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 Abstract : Formation control is an important behavior for multi-agents system (swarm). This paper addresses 
the optimal tracking control problem for swarm whose agents are Dubin's car moving together in a specific 
geometry formation. We study formation control of the swarm model which consists of three agents and one 
agent has a role as a leader. The agents of swarm are moving to follow the leader path. First, we design the 
control of the leader with tracking error dynamics. The control of the leader is designed for tracking the desired 
path. We show that the tracking error of the path of the leader tracing a desired path is sufficiently small. The 
desired path is obtained using calculus variational method. After that, geometry approach is used to design the 
control of the other. We show that the positioning and the orientation of each agent can be controlled dependent 
on the leader. The simulation results show to illustrate of this method at the last section of this paper. 
Keywords - Swarm model, Dubin's car system, Tracking error, Calculus Variational,  Numerical simulation. 
 

I. INTRODUCTION 
 Natural phenomena are very interesting to analyze mathematically. One of the examples is the 
phenomenon called swarming which occurs in various groups of organisms. Swarming behavior or aggregation 
of organisms in groups is abundant in nature. For examples, the behavior can be seen in animal aggregation, 
flocks of birds (geese), schools of fish, herds of mammals etc. Flocks of geese often fly along in the inverted 
"V" formation. By flying in the inverted "V" formation they obtain some advantages. One of these advantages is 
that they are able to have 24% faster flying power and 71% greater flying range than if each goose flies on its 
own. One of the most interesting area is motion of swarm in [[10], [17]]. The motion of a swarm can be used in 
engineering for cooperative control (multi-robots) and formation control (aircraft and ship). 
 The formation preservation of the swarm have received considerable attentions. Gazi et al. [18], [19] 
and Miswanto, et. al. [15] study the coordination and tracking control problem of the motion of the swarm. In 
the literature, some researchers have discussed the formation control of mobile robots. In [14], the authors study 
a stable and decentralized control strategy for multi agent systems to capture a moving target in a specific 
formation. They use artificial potentials to take care both tracking and formation task. In [8], the authors study 
the stability properties of mobile agent formation which are based on leader following. They derive nonlinear 
gain estimates that capture how leader behavior affects the interconnection errors observed in the formation. In 
[16], the authors study a behavior based approach to robot formation preservation. In [13], the authors study 
control and coordination for many robots moving in formation using decentralized controllers. They investigate 
feedback law used to control multiple robots moving together in formation. They propose a method for 
controlling formations that uses only local sensor based information, in a leader-follower motion. They use 
methods of feedback linearization to exponentially stabilize the relative distance and orientation of follower and 
show that the zero dynamics of the system are also stable. In [11], the authors study the natural algebraic 
structure of the chained form system together with ideas from sliding mode theory while designing the control 
law. They consider sliding mode approach to the stabilization and tracking problfor the so called chained from 
nonholonomic system. In [6], the authors consider a problem of leader following in the case of a heterogeneous 
multi robot team. They use a discrete time sliding mode approach for control of nonholonomic robots 
performing a leader following task. 
 Another researchers have discussed the control design of a mobile robot to track a desired path. In [21], 
the authors discuss the tracking control of mobile robots using integrator backstepping. Many mechanical 
systems with nonholonomic contraints can be locally or globally converted to the chained form under coordinate 
change. In [22], the authors study the tracking control problem of nonholonomic system in chained form. They 
derive semi global tracking controllers for general chained form systems by means of backstepping and they 
achieve global tracking results for some special cases. In [4] an adaptive tracking control problem is studied for 
a four wheel mobile robot. The authors propose a formulation for the adaptive tracking problem that meets the 
natural prerequisite such that it reduces to the state feedback tracking problem if the parameters are known. 
They derive a general methodology for solving their problem. In [5], the authors study exponential tracking 
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control of a mobile car using a cascaded approach. They show that the nonlinear controllers proposed in [21] 
can be simplified into linear controller for both the kinematic model and a simple dynamic model of the mobile 
robot. Their approach is based on cascaded system. In [2], the authors study a sufficient condition for the full 
state tracking stability of nonholonomic wheeled mobile robots by using the tracking control schemes based on 
the input output dynamics. They show that the tracking error internal dynamics and zero dynamics play a critical 
role of the full state tracking stability of such mobile robots. In [12], the authors propose a novel sliding mode 
control law for solving trajectory tracking problems of nonholonomic mobile robots. They use dynamic models 
of mobile robots to describe their behaviors with bounded disturbances in system dynamics. In [9], the authors 
propose a variable structure controller of a wheeled mobile robot to track the desired trajectory. 
 In this paper we consider the optimal tracking control problem for swarming behavior of three agents 
whose agents are moving to track a desired path in a desired geometric formation. We also compute the tracking 
error of the path of the leader tracing a desired path is sufficiently small and the distance between the leader path 
and the desired path is preserved. In the next section, the formal problem statement is described. In section 3, we 
design the control of the leader using tracking error dynamics. In section 4, we design the control of each agent 
follower using geometric approach. In section 5, we show numerical simulations to illustrate our results. 
 

