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Abstract: Analytical solutions are obtained for one-dimensional advection-diffusion equation with variable 

coefficients in longitudinal semi-infinite homogeneous porous medium for uniform flow. The solute dispersion 

parameter is considered temporally dependent while the velocity of the flow is considered uniform. The first 

order decay and zero-order production terms are considered inversely proportional to the dispersion 

coefficient. Retardation factor is also considered in present paper. Analytical solutions are obtained for two 

cases: former one is for uniform input point source and latter case is for increasing input point source where the 

solute transport is considered initially solute free. The Laplace transformation technique is used. New space and 

time variables are introduced to get the analytical solutions. The solutions in all possible combinations of 

increasing or decreasing temporally dependence dispersion are compared with each other with the help of 

graph. It is observed that the concentration attenuation with position and time is the fastest in case of 

decreasing dispersion in accelerating flow field. 

Keywords: Advection, Diffusion, First-order Decay, Zero-order Production, Retardation Factor, 
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I. Introduction 
Advection-diffusion equation describes the solute transport due to combined effect of diffusion and 

convection in a medium. It is a partial differential equation of parabolic type, derived on the principle of 

conservation of mass using Fick’s law. Its analytical/numerical solutions along with an initial condition and two 

boundary conditions help understand the contaminant or pollutant concentration distribution behavior through 

an open medium like air, rivers, lakes and porous medium like aquifer, on the basis of which remedial processes 

to reduce or eliminate the damages may be enforced. It has wide applications in other disciplines too, like soil 

physics, petroleum engineering, chemical engineering and bio sciences. This equation is also used in describing 

similar phenomena in bio-physics and bio-medical sciences. A quantitative understanding of the transport of 

pollutants in groundwater is of great importance from the environmental perspective. Some environmental 

pollution scenarios involving groundwater contamination are very real. Effect of contamination depends on 

nature and levels of the toxicants, sometimes causing serious health hazards even at low level, therefore most of 

the times remediation becomes a necessity for achieving sustainability. If groundwater becomes polluted, it is 

very difficult to rehabilitate. The slow rate of groundwater flow and low microbiological activities limit any 

self-purification processes which takes place in days or weeks, in surface water systems can take decades. 

Mathematical modeling of contaminant behavior in porous media is considered to be a powerful tool for a wide 

range of pollution problems related with groundwater quality rehabilitation.  

 The development of research in the field of solute transport through a medium stems from the time the 

concern over the degradation of air, soil, surface water bodies and groundwater grew. Following the formulation 

of the advection-diffusion equation (ADE) and the theories relating dispersion and velocity
1-4

, the number of 

solute transport studies has increased considerably. Many of these studies aimed at solving the ADE for non-

reactive and reactive solutes, subject to various initial and boundary conditions. A number of analytical 

solutions describing solute moving through one-dimensional media, considering adsorption, first-order decay 

and zero-order production, are compiled
5-6

.  

Analytical solutions have obtained for uniform flow through a homogeneous and isotropic porous 

domain
7-8

. It was done either by introducing moving coordinates
9-14

 or by introducing another dependent 

variable
15-16

. Then Laplace transformation technique has been used to get desired solutions. In addition to this 

method, Hankel transform method, Aris moment method, perturbation approach, method using  Green’s 

function, superposition method have also been used to get the analytical solutions of the advection-diffusion 

equations in one, two and three dimensions. But Laplace transformation technique has been commonly used 

because of being simpler than other methods and the analytical solutions using this method being more reliable 

in verifying the numerical solutions in terms of the accuracy and the stability. The effects of initial and boundary 

conditions on the distribution of the tracer in time and distance for several one-dimensional systems (infinite, 
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semi-infinite, and finite) of tagged liquid flowing through a solid matrix, and the effects of hydrodynamic 

dispersion, diffusion and radioactive decay are calculated
17

. An analytical solution of a cation adsorption soil 

problem
 
in detail by an integral transform method including effects of axial dispersion is derived

18
.
 
