On Co Distributive Pair and Dually Co Distributive Pair in a Lattice

K.V.R. Srinivas, Professor and R. Nanda kumar

Asst. Professor in Mathematics, Regency Institute of Technology, Adavipolam, Yanam – 533464. U.T.of Pondicherry, near kakinada.

Abstract: In this paper we have obtained some interesting results on Co distributive pair in lattices. We also obtained some results on dually Co distributive pair in general lattice.

Key Words: Co distributive pair, Dually co distributive, d-prime element, Dually d-prime element, d-prime Ideals, Dually d-prime element.

I. Introduction

In this paper we have defined some definitions like Co distributive pair, d-meet irreducible element, dprime element of a lattice 'L', d-prime is transformed to dually co distributive pair, dually d-prime ideals, dually d-prime element.

Using above definitions we have achieved some theorems [like,(4) If (x,y) is dually co distributive then for any $a \in L$, (x $\land a$), (y $\land a$) is also dually co distributive.(6) Relation between dually d-prime ideal with

(1) distributive (2) Standard (3) Neutral] and result(s), If 'a' is dually d-prime element ⇔ [a) is dually d-prime and (x∧a), (y∧a) is dually co distributive pair. Also we have obtained some of the most important theorems,(8) If (a,b) and (b,c) are dually codistributive, then (a∧c,b) is also dually co distributive and (9) Suppouse I is a sublattice of L and m_a, a∈I,and m_a is an ideal of I,minimal w.r.to the property of containing 'a', then there is a d-prime ideal 'p' of L ∋ P∩I= m_a which is followed by lemma, If 'L' is any lattice, then every dually d-meet irreducible element is dually d-prime. AMS(2000) Subject Classification :- 20M10

II. In the first part of this paper we start with the following preliminaries

Def (1):- Co distributive pair : Let 'L' be a lattice, $x, y \in L$, then (x, y) is said to be codistributive, if $(x \land y) \lor z = (x \lor z) \land (y \lor z) \forall z \in L$.

- **Def (2):-** d-meet irreducible element : An element 'a' of lattice 'L' is called d-meet irreducible $\Leftrightarrow a=x \land y$ and (x,y) is codistributive \Rightarrow either a=x or a=y.
- **Def (3):-** d-prime element of a lattice L : An element 'a' of a lattice is d-prime $\Leftrightarrow a \ge x \land y$ and (x,y) is codistributive \Rightarrow either $a \ge x$ or $a \ge y$.
- **Def (4):** d-prime Ideals : An Ideal 'I' of a lattice 'L' is called a d-prime Ideal if for any codistributive pair $(a,b)\in L^2$ with $a\wedge b\in I$ then $a\in I$ or $b\in I$.
- **Theorem** (1) :- Connection between d-meet irreducible element of a lattice 'L' with either distributive/Standard/Neutral.
- **Proof** :- Let 'a' be a d-meet irreducible element, Also let (x,y) be co distributive with $a = x \land y$.
 - Claim:- (i) 'a' is distributive, i.e, $a \lor (x \land y) = (a \lor x) \land (a \lor y)$

Consider, $a \lor (x \land y) = a \lor (a) = a$.

Also, $(a \lor x) \land (a \lor y) = ((x \land y) \lor x) \land ((x \land y) \lor y) = x \land y = a$.

Converse :- If 'a' is distributive then 'a' is a d-meet irreducible element.

Consider,

x
And
$$a \wedge b = 0$$
, $a \vee b = 1$.
Since, $a \vee (x \wedge y) = (a \vee x) \wedge (a \vee y)$,
Let $x = 1$, $y = b$, then $a \vee (1 \wedge b) = a \vee b = 1$.
Also, $(a \vee 1) \wedge (a \vee b) = 1 \wedge 1 = 1$.
And $a \wedge b = 0 \Rightarrow (a,b)$ is co distributive \Rightarrow either $a=0$ or $b = 0$.

(ii) 'a' is standard, i.e, $x \land (a \lor y) = (x \land a) \lor (x \land y)$.

Consider, $x \land (a \lor y) = x \land ((x \land y) \lor y) = x \land y = a$.