II. Problem Statement 
Consider three Dubin's Car system described as: 

                                                  

ሶ௜ݔ ൌ ௜ሻߠ௜cosሺݑ
ሶ௜ݕ ൌ ௜ሻߠ௜sinሺݑ

    

ሶ௜ߠ ൌ ߱௜                
௜ܻ ൌ ሾݔ௜, ,௜ݕ ௜ሿ்ߠ

                    ݅ ൌ 1, 2, 3.                                               (1) 

Where ሺݔ௜, ௜ሻݕ א ܴଶ denotes  the  position  of  the i-th Dubin's car, and ߠ௜ א ሾ0,2ߨሿ denotes the orientation of the 
car. The symbols ݑ௜ and  ߱௜ are the linear and angular velocities, respectively. Here, ௜ܻ is the output of the 
system. Thus, the output is the position and orientation of the car. In this paper, the desired path ߛ that would be 
tracked by the leader is obtained using calculus variational method. The path is denoted by 
ሻݐሺߛ ൌ ቀߛ௫ሺݐሻ,   .ሻቁݐ௬ሺߛ

In this paper, there are two problems which will be discussed. First, we design the control of the leader. 
Furthermore, we design the control of the other agents by geometry approach to follow the leader's path with a 
certain distance. 
 

III. The Control Design Of The Leader 
 We consider a model of the leader, such as (1). We design the control of the leader by tracking error 
dynamics for minimizing the tracking error in order to keep the position of the leader close to the desired path. 
We define a tracking error ݁ሺݐሻas the difference between the actual leader path and the desired path:  
                                                ݁ሺݐሻ ൌ ሻݐଵሺݔൣ െ ,ሻݐ௫ሺߛ ሻݐଵሺݕ െ ሻ൧Tݐ௬ሺߛ

                                                       (2) 
Differentiating the error equation (2) with respect to time yields. 

ሶ݁ ሺݐሻ ൌ ሾݔሶଵሺݐሻ െ ,ሻݐሶ୶ሺߛ ሻݐሶଵሺݕ െ ሻሿ்ݐሶ୷ሺߛ ൌ ሾݑଵcosሺߠ௜ሻ െ ,ሻݐሶ୶ሺߛ ௜ሻߠଵsinሺݑ െ  ,ሻሿ்ݐሶ୷ሺߛ
and  

ሷ݁ ሺݐሻ ൌ ሾݔሷଵሺݐሻ െ ,ሻݐሷ୶ሺߛ ሻݐሷଵሺݕ െ  ሻሿ்ݐሷ୷ሺߛ
         ൌ ሾݑሶ ଵcosሺߠ௜ሻ െ ௜ሻߠଶsinሺݑଵݑ െ ,ሻݐሷ୶ሺߛ ሶݑ ଵsinሺߠ௜ሻ ൅ ௜ሻߠଶcosሺݑଵݑ െ   .ሻሿ்ݐሷ୷ሺߛ
Now, we define the tracking error dynamics F where ܨ ൌ ሾ ଵ݂, ଶ݂ሿ்  and ௜݂ሺ݁௜, ሶ݁௜ሻ ൌ 0, ݅ ൌ 1,2 

