collected by the college. 

However, it has been discovered by some scientists that weight at birth is directly influenced by general 

level of health status of the mother. Thus, maternal environment is the most important determinant of birth 

weight, and factors that prevent normal circulation across the placenta cause poor nutrient and oxygen supply to 

the fetus, hence restricting growth. The maternal risk factors are biologically and socially interrelated; most are, 

however, modifiable. 

Therefore, these factors vary from one area to another, depending upon geographic, socio-economic 

and cultural factors. The mortality of Low Birth Weight can be reduced if the maternal risk factors are detected 

early and managed by simple techniques. Thus, it is necessary to identify factors prevailing in a particular area 

responsible for Low Birth Weight. A baby is expected to spend thirty-seven weeks in the womb. An attempt for 

such baby to come to the world before the expected duration may result into Low Birth Weight situation. With 

this background in mind, the objective of the present study is to identify the maternal risk factors associated with 

Low Birth Weight (LBW) in the present world by comparing Classical Least Square (also known Ordinary 

Least Square) Method of Estimation with Ridge and Principal Components Methods of Regression Analyses. 

 

1.1   Objectives of the Study 

The main objectives include:  

 To compare estimates of Classical Least Squares (CLS) with that obtained from the application of Ridge 

and Principal Component Methods of Regression Analyses in multicollinear situation; 

 To determine which of the maternal risk factors are responsible for the delivery of low birth weight babies; 

 To obtain suitable regression model that best describes multicollinear situation under the present study; 

 To determine the degree of linear relationship between low birth weight and the associated factors 

responsible for it. 

 

1.2   Definitions of Some Terms 
Some variables of interest, as used in the present study, require basic simple definitions which are explained 

below:  

* y - Low Birth Weight: World Health Organization (WHO) has defined Low Birth Weight as ‘one whose 

birth weight is less than 2.5kg irrespective of the gestational age’. Birth weight is the measurement of 

the weight of baby immediately after the baby is born. 

* 1x - Mother’s age: Age, according to oxford dictionary, is simply defined as the number of years that a 

person has lived or a thing has existed. Thus, the number of years of existence of a mother at the time 

of giving birth to newborn baby is referred to as Mother’s Age. Nowadays, child-bearing age starts 

from 13 years; though it might be outlying age of child-bearing as it has been established in some 

literatures. 

* 2x - Mother’s weight: How heavy somebody / something is, which can be measured in, for example, 

kilograms or pounds is known as weight. Mother’s weight is simply the mean weight of the mother 

(measured in kilogram) before and immediately after giving birth to newborn baby. 

* 3x - Mother’s height: Height, as its name implies, is simply the measurement of how tall a person or a 

thing is. The height of the mother is measured in meter (m) before and after delivery of newborn baby. 

* 4x - Preterm delivery: It is expected of a baby to spend thirty-seven weeks in the womb. If a baby spends 

less than thirty-seven weeks in the womb before delivery, then such situation is said to be preterm 

delivery. It is called miscarriage if such baby is delivered as stillborn. Preterm delivery is highly 

associated with so many factors such as placenta malfunctions; placenta is a nutrient-rich lifeline from 

mother to infant, so when it is compromised, the infant’s growth will drastically suffer. Several types of 

placenta problems can interfere with a baby’s growth. One of them is placenta previa, in which the 

placenta fuses to the cervix, covering all or part of the openings. Even more common is placenta 

abruption, in which the placenta starts separating from the uterine wall during the pregnancy, before 

delivery. Affecting about two percent of pregnancies, the condition can, in serious cases, reduce the 

flow of nutrients and oxygen to the baby. 

* 5x - Multiple pregnancies: When a woman carries more than one baby, her risk of premature delivery 

skyrockets. Each additional baby increases the risk significantly. The preterm rates are approximately 

60 percent for twins, 90 percent for triplets, and about 100 percent for quadruplets and beyond (Report 

from World Health Organization - WHO, 2009). Additional babies stretch the uterus and compete for 

limited nutrients. Multiple pregnancies also put extra strain on the mother’s body, sometimes leading to 
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complications like anaemia, high blood pressure, and early labour. It’s been reported that women 

between (30-40) years of age are likely to conceive more than one baby at a glance. 

