ON HYPERBOLICALLY KAEHLERIAN BI-RECURRENT AND BI-SYMMETRIC SPACES

K.S.Rawat¹ Mukesh Kumar² and Nitin Uniyal³

Department of Mathematics H.N.B.Garhwal University Campus Badshahi Thaul, Tehri (Garhwal) -249199 Uttarakhand, India.

Abstract: Tachibana (1967) have studied on the Bochner curvature tensor. Singh (1971-72) studied on Kaehlerian recurrent and Ricci-recurrent spaces of second order. Further, Negi and Rawat (1994) have been studied some bi-recurrent and bi-sym metric properties in a Kaehlerian space.

In the present paper, we have been studied Hyperbolically Kaehlerian bi-recurrent and bi-symmetric spaces also several theorems have been established and proved therein.

Keywords: Bi-recurrent, bi-symmetric, Hyperbolically Kaehlerian Space, Kaehlerian space, Sasakian space.

I. Introduction

Spaces with additional structures which arise in theoretical Physics play an important part in the theory of Riemannian spaces V_n . Such spaces are, in particular, "Classical" Kaehlerian and Sasakian spaces as well as hyperbolically Kaehlerian and Hyperbolically Sasakian spaces.

Definition (1.1): A four-dimensional Riemannian space K_n is called a hyperbolically Kaehlerian space if, along with Riemannian metric tensor g_{ij} , a complex structure tensor F_i^h satisfies the following conditions:

$$F_k^h F_i^k = \delta_i^h , \qquad \dots (1.1)$$

$$g_{ki} F_j^k + g_{kj} F_i^k = 0 , \qquad \dots (1.2)$$

$$F_{i,j}^h = 0 , \qquad \dots (1.3)$$

where the comma (,) followed by an index denotes the operator of covariant differentiation w.r.to the Riemannian metric tensor.

Definition (1.2): An odd-dimensional Riemannian space S_n is called a hyperbolically Sasakian space if, along with metric tensor g_{ij} , a complex structure tensor F_i^h satisfies the following conditions :

$F_k^h F_i^k = \delta_i^h - X^h X_i ,$	(1.4)	
$F_k^h X^k = 0 ,$	(1.5)	
$X^k X_k = 1$,	(1.6)	
$g_{ki}F_j^k + g_{kj}F_i^k = 0 ,$	(1.7)	
$F_{i,j}^h = X^h g_{ij} - \delta_j^h X_i ,$	(1.8)	

where $X_i \equiv X^k g_{ki}$ is some vector.

Differentiating (1.4), it is easy to establish that $F_i^h = X_{i}^h$. This definition of Sasakian spaces is over determined.

The Riemannian curvature tensor field R_{ijk}^{h} is defined as

$$R_{ijk}^{h} = \partial_{i} \left\{ {{h} \atop {j} k} \right\} - \partial_{j} \left\{ {{h} \atop {i} k} \right\} + \left\{ {{h} \atop {i} a} \right\} \left\{ {{j}^{a} \atop {k}} \right\} - \left\{ {{h} \atop {j} a} \right\} \left\{ {{a} \atop {i} k} \right\}$$

where $\partial_i = \frac{\partial}{\partial x^i}$ and $\{x^i\}$ denotes the real local coordinates.

The Ricci tensor and the Scalar curvature are respectively given by $R_{ij} = R^a_{aij}$ and $R = g^{ij}R_{ij}$