           ଵ݂ሺݐሻ ൌ ሶ݁ଵሺݐሻ ൅ ݇ଵ݁ଵሺݐሻ
ଶ݂ሺݐሻ ൌ ሶ݁ଶሺݐሻ ൅ ݇ଶ݁ଶሺݐሻ,                                                                                   (5) 

where ݇ଵ and ݇ଶ are positive constants. Differentiating the system (5) with respect to time, one obtains  

                                          
ሶ݂ଵሺݐሻ ൌ ሷ݁ଵሺݐሻ ൅ ݇ଵ ሶ݁ଵሺݐሻ
ሶ݂ଶሺݐሻ ൌ ሷ݁ଶሺݐሻ ൅ ݇ଶ ሶ݁ଶሺݐሻ

,                                                                                                  (6) 

The control of the leader can be determined directly from equations (1), (2), (3), (4), (5) and (6) 
ଵݓ ൌ ఊሷ೤ୡ୭ୱሺఏభሻା௞మఊሶ೤ୡ୭ୱሺఏభሻିఊሷೣୱ୧୬ሺఏభሻି௞భఊሶೣୱ୧୬ሺఏభሻ

௨భ
൅ ሺ݇ଵ െ ݇ଶሻsinሺߠଵሻcosሺߠଵሻ,  

where  
ଵݑ ൌ ଵሻߠሶ௫cosሺߛ ൅ ଵሻߠሶ௬sinሺߛ ൅ ݇ଵߛ୶cosሺߠଵሻ ൅ ݇ଶߛ௬sinሺߠଵሻ െ ݇ଵݔଵcosሺߠଵሻ െ ݇ଶݕଵ݊݅ݏሺߠଵሻ.                            (7)    
 Then, this control (ݑଵ,  ଵ) is substituted to the system (1). Thus, if one uses (7), one obtains a system ofݓ
differential equations: 
ሶଵݔ ൌ ሺߛሶ௫cosሺߠଵሻ ൅ ଵሻߠሶ௬sinሺߛ ൅ ݇ଵߛ௫cosሺߠଵሻ ൅ ݇ଶߛ௬sinሺߠଵሻ െ ݇ଵݔଵcosሺߠଵሻ െ ݇ଶݕଵ݊݅ݏሺߠଵሻሻcosሺߠଵሻ
ሶଵݕ ൌ ሺߛሶ௫cosሺߠଵሻ ൅ ଵሻߠሶ௬sinሺߛ ൅ ݇ଵߛ௫cosሺߠଵሻ ൅ ݇ଶߛ௬sinሺߠଵሻ െ ݇ଵݔଵcosሺߠଵሻ െ ݇ଶݕଵ݊݅ݏሺߠଵሻሻsinሺߠଵሻ

ሶଵߠ ൌ ఊሷ೤ୡ୭ୱሺఏభሻା௞మఊሶ೤ୡ୭ୱሺఏభሻିఊሷೣୱ୧୬ሺఏభሻି௞భఊሶೣୱ୧୬ሺఏభሻ
௨భ

൅ ሺ݇ଵ െ ݇ଶሻsinሺߠଵሻcosሺߠଵሻ.                                               
             (8) 
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The initial  and  final  conditions of the state variables (ݔଵ, ,ଵݕ  ଵ) are known. The solution of this system ofߠ
differential equations uses numerical approximation by substituting the desired path in system (8). 
 