* 6x - Parity: The number of babies born by a mother is simply called parity. In this study, records of number 

of babies of individual women are collected.  

* 7x - Graphidity: This is the total number of pregnancies being had by a particular mother; it simply means 

the addition of stillborns, livebirths and even miscarriages. It is quite different from parity, which is 

only the number of livebirths alone. 

* 8x - Maternal infections: A series of maternal infections are available in the literature. Examples are 

malaria, tuberculosis, anaemia, intra-uterine infections, congenital abnormalities, etc. It has been 

reported by some researchers that women who have chronic conditions like diabetes, heart defects, or 

kidney disease tend to have more difficult pregnancies. As a result, they are more likely to deliver 

prematurely and have low birth weight babies. Some birth defects can impede normal development of 

the infants and lead to preterm birth. For example, if an infant develops problems like transposition of 

the heart’s great arteries or spinal bifida (open spine) – a condition in which the neural tube fails to 

close properly- doctors may need to perform surgery while the baby is still in the womb, which raises 

the risk of preterm birth. A recent study in the Journal of Obstetrics and Gynecology found that the 

birth defects most commonly associated with preterm delivery include ‘Down syndrome’, ‘Klinefelter 

syndrome’, ‘Turner syndrome’, ‘Patau syndrome’, ‘Edwards syndrome’,  and congenital structural 

abnormalities like orofacial cleft, club foot, polydactyly, hypospadials. Others include cardiac, central 

nervous system and musculoskeletal abnormalities. 

* 9x - Fetal infections: For a pregnant mother, catching a common illness like a cold or the flu can raise 

concerns about harm to the baby. But these everyday illnesses do not typically threaten a developing 

infant. There are, however, some less common viral and parasitic infections that can indeed cause fetal 

problems like slow growth, and even birth defects. From the existing literature, we have the followings 

infections affecting fetus: 

(a) Cytomegalovirus: This herpes virus, presents in bodily fluids, is the most common type of virus 

transmitted to a developing infant. It is associated with disabilities like neural tube defects and Down 

syndrome. 

(b) Rubella: More commonly known as German measles, this virus can cause birth defects like mental 

retardation and hearing, sight and heart problems. Luckily, German measles can be prevented via the 

Measles, Mumps and Rubella (MMR) vaccine. 

(c) Chickenpox: Exposure to this virus during the first and second trimester is associated with a small chance 

of congenital varicella syndrome, which can include limb malformation, scarring, growth problems and 

mental disabilities. 

(d) Toxoplasmosis: Infection with this parasite during pregnancy is associated with brain defects and hearing 

as well as sight loss. The parasite can be present in undercooked meat and cat feces. 

 

II. Methodology 
Multiple Linear, Ridge and Principal Component Regressions were used in collaboration with Simple 

Correlation with a view to comparing results in multicollinear situations. All computations were done with the 

aid of R statistical package. Data on baby’s weight at birth (less than 2.5kg) of approximately two thousand 

patients were considered as dependent variable while data on mother’s age, weight and height, as well as 

preterm delivery, multiple pregnancies, parity, graphidity, maternal infections such as malaria, tuberculosis, 

anaemia, intra-uterine infections, congenital abnormalities, etc and fetal infections were used as independent 

variables.  

 

2.1   Classical Least Squares, Ridge & Principal Component Regression Methods 

It has been reported in some literatures that when multicollinearity is present in a set of predictor 

variables, the Classical Least Squares (also known as Ordinary Least Squares) estimates of the individual 

regression coefficients tend to be unstable and can lead to erroneous inferences. When this situation arises, 

several methods have been purportedly designed to handle such scenario. Some researchers believe that data 

should be transformed using any of the transformation methods such as square transformation, root 

transformation, reciprocal transformation and so on; while some researchers develop deep interest in other 

methods of handling multicollinear situations. Principal Component Analysis (PCA), Ridge Regression 

Approach (RRA), Partial Least Squares Regression (PLSR) to mention but a few are examples of other methods 

that have been developed to handle situations where explanatory variables are highly correlated. It should be 

noted that some (if not all) of these methods are biased but still handle such a situation with least mean squares 
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errors. The least mean squares error property being possessed by these methods makes it shine and better than 

Ordinary Least Squares estimates. Though, these alternative methods are biased but their estimators tend to have 

minimum mean squares error than that of the Ordinary Least Squares (OLS) which eventually show efficiency 

of the results and better precision. 