Two 

different analytic solutions are obtained to a single diffusion-convection equation over a finite domain
19

. The 

study of the dispersion of a reactive gaseous species emitted from an elevated time-dependent point source 

undergoing a first-order chemical reaction removal process such as rainout/washout and forming secondary 

species by solving unsteady-state three-dimensional diffusion equation by prescribing different forms of fluxes 

at the source
20

. 

An analytical solution is studied for non equilibrium transport of reactive solutes in the unsaturated 

zone during an infiltration and redistribution cycle
21

. Similar coefficients had earlier been derived for these two 

problems in one spatial dimension. Solute transport with spatially and temporally varying dispersion coefficient 

through homogeneous porous media is studied analytically
22

. Pollutant dispersion in the planetary boundary 

layer for advection–diffusion equation studied analytically
23

. Dispersion of pollutants from a point source 

investigated analytically taking into consideration the vertical variation of both wind speed and eddy 

diffusivity
24

. Solute transport in rivers with influence of transient storage in hyporheic zones and advection-

dispersion equation for transport with a sink term in hyporheic zones described analytically for instantaneous 

injection of a conservative tracer in an infinite uniform river reach with steady flow
25

. A numerical comparison, 

under statistical and computational point of view, between semi-analytical Eulerian and Lagrangian dispersion 

models to simulated the ground-level concentration values of a passive pollutant released from a low height 

source. The Eulerian approach is based on the solution of the advection–diffusion equation by the Laplace 

transform technique
26

. Interaction occurs in leachate contaminated soils described for reactive solute transport 

model
27

. Recently, analytical solutions
28-32

 has obtained for temporally and spatially dependent solute dispersion 

in one-dimensional finite and semi-infinite media. The solute dispersion parameter and velocity of the flow is 

considered variable coefficients along homogeneous and inhomogeneous media. Analytical solutions are 

obtained by using Laplace transform technique.  

 In the present paper, the analytical solutions of a one-dimensional advection-diffusion equation with 

variable coefficients are obtained. The variability of the coefficients (dispersivity of the solute transport and 

velocity of the flow domain) is considered in more general and reasonable form. The medium is considered 

semi-infinite homogeneous in longitudinal direction. Two cases are considered. First one is for uniform input 

point source and second is for increasing input point source. The solute dispersion parameter is considered 

temporally dependent while the flow velocity is uniform
34

. The first order decay and zero order production 

terms are also considered and are inversely proportional to the dispersion coefficient
5
. In each case the domain is 

initially solute free. The input condition is introduced at the origin of the domain and second condition is 

considered at the end of the domain. New space and time variables are introduced at the different stage through 

different transformations. It helps to reduce the variable coefficients into constant coefficients. So a much 

simpler but more viable Laplace transformation technique is used to get the analytical solutions. The solutions in 

all possible combinations of increasing or decreasing temporally dependence are compared with each other with 

the help of graph. 

 

II. Methodology 
 Analytical solutions and field observations are used to address groundwater flow and contaminant 

transport problems in porous media. Analytical methods basically provide solutions to governing equations of 

groundwater flow and contaminant transport with simplified boundary conditions and hydro-geological 

properties. Limitations for analytical solutions of groundwater flow and contaminant transport in porous 

medium includes: assumptions of a uniform porosity,  uniform hydraulic conductivity and specific yield, single 

inland boundary condition, and single-phase homogeneous fluid, among others of porous medium The Laplace 

transformation can be defined as; 

 If ( , )f x t  is a any function defined in a x b   and 0t  , then its Laplace transform with respect 

to t  is denoted by { ( , )} ( , )L f x t F x p  and is defined by;  

 

0

{ ( , )} ( , ) ( , )ptL f x t F x p e f x t dt



   ,  0p                                                                              (1) 

where  p  is called the transform variable, which is a complex variable. 