IV. The Control Design Of The Following Agents 
 In this section, we design the control of the follower using geometry approach. Figure 1 shows three 
Dubin's cars. Where ݀ଵ and ݀ଶ are the distance of agents to the leader. ߮ଵ and ߮ଶ are the orientation of agents to 
position of the leader. 
 
  
 
 
 
 
 
 
 
 
 
 

Figure  1: Three Dubin's cars 
 
IV.1      The Control Design of The First Follower 
From the figure 1, we have 
ଵݔ െ ଶݔ ൌ ݀ଵcosሺߠଶ ൅ ߮ଵሻ and ݕଵ െ ଶݕ ൌ ݀ଵsinሺߠଶ ൅ ߮ଵሻ 
Differentiating the equations above with respect to time, one obtains 
ሶଵݔ െ ሶଶݔ ൌ െ݀ଵsinሺߠଶ ൅ ߮ଵሻሺߠሶଶ ൅ ሶ߮ ଵሻ and ݕሶଵ െ ሶଶݕ ൌ ݀ଵcosሺߠଶ ൅ ߮ଵሻሺߠሶଶ ൅ ሶ߮ ଵሻ                   (9) 
Thus, we obtain 
ሺݔሶଵ െ ଶߠሶଶሻ cosሺݔ ൅ ߮ଵሻ ൅ ሺݕሶଵ െ ଶߠሶଶሻsinሺݕ ൅ ߮ଵሻ ൌ 0                                               (10) 
Substituting the system (1) for 1,2=i  in the equation (10), one obtains  

ଶୀݑ
ଶߠሶଵcosሺݔ ൅ ߮ଵሻ ൅ ଶߠሶଵsinሺݕ ൅ ߮ଵሻ

cosሺ߮ଵሻ  

From the system (9), we have 
ሺݔሶଵ െ ଶߠሶଶሻ sinሺݔ ൅ ߮ଵሻ െ ሺݕሶଵ െ ଶߠሶଶሻcosሺݕ ൅ ߮ଵሻ ൌ െ݀ଵሺߠሶଶ ൅ ሶ߮ ଵሻ   
Therefore,  

ଶߠሶଵ sinሺݔ ൅ ߮ଵሻ െ ଶߠሶଵcosሺݕ ൅ ߮ଵሻ െ ଶsinሺ߮ଵሻݑ ൅ ݀ଵ߱ଶ ൅ ݀ଵ ሶ߮ ଵ ൌ 0 
From this equation, we obtain  

߱ଶୀ
ଶߠሶଵcosሺݕ ൅ ߮ଵሻ െ ଶߠሶଵsinሺݔ ൅ ߮ଵሻ െ ݀ଵ ሶ߮ ଵ ൅ ൫ݔሶଵcosሺߠଶ ൅ ߮ଵሻ ൅ ଶߠሶଵsinሺݕ ൅ ߮ଵሻ൯tanሺ߮ଵሻ

݀ଵ
 

Then, this control ሺ߱ଶ, ଶሻ is substituted to the system (1) with 2=iݑ . Thus, we obtain a system of the 
differential equations of the first follower:  

ሶଶݔ ൌ
ଶߠሶଵcosሺݔ ൅ ߮ଵሻ ൅ ଶߠሶଵsinሺݕ ൅ ߮ଵሻ

cosሺ߮ଵሻ cosሺߠଶሻ                                                                                    

ሶଶݕ ൌ
ଶߠሶଵcosሺݔ ൅ ߮ଵሻ ൅ ଶߠሶଵsinሺݕ ൅ ߮ଵሻ

cosሺ߮ଵሻ sinሺߠଶሻ                                                                                     
    

 

ሶଶߠ ൌ
ଶߠሶଵcosሺݕ ൅ ߮ଵሻ െ ଶߠሶଵsinሺݔ ൅ ߮ଵሻ െ ݀ଵ ሶ߮ ଵ ൅ ൫ݔሶଵcosሺߠଶ ൅ ߮ଵሻ ൅ ଶߠሶଵsinሺݕ ൅ ߮ଵሻ൯tanሺ߮ଵሻ