In this research, two alternative estimation methods that provide more informative analyses of the data 

than the Ordinary Least Squares (OLS) method when multicollinearity is present are considered. The estimators 

discussed here (ridge estimators) are biased but tend to have more precision (as measured by mean square error) 

than the OLS estimators (Draper & Smith, 1998; McCallum, 1970; Hoerl & Kennard, 1970). The ridge 

estimators do not reproduce the estimation data as well as the OLS method; the sum of squared residuals is not 

as small and, equivalently, the multiple correlation coefficients are not as large. However, any of the alternatives 

most especially ridge regression and principal component have the potential to produce more precision in the 

estimated coefficients and smaller prediction errors when the predictions are generated using data other than 

those used for estimation. 

One of the goals of ridge and principal component regressions is to produce a regression model with 

stable coefficients. The coefficients are stable in the sense that they are not affected by slight variations in the 

estimation data. Therefore, the main objective of the introduction of ridge and principal component regressions 

is to select amongst others a set of variables that provides a clear understanding of the process under study as 

well as formulating an equation that provides accurate forecast of the response variable corresponding to values 

of the predictor variables.  

In Ridge Regression Analysis (RRA), variable selection is done by examining the ridge trace, a plot of 

the ridge regression coefficients against the ridge parameter/shrinkage estimator, k. (Samprit & Hadi, 2006). It 

has been reported in some literatures that when k=0, the coefficients in the standardized normal equations are 

the same with OLS estimates. The parameter k may be referred to as the bias parameter. As k increases from 

zero, bias of the estimates increases. As k continues to increase without bound, the regression estimates all tend 

toward zero. The idea of ridge regression is to pick a value of k for which the reduction in total variance is not 

exceeded by the increase in bias. Since k is a bias parameter, it is desirable to select the smallest value of k for 

which stability occurs since the size of k is directly related to the amount of bias introduced. 

It has been reported in the existing literature that there is a positive value of k for which the ridge 

estimates will be stable with respect to small changes in the estimation data (Hoerl and Kennard, 1970). Several 

methods have been suggested for the choice of the shrinkage estimator k. There is a Fixed Point Method where 

the estimation of shrinkage estimator k is suggested to be obtained by the following formular:  
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Repeat this process until the difference between two successive estimates of k is negligible. From various 

researches, it has been discovered that iterative method is preferred to others. 

 It has been observed that Ridge and Principal Component Regressions are two commonly used biased 

regression methods. The biased regression methods attack the collinearity problems by computationally 

suppressing the effect of the collinearity. Ridge Regression does this by reducing the apparent magnitude of the 

correlations. Principal Component Regression attacks the problem by regressing response variable Y on the 
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important principal components and then parceling out the effect of the principal component variables to the 

original variables. 

 

III.  Analysis of Data 
3.1   Verification of Normality Assumption on the Data Sets 

Upholding normality assumption is an essential criterion for authenticating analysis of variance in 

regression analysis. Normal Probability Plot of the Standardized Residual and Histogram of the Standardized 

Residuals were all used to confirm whether normality assumption is not violated; this is used to confirm the 

reliability of the result from analysis of variance. 

 

3.1.1   Normal Probability Plot of the Standardized Residuals: This is also called Normal Q-Q Plot. This is 

the plot of the ordered standardized residuals versus the so-called normal scores. If the residuals are normally 

distributed, the ordered residuals should be approximately the same as the ordered normal scores. Under 

normality assumption, this plot should resemble a (nearly) straight line. With the aid of R statistical package, the 

plot is drawn and Figure 1 shows that normality assumption is upheld since its appearance is a straight line 

pattern. 