If we define a tensor S_{ij} by $S_{ij} = F_i^a R_{aj}$, ... (1.9) Then we have

www.iosrjournals.org

On Hyperbolically I	Rechief fan Di Rechifent fina i	bi Symmetric Spaces
$S_{ij} = -S_{ji} ,$	(1.10)	
$F_i^a S_{aj} = -S_{ia} F_j^a ,$	(1.11)	
and		
$F_i^a S_{jk,a} = R_{ji,k} - R_{ki,j} .$	(1.12)	
It has been verified in Yano([5]) pages 63, 68 that the n	netric tensor g_{ij} and the Ricci-t	ensor denoted by R_{ij}
are hybrid in i and j . Therefore, we get		
$g_{ij} = g_{rs} F_i^r F_j^s ,$	(1.13)	
and $R_{ij} = R_{rs} F_i^r F_j^s$,	(1.14)	
The Holomorphically Projective curvature tensor P_{ijk}^h is	given by	
$P_{ijk}^{h} = R_{ijk}^{h} + \frac{1}{(n+2)} \left(R_{ik} \delta_{j}^{h} - R_{jk} \delta_{i}^{h} + S_{ik} F_{j}^{h} - S_{jk} F_{i}^{h} + \right)$	$-2S_{ij}F_k^h$),	(1.15)
The Tachibana H-Concircular curvature tensor and the W	Veyl-Conformal curvature tensors	are respectively given
$T_{ijk}^{h} = R_{ijk}^{h} + \frac{R}{n(n+2)} \left(g_{ik} \delta_{j}^{h} - g_{jk} \delta_{i}^{h} + F_{ik} F_{j}^{h} - F_{jk} F_{i}^{h} + F_{ik} F_{j}^{h} \right)$	$2F_{ij}F_k^h$),	(1.16)
and $C_{ijk}^{h} = \frac{1}{(n-1)} \left(R_{ik} \delta_{j}^{h} - R_{jk} \delta_{i}^{h} + g_{ik} R_{j}^{h} - g_{jk} R_{i}^{h} \right) - \frac{R}{(n-1)(n-1)}$	$\left(g_{ik}\delta^h_j-g_{jk}\delta^h_i\right),$	(1.17)
There is a Weyl-Concircular curvature tensor given by (S	Sinha, 1971)	
$Z_{ijk}^{h} = R_{ijk}^{i} + \frac{\kappa}{n(n-1)} (g_{ik} \delta_j^{h} - g_{jk} \delta_i^{h}),$	(1.18)	
If, we put		
$L_{ij} = R_{ij} - \frac{\kappa}{n} g_{ij}$	(1.19)	
and		
$M_{ij} = F_i^a L_{aj} = S_{ij} - \frac{R}{n} F_i$	(1.20)	
Then from (1.15), (1.16), (1.16), (1.19) and (1.20), we get	et in the second s	
$P_{ijk}^{h} = T_{ijk}^{h} + \frac{1}{(n+2)} \left(L_{ik} \delta_{j}^{h} - L_{jk} \delta_{i}^{h} + M_{ik} F_{j}^{h} - M_{jk} F_{i}^{h} + \right)$	$2M_{ij}F_k^h$),	(1.21)
and with the help of (1.17), (1.18), (1.19) and (1.20), we	have	
$C_{ijk}^{n} = Z_{ijk}^{n} + \frac{1}{(n-2)} \left(L_{ik} \delta_{j}^{n} - L_{jk} \delta_{i}^{n} + g_{ik} L_{j}^{n} - g_{jk} L_{i}^{n} \right).$		(1.22)
Now, we shall use the following:		
Definition (1.3). A hyperbolically Kaehlerian space K_n	is said to be bi-recurrent, if we ha	ave
$R_{ijk,ab} - \lambda_{ab}R_{ijk} = 0$, or, equivalently $R_{ijkl,ab} - \lambda_{ab}R_{ijkl,ab}$	$l_{ijkl} = 0.$	(1.23)
for some non-zero tensor field λ_{ab} , and is known as real	currence tensor field.	
A hyperbolically Kaehlerian space whose Ricci-tensor R	ij satisfies the equation	
$R_{ij,ab} - \lambda_{ab}R_{ij} = 0,$	(1.24)	
for some non-zero tensor λ_{ab} , is called hyperbolically	Kaehlerian Ricci-bi-recurrent sp	pace. Multiplying
the above equation by g^{4j} , we have		
$R_{,ab} - \lambda_{ab}R = 0.$	(1.25)	
II. Hyperbolically Kaehlerian Sp	paces With Bi-Recurrent Pro	operties
Definition (2.1). A hyperbolically Kaehlerian space sat	isfying the relation	
$P_{ijk,ab}^n - \lambda_{ab} P_{ijk}^n = 0$, or, equivalently $P_{ijkl,ab} - \lambda_a$	$_{b}P_{ijkl} = 0,$	(2.1)
For some non-zero tensor field λ_{ab} , will be called hyp	erbolically Kaehlerian projective	bi-recurrent space.

Definition (2.2). A hyperbolically Kaehlerian space satisfying the relation $T^{h}_{ijk,ab} - \lambda_{ab}T^{h}_{ijk} = 0, \text{ or, equivalently } T_{ijkl,ab} - \lambda_{ab}T_{ijkl} = 0, \qquad \dots (2.2)$ For some non-zero tensor field λ_{ab} , will be called hyperbolically Kaehlerian space with Tachibana H-

For some non-zero tensor field Λ_{ab} , will be called hyperbolically Kaehlerian space with Tachibana H-Concircular bi-recurrent space.