݀ଵ

                    ሺ11ሻ 

 
IV.2      The Control Design of The Second Follower 
 From the figure 1, we have ݔଵ െ ଷݔ ൌ ݀ଶcosሺߠଷ െ ߮ଶሻ and ݕଵ െ ଷݕ ൌ ݀ଶsinሺߠଷ െ ߮ଶሻ 
Using similar steps such as in 4.1., one may design the control of the second follower. Thus, we obtain a system 
of differential equations of the second follower:  
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ሶଷݔ ൌ
ଷߠሶଵcosሺݔ െ ߮ଶሻ ൅ ଷߠሶଵsinሺݕ െ ߮ଶሻ

cosሺ߮ଶሻ cosሺߠଷሻ                                                                                    

ሶଷݕ ൌ
ଷߠሶଵcosሺݔ െ ߮ଶሻ ൅ ଷߠሶଵsinሺݕ െ ߮ଶሻ

cosሺ߮ଶሻ sinሺߠଷሻ                                                                                     
    

 

ሶଷߠ ൌ
ଷߠሶଵcosሺݕ െ ߮ଶሻ െ ଷߠሶଵsinሺݔ െ ߮ଶሻ െ ݀ଶ ሶ߮ ଶ െ ൫ݔሶଵcosሺߠଷ െ ߮ଶሻ ൅ ଷߠሶଵsinሺݕ െ ߮ଶሻ൯tanሺ߮ଶሻ

݀ଶ

                  ሺ12ሻ 

 
IV.2      Numerical Simulations 
 In this section, some numerical simulations to illustrate the system (8), (11) and (12) are reported. For 
illustration, a desired path is the following parametric curve:  

ሻݐଵሺߛ ൌ
11

4000 ଷݐ െ
33

400 ଶݐ ൅ ݐ ൅ 3

ሻݐଶሺߛ ൌ െ
11

1000 ଷݐ െ
3

100 ଶݐ ൅ 4   
                                                      ሺ13ሻ 

 
The leader is expected to maneuver tracing this path as close as possible. The initial and final 

conditions of the leader are given by ൫ݔଵሺ0ሻ, ,ଵሺ0ሻݕ ଵሺ0ሻ൯ߠ ൌ ሺ3,4,0ሻ and ൫ݔଵሺ5ሻ, ,ଵሺ5ሻݕ ଵሺ5ሻ൯ߠ ൌ ሺ12,8,0ሻ 
respectively. The desired path in equation (17) is substituted in (10) and the parameters are ݇ଵ ൌ 2 and ݇ଶ ൌ 2. 
Fig. 2 shows the path of the leader tracing the desired path by using the method.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The trajectory of the desired path and the leader path. 
 

Table 1. The tracking error 

 
 
 Table 1 above shows the tracking error. Next, we show the numerical simulations to illustrate model 
(1) where  ݅ ൌ 1, 2, 3 in the two dimensional space. The movement of the two agents are described by the 
systems (13) and (16) and the leader is described by the system (10). The parame-ters ݀ଵ, ݀ଶ ൌ 1,

πφπφ
18
1= and 

4
1= 21 . The initial values of the agents are given by =(0))(0),(0),( 222 θyx   

=− (0))(0),(0),(  and  90) 3.13398, (2.13398, 333 θyx 90) 4.86603, (2.13398, . The results are presented 
in Fig. 3. 

 
Figure  3: The trajectory of the swarm with three agent. 
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V. CONCLUSION 
A From the numerical simulation results above, it can be seen that the tracking error of the path of the 

leader tracing a desired path is sufficiently small and the distance between the leader path and the desired path is 
preserved. A geometry approach for formation control of a group of Dubin’s car is investigated in this paper. 
The simulation on three Dubin’s car formation demonstrates that the proposed method is effective and feasible. 
In future works, we will apply this method for movement control of another swarm model with a specific 
geometry formation. 
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