 

3.1.2 Histogram of the Standardized Residuals: This is another important graph for checking the normality 

assumption of the residuals. The behaviour of the residuals is an important key in the determination of the 

normality assumption. The graph is displayed as shown in Figure 2; it is therefore ascertained that the behaviour 

of the residuals is normal. Hence, normality assumption is not violated.  

 

3.2   Confirmation of Homoscedasticity Assumption on the Data Sets 

A situation where the variance of the residuals is affected by at least one predictor variable is simply termed to 

be heterogeneity/heteroscedasticity. Another important assumption for validity of analysis of variance is 

equality of error variances. This means that the errors (residuals) must have equal variances. If these errors fail 

to have equal (sometimes unknown) variances, they will not behave well. Specifically, the assumptions are such 

that residuals are normally, identically and independently distributed with mean zero and constant but unknown 

variance leading to the test that all samples came from populations with identical variances (Zar, 1999). 

 

3.2.1   Residual Plot: This is a significant plot for checking homogeneity of sample variances. It has been 

reported that if the residual plot appears structureless by having about the same extension of scatter of the 

residuals around zero for each of the variables (under study), it is an indication of homogeneous variances. The 

plot is drawn as it appears in Figure 3 and it can be deduced from the plot that homogeneity assumption is not 

violated because of its structureless appearance. 

 

3.2.2  Fligner-Killeen Test: This is newly introduced test for confirming the homogeneity (homoscedasticity) 

of sample variances. It has been installed in R statistical package with a view to generating, as appropriate as 

possible, the test statistic and the p-value. The Fligner-Killeen test has been determined in a simulation study as 

one of the many tests for homogeneity of variances which is most robust against departures from normality 

(Conover, Johnson & Johnson, 1981). However, it has been obtained from the package that p-value is 2.2 and 

K-squared of 8.95 with degree of freedom of 8. This is an indication that homogeneity assumption is not 

violated since p-value is greater than value of the type I error (  = 0.05) for which the null hypothesis of 

presence of homogeneity variances in the data sets is not rejected. 

 

3.3  Test for Existence of Autocorrelation Problem  

Autocorrelation problem arises when the errors fail to be independent of each other. It is expected that errors 

(residuals) should be independent whatever the case may be, but if this condition does not hold as expected, we 

say there is problem of autocorrelation in the data sets. Therefore, one of the standard assumptions in the 

regression model is that the error terms are uncorrelated. Correlation in the error term suggests that there is 

additional information in the data that has not been exploited in the current model. When the observations have 

a natural sequential order, the correlation is referred to as autocorrelation. 

 

3.3.1  Durbin-Watson Statistic: This is a test that is aimed at determining whether there is dependency among 

the successive values of the error term. The most reliable and mostly used test for detecting existence of 

autocorrelation is Durbin-Watson Test having the statistic: 
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An approximate relationship between d and r̂  is d )ˆ1(2 r  showing that d has a range of 0 to 4. Recall that 

the statistic d is used for testing the null hypothesis 0:0 rH  against an alternative 0:1 rH . Note that when 

r   0, the errors are uncorrelated. Thus, from the above value of d, we can obtain r as follows: 

 

    d )ˆ1(2 r  

         1.985 = 2(1- r̂ ) 

         r̂  = 0.0075   0.01  

 

This can be interpreted that irrespective of the tabular values of Durbin-Watson, we conclude that the presence 

of autocorrelation in the data sets can be tolerated since the values of r and d are approximately 0 and 2 

respectively. 

 

3.4 Test for Orthogonality of Predictor Variables  

Interpretation of the multiple regression model depends implicitly on the assumption that the predictor 

variables are not strongly interrelated. It is usual to interpret a regression coefficient as measuring the change in 

the response variable when the corresponding predictor variable is increased by one unit and all other predictor 

variables are held constant. This interpretation may not be valid if there are strong linear relationships among 

the predictor variables. It is always conceptually possible to increase the value of one variable in an estimated 

regression equation while holding the others constant. However, there may be no information about the result of 

such a manipulation in the estimation data. Thus, it may be impossible to change one variable while holding all 

others constant in the process being studied. When these conditions exist, simple interpretation of the regression 

coefficient as a marginal effect is lost. When there is a complete absence of linear relationship among the 

predictor variables, they are said to be orthogonal.  