Definition (2.3). A hyperbolically Kaehlerian space satisfying the relation

$$C_{ijk,ab}^{n} - \lambda_{ab}C_{ijk}^{n} = 0, \text{ or, equivalently } C_{ijkl,ab} - \lambda_{ab}C_{ijkl} = 0, \qquad \dots (2.3)$$

For some non-zero tensor field λ_{ab} , will be called hyperbolically Kaehlerian space with bi-recurrent Weyl-Conformal curvature tensor.

www.iosrjournals.org

Definition (2.4). A hyperbolically Kaehlerian space satisfying the relation

$$Z_{ijk,ab}^{n} - \lambda_{ab} Z_{ijk}^{n} = 0, \text{ or, equivalently } Z_{ijkl,ab} - \lambda_{ab} Z_{ijkl} = 0, \qquad \dots (2.4)$$

For some non-zero recurrence tensor field λ_{ab} , will be called hyperbolically Kaehlerian space with birecurrent Weyl-Concircular curvature tensor.

Now, we have the following:

Theorem (2.1): If a hyperbolically Kaehlerian space satisfying any two of the following properties:

- (i) the space is hyperbolically Kaehlerian Ricci-bi-recurrent,
- (ii) the space is hyperbolically Kaehlerian projective bi-recurrent,
- (iii) the space is hyperbolically Kaehlerian Tachibana H-Concircular bi-recurrent ,then it must also satisfy the third.

Proof. Differentiating (1.21) covariantly w.r.to x^{a} , again differentiate the result thus obtained covariantly w.r.to x^{b} , we have

$$P_{ijk,ab}^{h} = T_{ijk,ab}^{h} = \frac{1}{(n+2)} \left(L_{ik,ab} \delta_{j}^{h} - L_{jk,ab} \delta_{i}^{h} + M_{ik,ab} F_{j}^{h} - M_{jk,ab} F_{i}^{h} + 2M_{ij,ab} F_{k}^{h} \right), \qquad \dots (2.5)$$

Multiplying (1.21) with λ_{ab} and subtracting the result thus obtained from (2.5), we have $P_{ijk,ab}^{h} - \lambda_{ab}P_{ijk}^{h} = T_{ijk,ab}^{h} - \lambda_{ab}T_{ijk}^{h} + \frac{1}{(n+2)} \left[\left(L_{ik,ab} - \lambda_{ab}L_{ik} \right) \delta_{j}^{h} - \left(L_{jk,ab} - \lambda_{ab}L_{jk} \right) \delta_{i}^{h} \right]$

$$+(M_{ik,ab}-\lambda_{ab}M_{ik})F_j^h-(M_{jk,ab}-\lambda_{ab}M_{jk})F_i^h+2(M_{ij,ab}-\lambda_{ab}M_{ij})F_k^h]$$

...(2.6)

The statement of the above theorem follows in view of equations (1.24), (1.25), (2.1), (2.2), (1.19), (1.20) and (2.6).

Theorem (2.2). If a hyperbolically Kaehlerian space satisfies any two of the following properties:

- (i) the space is hyperbolically Kaehlerian Ricci-bi-recurrent,
- (ii) the space is hyperbolically Kaehlerian space with bi-recurrent Weyl-Conformal curvature tensor,
- (iii) the space is hyperbolically Kaehlerian space with bi-recurrent Weyl-Concircular curvature tensor, then it must also satisfy the third.

Proof. A Hyperbolically Kaehlerian Ricci –bi-recurrent space, a Hyperbolically Kaehlerian space with bi-recurrent Weyl-Conformal curvature tensor and hyperbolically Kaehlerian space with bi-recurrent Weyl-Concircular curvature tensor are respectively characterized by the equations (1.24), (2.3) and (2.4).

Differentiating (1.22) covariantly w.r.to x^{a} , again differentiate the result thus obtained covariantly w.r.to x^{b} , we have

$$C_{ijk,ab}^{h} = Z_{ijk,ab}^{h} + \frac{1}{(n-2)} \left(L_{ik,ab} \delta_{j}^{h} - L_{jk,ab} \delta_{i}^{h} + g_{ik} L_{j,ab}^{h} - g_{jk} L_{i,ab}^{h} \right), \qquad \dots (2.7)$$

Multiplying (1.22) with λ_{ab} and subtracting the result thus obtained from (2.7), we have $C_{iik}^{h} = \lambda_{ab}C_{iik}^{h} = Z_{iik}^{h} a_{b} - \lambda_{ab}Z_{iik}^{h} + \frac{1}{c} \left[(L_{ik}a_{b} - \lambda_{ab}L_{ik}) \delta_{i}^{h} - (L_{ik}a_{b} - \lambda_{ab}L_{ik}) \delta_{i}^{h} \right]$

Theorem (2.3). Every hyperbolically Kaehlerian bi-recurrent space is a hyperbolically Kaehlerian space with Tachibana H-Concircular bi-recurrent space.