 The inverse Laplace transform is denoted by 
1{ ( , )} ( , )L F x p f x t   and defined by the complex 

variable; 

 
1 1
{ ( , )} ( , ) ( , )

2

c i

pt

c i

L F x p f x t e F x p dp
i

 

 

 

   ,  0c                                                             (2) 
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III. Advection-Diffusion Equation 
In one space dimension the linear advection-diffusion equation may be written as 

 
1

( , ) ( , ) ( , ) ( , )
c n F c

D x t u x t c x t c x t
t n t x x

 
     

     
    

                    (3)  

 where c  is the solute concentration at position x  at time t  in liquid phase and F  is the solute 

concentration in solid phase, n  is the porosity of the medium. ( , )D x t is represent the solute dispersion 

parameter and is called the dispersion coefficient if it is uniform and steady, ( , )u x t  is the flow velocity which 

satisfies the Darcy’s law. ( , )x t  is the first-order decay and ( , )x t  is the zero-order production which 

represents internal/external production of the solute. In subsurface, solute transport processes affect all 

contaminants at equal rates, while the presence of retardation, first-order decay and zero order production may 

influence various contaminants at various rates. If contaminants passes through an aquifer or groundwater, their 

movement rate may be less than the average groundwater flow rate. 

 Considered two cases, as follows 

 1 2F K c K                                                                                                                                       (4) 

and 1 2

F
K c K F

t


 


                                                                                                                                (5) 

respectively, equilibrium and non-equilibrium relationship between the concentrations in the two phases. For 

simplicity, the former relationship is adopted in the present analysis
34

. Using Eq. (4) in Eq. (3) one may obtains, 

1 2( )1
( , ) ( , ) ( , ) ( , )

K c Kc n c
D x t u x t c x t c x t

t n t x x
 

     
     

    
                               (6) 

or ( , ) ( , ) ( , ) ( , )d

c c
R D x t u x t c x t c x t

t x x
 

   
    

   
                                                              (7) 

where 
1

1
1d

n
R K

n

 
  
 

 is retardation factor. 

 

IV. Analytical Solutions 

 Let us write ( , )D x t , ( , )u x t , ( , )x t  and ( , )x t  in Eq. (3) as 

 0 1( , ) ( , )D x t D f x t ; 0 2( , ) ( , )u x t u f x t                                                                                    (8) 

and the first order decay, ( , )x t  and zero order production, ( , )x t  terms which is inversely proportional to 

the dispersion coefficient i.e.  

 0 1( , ) ( , )x t f x t  ; 0 1( , ) ( , )x t f x t                                                                                    (9) 

respectively, where 0D 2 1( )L T 
, 0u 1( )LT 

, 0
1( )T 

 and 0
3 1( )ML T 

 are constants. Eq. (7) is re-

written as 

0 1 0 2 0 1 0 1( , ) ( , ) ( , ) ( , )d

c c
R D f x t u f x t c c f x t f x t

t x x
 

   
    

   
                                 (10) 

Let us introduce a new independent variable, X  by a transformation
28, 31

  

 

1( , )

dx
X

f x t
    or  

1

1

( , )

dX

dx f x t
                                                             (11) 

Applying the transformation of Eq. (11) on the partial differential equation, Eq. (10) becomes 

  
2

1 0 0 2 0 02
( , ) ( , )d

c c
f x t R D u f x t c c

t X X
 

  
   

  
                                                           (12) 

Now this partial differential equation is solved analytically using the initial and boundary conditions of 

temporally dependent dispersion along a uniform flow. 

 

IV.I         Temporally Dependent Dispersion Along Uniform Flow 

The solute dispersion parameter is supposed to be time dependent. So in Eq. (8) we consider 

 1( , ) ( )f x t f mt  and 2 ( , ) 1f x t                                                                                                     (13) 
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where m 1( )T 
 is a unsteady parameter whose dimension is inverse of that of the time variable t . ( )f mt  is 

chosen such that for 0m   or 0t  , ( ) 1f mt  . Thus ( )f mt  is an expression in the non-dimensional 

variable mt . 0m   corresponds to the temporally independent dispersion. In view of the expressions in Eq. 