The seriousness of the effects of multicollinearity seems to depend on the degree of intercorrelation as well 

as on the overall correlation coefficient. Thus, one might suggest that the standard errors, the partial correlation 

coefficients and the total 
2R may be used to test for multicollinearity. Yet, none of these criteria by itself is a 

satisfactory indicator of multicollinearity because of the following reasons: 

(i) Large standard errors do not always appear with multicollinearity. (Cobb-Douglas Production Function is 

very good evidence). Furthermore, large standard errors may arise for various reasons and not only because 

of the presence of linear relationships among the explanatory variables. 

(ii) The intercorrelations of the explanatory variables need not be high for the values of regression coefficients 

and their standard errors to be affected badly, that is, 
ji xxr is not an adequate criterion by itself. 

(iii) The overall 
2R  may be high (relative to

ji xxr ) and yet the results may be highly imprecise and insignificant 

(with wrong signs and/or large standard errors). 

 

However, a combination of all these criteria may help the detection of multicollinearity. In order to gain as 

much knowledge as possible as to the seriousness of multicollinearity, we suggest the application of Farrar-

Glauber Test. 

 

3.4.1  Farrar-Glauber Chi-squared Test: A statistical test for multicollinearity has been developed by Farrar 

and Glauber in one of their books tagged ‘Multicollinearity in Regression Analysis’ in 1967. It is really a set of 

three tests. The first test is Chi-Square test for the detection of the existence and severity of multicollinearity in 

a function. The second test is an F test for locating which variables are multicollinear while the third is a t test 

for finding out the pattern of multicollinearity, that is, for determining which variables are responsible for the 

appearance of multicollinear situations. Only the first test would be considered in this study because we are 

interested only to know if there exist collinear variables. Farrar-Glauber considered multicollinearity in a sample 

as a departure of the predictor variables from orthogonality. Therefore, a chi-square test for the presence and 

severity of multicollinearity in a function with several explanatory variables is outlined as follows: 

Hypothesis: :0H  No multicollinearity versus :H1  Multicollinearity exists 

Test statistic: 



Comparison of Classical Least Squares (CLS), Ridge and Principal Component Methods of Regression Analyses using Gynaecological Data 

www.iosrjournals.org                                                     67 | Page 

        RIn  . 52
6

1
1-n-   2









 pcal ,                2  cal 41.126 

 

Conclusion: Since 
2

cal  (=41.126) is greater than 
2

0.05 ; 36  (=23.27), we reject 0H . Therefore, it is reasonable 

to conclude that there is presence of multicollinearity in the data set. 

 

3.5  Estimation by Classical Least Squares Method 

The result presented in Table 1 shows that mother’s weight and graphidity are the two determinant 

factors contributing to the delivery of low birth weight babies. But as a result of the absence of orthogonality in 

the predictor variables, the results of ordinary least squares are imprecise and unreliable. Hence, it is statistically 

reasonable to suggest that estimates of classical least squares in multicollinear situation are not reliable and 

cannot be recommended for modelling. Thus, further analysis is suggested to handle such scenario.  

 

3.6   Estimation by Ridge Regression Technique 

It has been reported that when multicollinearity is present in a set of predictor variables, the ordinary 

least square estimates of the individual regression coefficients tend to be unstable and can lead to erroneous 

inferences. Here, an alternative estimation procedure that provides a more informative analysis of the data than 

the ordinary least squares method when multicollinearity is present is considered. Ridge Regression provides 

estimates that are more robust than the least squares estimates for small perturbations in the data. Ridge 

regression provides a tool for judging the stability of a given body of data for analysis by least squares. In highly 

collinear situations, as has been pointed out, small changes (perturbations) in the data cause very large changes 

in the estimated regression coefficients. The method will indicate the sensitivity (or the stability) of the least 

squares coefficients to small changes in the data. 