Proof. Differentiating (1.16) covariantly w.r.to x^{α} , again differentiate the result thus obtained covariantly w.r.t. x^{b} , we have

$$\Gamma_{ijk,ab}^{h} = R_{ijk,ab}^{h} + \frac{R_{,ab}}{n(n+2)} \left(g_{ik} \delta_{j}^{h} - g_{jk} \delta_{i}^{h} + F_{ik} F_{j}^{h} - F_{jk} F_{i}^{h} + 2F_{ij} F_{k}^{h} \right) \qquad \dots (2.9)$$

Multiplying (1.16) by λ_{ab} and subtracting the result thus obtained from (2.9), we have $T_{ijk,ab}^{h} - \lambda_{ab}T_{ijk}^{h} = R_{ijk,ab}^{h} - \lambda_{ab}R_{ijk}^{h} + \frac{(R_{,ab} - \lambda_{ab})}{n(n+2)} (g_{ik}\delta_{j}^{h} - g_{jk}\delta_{i}^{h} + F_{ik}F_{j}^{h} - F_{jk}F_{i}^{h} + 2F_{ij}F_{k}^{h}),$

(2.10)

Now, let the space be hyperbolically Kaehlerian bi-recurrent, then equations (1.23), (1.24) and (1.25) are satisfied.

Making use of equations (1.23) and (1.25) in (2.10), we have

$$T_{ijk,ab}^n - \lambda_{ab} T_{ijk}^n = 0,$$

which shows that the space is hyperbolically Kaehlerian space with Tachibana H-Concircular bi-recurrent space.

III. Hyperbolically Kaehlerian Spaces With Bi-Symmetric Properties

Definition (3.1). A hyperbolically Kaehlerian space is said to be bi-symmetric if it satisfies the relation $R_{ijk,ab}^{h} = 0$, or, equivalently $R_{ijkl,ab} = 0$, ... (3.1) Obviously, a hyperbolically Kaehlerian bi-symmetric space is said to be hyperbolically Kaehlerian Ricci-bisymmetric space if $R_{ij,ab} = 0$, ... (3.2) Multiplying the above equation by g^{ij} , we get $R_{,ab} = 0$ (3.3). **Definition (3.2).** A hyperbolically Kaehlerian space satisfying the relation

 $P_{ijk,ab}^{h} = 0$, or, equivalently $P_{ijkl,ab} = 0$, ... (3.4)

is called a hyperbolically Kaehlerian projective bi-symmetric space.

Definition (3.3). A hyperbolically Kaehlerian space satisfying the relation

 $T_{ijk,ab}^{h} = 0$, or, equivalently $T_{ijkl,ab} = 0$, ... (3.5)

will be called hyperbolically Kaehlerian space with Tachibana H-Concircular bi-symmetric space.

Definition (3.4). A hyperbolically Kaehlerian space satisfying the relation $C_{ijk,ab}^{h} = 0$, or, equivalently $C_{ijkl,ab} = 0$, ... (3.6)

will be called hyperbolically Kaehlerian space with bi-symmetric Weyl-Conformal curvature tensor.

Definition (3.5). A hyperbolically Kaehlerian space satisfying the relation

 $Z_{ijk,ab}^{h} = 0$, or, equivalently $Z_{ijkl,ab} = 0$, ... (3.7)

is called hyperbolically Kaehlerian space with bi-symmetric Weyl-Concircular curvature tensor. Now, we have the following :

Theorem (3.1). If a hyperbolically Kaehlerian space satisfies any two of the following properties:

- (i) the space is hyperbolically Kaehlerian Ricci-bi-symmetric,
- (ii) the space is hyperbolically Kaehlerian projective bi-symmetric,
- (iii) the space is hyperbolically Kaehlerian Tachibana H-Concircular bi-symmetric, then it must also satisfy the third.

Proof. A hyperbolically Kaehlerian Ricci-bi-symmetric space, a hyperbolically Kaehlerian Projective bisymmetric space and hyperbolically Kaehlerian space with Tachibana H-Concircular bi-symmetric space are respectively characterized by (3.2), (3.4) and (3.5).

The statement of the above theorem follows in view of (2.5), (3.2), (3.4) and (3.5).

Theorem (3.2). If a hyperbolically Kaehlerian space satisfies any two of the following properties:

- (i) the space is hyperbolically Kaehlerian Ricci-bi-symmetric,
- (ii) the space is hyperbolically Kaehlerian space with bi-symmetric Weyl-Conformal curvature tensor,
- (iii) the space is hyperbolically Kaehlerian space with bi-symmetric Weyl-Concircular curvature tensor, then it must also satisfy the third.