Also, $(x \land a) \lor (x \land y) = (x \land a) \lor a = a$.

Converse :- If 'a' is standard, then 'a' is not d-meet irreducible element, because of the following

 \therefore {0} is standard.

Since, $0 \ge x \land y$ and (x,y) is co distributive, but, $0 \square x$ and $0 \square y$.

: Any Standard element need not be d-prime element.

III. In the second part of the paper we start with the following preliminaries

- **Def** (1):- Dually co distributive : Let 'L' be a lattice and $(x,y) \in L^2$, then the pair (x,y) is said to be dually co distributive, if $(x \lor y) \land z = (x \land z) \lor (y \land z) \forall z \in L$.
- **Def** (2):- Dually d-prime Ideal : An Ideal P of L is called a dually d-prime Ideal if $(x,y) \in L^2$ with $(x \lor y) \in P$. $\Rightarrow x \in P$ and $y \in P$ for any codistributive pair (x,y) in L^2 .
- **Def** (3):- Dually d-prime element : An element 'a' of a lattice 'L' is dually d-prime $\Leftrightarrow a \le x \lor y$ and (x,y) is codistributive \Rightarrow either $a \le x$ and $a \le y$.

Theorem (4):- If (x,y) is dually codistibutive, then for any $a \in L$, (x $\land a$), (y $\land a$) is also dually co distributive. **Proof**:- It is clear.

Theorem (5):- Relation between dually d-prime element with, (1) Distributive (2) Standard (3) Neutral. **Proof:**- Consider the following example for (1), i.e, dually d-prime element to distributive.

Also consider the following example for (2), i.e, dually d-prime element to standard.

Result (6) :- 'a' is d-prime element \Leftrightarrow (a] is d-prime Ideal.

Proof:- Let 'a' be d-prime element. Claim:- (a] is d-prime Ideal. Let (x,y) be a co distributive pair with $x \land y \in (a]$. $\Rightarrow x \land y \le a$. $\Rightarrow x \le a$ or $y \le a$. If $x \le a \Rightarrow x \in (a]$. If $y \le a \Rightarrow y \in (a]$. Hence (a) is d-prime. Conversely, Let (a] be d-prime. Claim:- 'a' is d-prime element. i.e., $a \ge x \land y$ and (x, y) is co distributive, then $a \ge x$ or $a \ge y$. Since $a \ge x \land y \Rightarrow a = a \lor (x \land y) = (a \lor x) \land (a \lor y) \Rightarrow (a \lor x) \land (a \lor y) \in (a]$. Since, we know that (x,y) is co distributive then for any 'a' $(a \lor x, a \lor y)$ is also co distributive. Hence $a \lor x \in (a]$ or $a \lor y \in (a]$. If $a \lor x \in (a]$, then $a \lor x \le a$. But $a \lor x \ge a$, hence $a \lor x = a$. Hence $x \le a$. If $a \lor y \in (a]$, then $a \lor y \le a$. But $a \lor y \ge a$, hence $a \lor y = a$. Hence $y \le a$. Hence 'a' is d-prime element. **Result** (7) :- 'a' is dually d-prime element \Leftrightarrow [a) is dually d-prime and for any (x,y) (x \land a),(y \land a) is also dually co distributive. **Proof**:- Let 'a' be dually d-prime element $\Rightarrow a \le x \lor y$ and (x,y) is co distributive pair $\Rightarrow a \le x$ and $a \le y$. Claim:- [a) is dually d-prime, where $[a] = \{x \in S | x \ge a\}$. Let $x \lor y \in [a]$ \Rightarrow a \leq x \lor y \Rightarrow a \leq x and a \leq y. If $a \le x \Rightarrow x \in [a)$ and $a \le y \Rightarrow y \in [a)$ Hence [a) is dually d-prime. Conversely, let [a) is dually d-prime element. Claim:- 'a' is dually d-prime element. i.e, $a \le x \lor y$ and (x,y) is dually co distributive $\Rightarrow a \le x$ and $a \le y$. Since $a \le x \lor y \Longrightarrow a = a \land (x \lor y) = (a \land x) \lor (a \land y)$. \Rightarrow (a \land x) \lor (a \land y) \in [a). since (x,y) is dually co distributive and $(a \land x, a \land y)$ is also dually co distributive Hence $a \land x \in [a]$ and $a \land y \in [a]$. If $a \land x \in [a)$, then $a \land x \ge a$, but $a \land x \le a$, $\therefore a \land x = a$, hence $x \ge a$. Also if $a \land y \in [a)$, then $a \land y \ge a$, but $a \land y \le a$, $\therefore a \land y = a$, hence $y \ge a$. **Theorem** (8):- If (a,b) and (b,c) are dually co distributive, then $(a \land c, b)$ is also dually co distributive. **Proof**:- Since (a,b) is dually co distributive, for any element $x \in L$, we have $(a \lor b) \land x = (a \land x) \lor (b \land x)$. Also since (b,c) is dually co distributive, for any element $x \in L$, we have $(b \lor c) \land x = (b \land x) \lor (c \land x)$. To show that $(a \land c, b)$ is also dually co distributive. Supposing that, let $(a \land c, b)$ is not dually co distributive, then $[(a \land c) \lor b] \land x > [(a \land c) \land x] \lor [b \land x]$, for some $x \in L$, hence \exists an ideal P which is minimal w.r.to the property of containing[$(a \land c) \land x$] \lor [$b \land x$] but not containing $[(a \land c) \lor b] \land x$. Thus $[(a \land c) \land x] \lor [b \land x] \in P$ and $[(a \land c) \lor b] \land x \notin P$. Now $(a \land c) \lor b \notin P$ and $(a \lor b) \le (a \land c) \lor b \notin P$. We have $(a \lor b) \notin P$. Similarly, $(b \lor c) \le (a \land c) \lor b$, and hence $(b \lor c) \notin P$. Since, $(b \land x) \in P$, this shows that $b \in P$, lly $c \in P$. If $a \in P$, then since $(a \lor b) \notin P$, we have $b \notin P$ which is a contradiction. If $c \in P$, then since $(b \lor c) \notin P$, We have $b \notin P$, which is also a contradiction. Hence $(a \land c, b)$ is dually co distributive. **Theorem** (9):- Suppose I is a sublattice of L and $m_a a \in I$ and m_a is an Ideal of I, minimal w.r.to the property of containing 'a', then there is a d-prime ideal P of L \Rightarrow P \cap I = m_a