The ridge estimators are stable in the sense that they are not affected by slight variations in the 

estimation data. Because of the smaller mean square error property, values of the ridge estimated coefficients 

are expected to be closer than the OLS estimates to the true values of the regression coefficients. Also, forecasts 

of the response variable corresponding to values of the predictor variables not included in the estimation set tend 

to be more accurate. This procedure has been extensively explained in section 2.1 above. Therefore, from R 

statistical package, we obtain the following results using Ridge Regression Approach for which the Shrinkage 

Estimator is 0.004. It is evidenced from Table 3 that only predictor variables ( 2x , 5x , 7x , 8x ) are significant 

and adequate for the ridge regression model to be statistically reliable. Therefore, predictor variables with no 

significant explanatory powers have been screened out. The implication of this is that mother’s weight, multiple 

pregnancies, graphidity and maternal infections are the contributing factors responsible for having low birth 

weight babies with 0.4 per cent biasedness. The value of 0.4 per cent biasedness indicates that the estimates of 

ridge regression is 99.6 per cent reliable and, are therefore recommended as the best among the three approaches 

considered. Finally, it is reasonable to model as follows: 

 

   8752 362.4258.6258.4019.2836.1 xxxxy   

 

It’s also established, from the same Table 3, that only 18 per cent variations cannot be explained by the 

estimated model since 
2R = 0.82 as estimated value for coefficient of determination. 

 

3.7   Estimation by Principal Component Method 
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When predictor variables are considered, the following Correlation Matrix, R is obtained as follows: 
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From the correlation matrix, R, we obtained the following eigenvalues and the corresponding eigenvectors as 

follows: 





































336.0

260.0

334.0

384.0

366.0

225.0

295.0

383.0

378.0

,628.6 11 V , 











































169.0

655.0

546.0

058.0

119.0

443.0

155.0

013.0

074.0

,757.1 22 V , 

















































322.0

370.0

342.0

108.0

106.0

648.0

426.0

128.0

044.0

,156.1 33 V  

 









































015.0

591.0

616.0

178.0

025.0

258.0

290.0

265.0

134.0

,035.1 44 V ,  

















































554.0

008.0

051.0

220.0

191.0

038.0

648.0

332.0

270.0

,782.0 55 V













































657.0

081.0

192.0

066.0

112.0

513.0

432.0

218.0

106.0

,366.0 66 V  

 



Comparison of Classical Least Squares (CLS), Ridge and Principal Component Methods of Regression Analyses using Gynaecological Data 

www.iosrjournals.org                                                     69 | Page 





































128.0

094.0

222.0

039.0

854.0

030.0

114.0

407.0

121.0

,066.0 77 V ,      

















































007.0

008.0

072.0

279.0

103.0

021.0

030.0

415.0

856.0

009.0 88 V ,  



















































005.0

006.0

021.0

821.0

225.0

022.0

055.0

521.0

012.0

,002.0 99 V  

 

Therefore, the following Principal Components are formed: 
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We shall calculate the Percentage Contributions of each of the Principal Components as follows:  

  999.8%100.
)( 9

1
9

1





















 
 



i

i

i

i

i
i whichfor

PVar
P 



  

).002.0(%02.0),009.0(%10.0),066.0(%73.0

),366.0(%07.4),782.0(%69.8),035.1(%50.11

),156.1(%85.12),757.1(%52.19),628.6(%66.73

998877

665544

332211













withPwithPwithP

withPwithPwithP

withPwithPwithP

 

 

3.8   Determination of the Number of Principal Components to be included in the Analysis 

Several methods are available in the literature as criteria for the determination of number of components to be 

extracted. Two of the methods are discussed one after the other as follows: 

 

3.8.1   Kaiser’s Criterion: This decision rule has been suggested by Guttman and adapted by Kaiser. Its 

application is simple; only Principal Components having latent roots (eigenvalues) greater than one (1) are 

considered essential and should be retained in the analysis. In other words, we retain iP if 1i . Therefore, the 

first three components are essential and significant by Kaiser’s Criterion. 