Proof. A Hyperbolically Kaehlerian Ricci –bi-symmetric space, a Hyperbolically Kaehlerian space with bi-symmetric Weyl - Conformal curvature tensor and hyperbolically Kaehlerian space with bi-symmetric Weyl-Concircular curvature tensor are respectively characterized by (3.2), (3.6) and (3.7).

The statement of the above theorem follows in view of (2.7), (3.2), (3.6) and (3.7).

Theorem (3.3). Every hyperbolically Kaehlerian bi-symmetric space is a hyperbolically Kaehlerian space with Tachibana H-Concircular bi-symmetric space.

Proof. From (2.9), it follows that in a hyperbolically Kaehlerian bi-symmetric space, the Tachibana H-Concircular curvature tensor satisfies

$$T_{ijk,ab}^h = 0,$$

which shows that the space is hyperbolically Kaehlerian space with Tachibana H-Concircular bi-symmetric space.

References

- [1] Okumura, M.: Some remarks on space with a certain contact structures, *Tohoku Math. Jour.*, 14, (1962) 135–145.
- [2] Tachibana, S.: On the Bochner curvature tensor, Nat. Sci. Report Ochanomizu Univ., 18(1), (1967)15-19.
- [3] Singh, S.S.: On Kaehlerian spaces with recurrent Bochner curvature tensor, Acc. Naz. Dei. Lincei, Rend, Series VIII, 51, 3-4, (1971) 213-220.
- [4] Singh, S.S.: On Kaehlerian recurrent and Ricci-recurrent spaces of second order, Atti della Acad-emia delle Scienze di Torino, 106, 11, (1971-72) 509-518.
- [5] Yano, K.: Differential Geometry of Complex and almost complex spaces, *Pergamon press* (1965).
- [6] Negi, D.S. & Rawat, K.S. : Some bi-recurrence and bi-symmetric properties in a Kaehlerian space, Acta Ciencia Indica, Vol. XX M, No. 1 (1994) 95-100.
- [7] Rawat, K.S. & Silswal, G.P. : Some theorems on subspaces of subspaces of a Tachibana spaces,
- [8] Acta Ciencia Indica, Vol. XXXI M, No. 4, (2005) 1009-1016.
- [9] Rawat,K.S.&Silswal,G.P.:TheoryofLie-derivativesandmotionsinTachibanaspaces, News Bull. Cal. Math. Soc. , 32 (1-3), (2009) 15-20.
- [10] Rawat, K.S. & Prasad Virendra: Sometheoremson Kaehlerian Conharmonic bi-recurrent spaces, *Acta Ciencia indica*, Vol. XXXV M, No. 2, (2009) 417-421 MR 2666522.
- [11] RawatK.S.&PrasadVirendra:OnLie-derivativesofscalars, VectorsandTensors, *Purea Applied Mathematica Sciences, Vol. LXX, No.* 1-2, (2009) 135-140.
- [12] Rawat, K.S. & Dobhal Girish : On Einstein-Kaehlerian s-recurrent space, International Trans. in
- [13] Mathematical Sciences and Computer, Vol. 2, No. 2, (2009) 339-343.
- [14] Rawat,K.S.&MukeshKumar:OncurvaturecollineationsinaTachibanarecurrentspace, Aligarh Bull. Math., 28, No. 1-2, (2009) 63-69 MR 2769016.
- [15] Rawat,K.S.&UniyalNitin:StudyonKaehlerianrecurrentandsymmetricspacesofsecond order, Jour. of the Tensor Society, Vol. 4, (2010) 69-76.
- [16] Rawat , K.S. & Prasad Virendra : On Holomorphically Projectively flat parabolically Kaehlerian
- [17] spaces, Rev. Bull. Cal. Math. Society, 18 (1), (2010) 21-26.
- [18] Rawat,K.S.&DobhalGirish:ThestudyofTachibanabi-recurrentspaces, AntarcticaJour. Math., 7(4), (2010) 413-420.
- [19] Rawat, K. S. & Kumar Mukesh : On hyper surfaces of a Conformally flat Kaehlerian recurrent
- [20] space, Pure and Applied Mathematika Sciences, Vol. LXXIII, No. 1-2, (2011) 7-13.
- [21] Rawat,K.S.&UniyalNitin:OnConformaltransformationsinanalmostKaehlerian and Kaehlerian spaces, *Jour. of Progressive Science*, *Vol. 2*, *No. 2*, (2011) 138-141.