Proof:- Let $x \in [m_a) \cap (a]$, then $x \in [m_a)$ and $x \in (a]$, so that $x \le a$ for some $x \in [m_a)$ and hence $x \ge k$ for some $k \in m_a$. Thus $a \ge x \ge k \Rightarrow a \ge k$ for some $k \in m_a$ which is a contradiction.

Hence $[m_a) \cap (a] = \emptyset$. $\therefore \exists a d$ -prime ideal P of L $\ni [m_a) \subseteq P$, and $P \cap (a] = \emptyset$, hence 'P' is d-prime. Claim:- $P \cap I = m_a$.

Now $m_a \subseteq P$, $m_a \subseteq I \Rightarrow m_a \subseteq P \cap I$ ------(*)

Suppose $x \in P \cap I$ so that $x \in P$ and $x \in I$,

If $x \notin m_a$ then $a \in m_a \land [x)$ and hence $a \ge k \land x$, for some $k \in m_a$.

 \therefore k \in m_a \Rightarrow k \in P. for some x \in P. since k \in P, x \land k \in P so that, a \notin P which is a contradiction.

Hence $x \in m_a$.

Thus $P \cap I \subseteq m_a$ -----(**)

From (*) and (**), $P \cap I = m_a$.

Lemma (10):- If L is any lattice then every dually d-meet irreducible element is dually d-prime. Proof:- Proof is clear.

References

[1]. Gratzer, G.(1978) : "General Lattice Theory", Akademic Press, New York.

[2]. Sazsaz, Gabor(1963) : "Introduction to Lattice Theory" Akademic Press, New York and London.

[3]. Srinivas,K.V.R.(2005) : "On D-Prime Ideals of a Lattice" Bull.Cal.Math.Soc.,97(1) 79-94(2005).