 

3.8.2   Cattell’s Screen Criterion: In this case, we plot latent roots (eigenvalues) against the order of extraction 

of the P’s to be retained in the analysis. Therefore, we use the shape of the resulting curve to judge how many 

P’s to retain. The decision rule is to retain the P’s up to the point where the resulting curve has some curvature 

and reject the P’s for which the curve becomes a straight line.  In other words, the point at which the curve 
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straightens out (develops into a linear relationship between the order of P’s and their latent roots/eigenvalues) 

determines the maximum number of P’s to be extracted. Beyond this point, the P’s are unreliable because they 

are heavily affected by factors which are not common to all X’s. It is evidenced from the plot shown in Figure 4 

that only the first three components are significant and should be retained. 

 

3.9   Obtaining Principal Component Regression (PCR) 

From R statistical package, the following estimates have been obtained after which each explanatory variable 

has been standardized in each of the three components. Therefore, from Table 4, it is inferred that only 3P  is 

significant and the final principal component regression is obtained as follows: 3406.0503.2 Py  . 

 

IV.  Conclusion 
Factors associated with low birth weight, often termed as risk factors and their presence in an 

individual woman indicates an increased chance or risk of bearing a low birth weight infant. Globally, low birth 

weight, as an indicator, is a good summary measure of a multifaceted public health problem that includes long-

term maternal malnutrition, ill-health, hard work and poor pregnancy health cares. Besides these, it is also 

associated with multi-pregnancy, genetic history (previous preterm birth and/or abortion), smoking or exposure 

to second hand smoking, stress or lack of support, maternal infections such as bladder or virginal infections 

which can cause labour to start early, stressful work condition such as being on feet for long hours, self drug 

administration and drinking alcohol as well as smoking cigarette, being under-weight before pregnancy, 

poverty, mother’s age and parity to mention but a few. 

When there is a complete absence of linear relationship among a set of predictor variables, then they 

are said to be orthogonal. The check for the existence of multicollinearity problem among the predictor variables 

is not left-out. From the application of Farrar-Glauber Test, the result obtained shows that multicollinearity is 

suspected in the data sets. Also, the degrees of relationships among some predictor variables are very high 

invariably meaning that some explanatory variables are highly collinear. From Table 3, there is a very high 

positive relationship of about 99% between mother’s age and parity; likewise between mother’s weight and 

multiple pregnancies. It’s between mother’s height and preterm delivery that lowest positive degree of 

relationship among the response variables was recorded. 

With two thousand cases examined, results obtained from the application of Classical Least Squares on 

the dataset would have been the best if not the presence of multicollinearity problem. The model obtained by 

stepwise selection through the application of ordinary least square would have been the best if not non-

orthogonality of the predictor variables. The value of shrinkage estimator was computed to be 0.004 meaning 

that we are 0.4% biased with our estimation when Ridge Method of Regression is applied. However, results 

obtained from the application of Ridge Method of Regression (Table 3) show that only four predictor variables 

are statistically significant with approximately 82% variation in low birth weight is explained by mother’s 

weight, multiple pregnancies, graphidity and maternal infections like malaria, tuberculosis, anaemia/shortage of 

blood, intra-uterine infections, congenital abnormalities, etc. 

However, from the formation of principal components, it’s deduced that out of nine components 

formed; only the first three are extracted. The first component has about 73.66% positive contribution while two 

of the components contributed negatively. From Kaiser’s and Cattell’s Screen Criteria, it is has been established 

that the first three components contributed significant and are chosen to be included in the analyses. The results 

obtained from obtaining Principal Component Regression revealed that only the third component is statistically 

significant. However, note that one cannot easily assign any specific economic meaning to the new variable in 

principal components. It is an artificial orthogonal variable not directly identifiable with a particular meaning; 

this is because all predictor variables are embedded in the new variable. It has been established that the method 

uses less of the information contained in the sample since the number of P’s retained is far smaller than the 

number of predictor variables. This is the reason why some researchers consider this method of principal 

component inappropriate as a solution to multicollinearity problem but manageable. The P’s are artificial 

variables to which no specific meaning can be assigned. As known that the method of principal component can 

be applied either on the original X’s, or on their deviations from means, or on the standardized values of the 

original variables, therefore the values of the principal components will be different in each case. This 

dependence on the unit of measurement is obviously a serious weakness of the Principal Component 

Techniques.  

In a nutshell, Ridge Regression Method is preferred to be the best method of parameter estimation in a 

multicollinear situation provided that the amount/percentage of biasedness is bearable. In this study, it is 

obvious that 0.4% of biasedness can be tolerated. Therefore, the suitable regression model that best describes the 

situation of multicollinearity is: 8752 362.4258.6258.4019.2837.1 xxxxy  . In summary, the 

major factors responsible for having low birth weight babies are weight of the mother, having more than one 
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pregnancy at a time (multiple pregnancies), total number of pregnancies already had (graphidity) and associated 

maternal infections like malaria, tuberculosis, anaemia, intra-uterine infections, congenital abnormalities, and so 

on. 

 

Recommendations 

In order to reduce (if not completely eliminate) the rate of having low birth weight babies among our women, 

the following recommendations are made: 

(a) It is advisable for women to eat balanced diet with a view to gaining more weight during pregnancy; they 

should consume more fruits and vegetables and, less of the junk foods; 

(b) There should be no drinking of alcohol, self-drug administration and no smoking before, during and even 

after pregnancy; 

(c) Women are advised to watch their weights, undertake regular low impact exercise and take time to relax; 

(d) Regularly consulting doctors/nurses in charge of ante-natal can still be used as a measure to curb having 

low birth weight babies during pregnancy; 

(e) Hence, many risks for low birth weight can be identified before pregnancy occurs. Thus, health education, 

socio-economic development, maternal nutrition, and regular use of health services during pregnancy are all 

important for reducing low birth weight; 

(f) Reduction in the rate of abortions among youths of adolescent age and the rate of child-bearing can be used 

to reduce or even eliminate having low birth weight babies. 
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APPENDIX 

           
   

 Figure 1: Normal Q-Q Plot       Figure 3: Residual Plot    

  

              
 

Figure 2: Histogram of the Standardized Residuals     Figure 4: Cattell’s Screen Plot
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   TABLE 1: Upper Triangular Correlation Matrix Using OLS 

 

 

 

 

 

 

 

 

TABLE 2: Parameters of Least Squares Results (Full Model)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3: Ridge Regression Parameters 

Variab
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.99
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.97
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5x      1 .99

5 

.83

9 

.518 .69
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.658 

6x       1 .97

1 

.754 .68

2 

.769 

7x        1 -.582 .78

5 

.811 

8x         1 .65

2 

.556 

9x          1 0.004 

Y           1 

Model Coefficients Std. Errors P-Values 

Intercept 1.976 22.474 0.930 

1x  0.041 0.034 2.226 

2x  -0.018 0.374 0.013 

3x  0.501 0.234 3.033 

4x  -0.029 0.050 2.557 

5x  -0.053 0.059 2.037 

6x  -0.019 0.041 1.944 

7x  -0.085 0.040 0.034 

8x  0.064 0.051 3.528 

9x  -0.030 0.036 2.401 

Model Coefficients Std. Errors P-Values 

Intercept 1.836 0.474 0.001 

1x  0.329 21.034 0.818 

2x  2.019 0.068 0.000 

3x  4.032 8.234 0.891 

4x  -8.291 24.958 0.861 

5x  4.258 0.824 0.001 

6x  -1.217 17.918 0.721 

7x  6.258 0.718 0.010 
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TABLE 4: Parameters of Principal Component Regression 

 

8x  4.362 0.293 0.009 

9x  -9.932 61.902 0.994 

2R = 0.82, with 2000 cases 

Model Coefficient Std. Error t-value P-Value 

Intercept 2.503 0.018 141.114 2e-16*** 

1P  -0.003 0.018 -0.146 0.884 

2P  -0.022 0.017 -1.269 0.204 

3P  -0.046 0.018 -2.562 0.010*** 

2R = 0.62 with 2000 cases 