(13), the constants 0D  and 0u  in Eq. (8) may be referred to as the initial dispersion coefficient 
2 1( )L T 

 and 

the uniform velocity 
1( )LT 

, respectively. Further from Eq. (11) we have 

 
( )

dx
X

f mt
    or  

1

( )

dX

dx f mt
                                                              (14) 

The partial differential equation Eq. (12) will become 

 
2

0 0 0 02
( ) d

c c c
f mt R D u c

t X X
 

  
   

  
                                                                                          (15) 

Further another independent variable, T  is introduced using the transformation
35 

 

0
( )

t
dt

T
f mt

 
                                                                                                                                             (16) 

As a result, Eq. (16) reduces to a partial differential equation with constant coefficients, we have 

 
2

0 0 0 02d

c c c
R D u c

T X X
 

  
   

  
                                                                                                  (17) 

The dimension of variable X  defined by Eq. (14) and that of variable T  defined by Eq. (16) remain 

those of x  and t , respectively and are referred to as the new space variable and the new time variable, 

respectively. The new time variable obtained from Eq. (16) satisfies the conditions  0T   for 0t   and 

T t  for 0m  . The first condition ensures that the nature of the initial condition does not change in the new 

time variable domain. The second condition refers to the temporally independent dispersion and Eq. (10) 

reduces to one with constant coefficients 

. 

IV.I.I           Uniform Input Point Source Condition 

To proceed further, initial and boundary conditions are defined. The semi-infinite medium is supposed. 

In case of uniform input point source, initially the region of interest is free from the pollution at the beginning of 

the source is assumed. Thus the initial condition is  

 ( , ) 0c x t  ; 0t  , 0x                                                                                                                    (18) 

Further the continuous input concentration is introduced at the origin of the domain. The second boundary 

condition is of flux type of homogeneous nature at the infinity. Thus the two boundary conditions are as follows 

 0( , )c x t C ; 0x  , 0t  ,                                                                                                               (19) 

( , )
0

c x t

x





; x , 0t  .                                                                                                           (20) 

The initial and boundary conditions (18-20) may be written in terms of new independent variables as 

( , ) 0c X T  ; 0T  , 0X                                                                                                             (21) 

 0( , )c X T C ; 0X  , 0T  ,                                                                                                        (22) 

( , )
0

c X T

X





; X  , 0T  .                                                                                                    (23) 

Now Laplace transform which are defined in Eq. (1) may be used to get the analytical solution. Using the 

following transformation (24) to eliminate the convection term, first order decay and zero order production from 

advection-diffusion equation Eq. (17) as follows  

 

2

0 0 0
0

0 0 0

1
( , ) ( , )exp

2 4d

u u
c X T K X T X T

D R D






   
     

   

                                                     (24) 

We get the initial and boundary value problem in terms of new dependent variable ( , )K X T  as 

 
2

0 2d

K K
R D

T X

 


 
                                                                                                                                 (25) 

0 0

0 0

( , ) exp
2

u
K X T X

D





 
   

 

; 0T  , 0X                                                                            (26) 



Analytical Solutions of One-Dimensional Temporally Dependent Advection-Diffusion Equation  

www.iosrjournals.org                                                       5 | P a g e  

  20
0

0

( , ) expK X T C T





 
  
 

; 0X  , 0T  ,                                                                          (27) 

0

0

0
2

uK
K

X D


 


; X  , 0T  .                                                                                              (28) 

where 
2

2 0
0

0

1

4d

u

R D
 

 
  

 

. 

Applying the Laplace transformation in set of above initial and boundary value problem reduces to an ordinary 

differential equation of second order boundary value problem, which comprises of following three equations 

 

2

0 0

2

0 0 0 0

exp
2

d dpR R ud K
K X

dX D D D





 
   

 
                                                                                      (29) 

and boundary conditions are 

 
0

0 2

0

1
( , )

( )
K X p C

p



 

 
  

 
; 0X  ,                                                                                    (30) 

0

0

0
2

udK
K

dX D
  ; X  .                                                                                                           (31) 

where p  is Laplace parameter is defined in Eq. (1). 

Thus, the general solution of ordinary differential equation (29) may be written as 

0 0
1 2 2

0 0 0 0

( , ) exp exp exp
( ) 2

d dpR pR u
K X p c X c X X

D D p D



 

        
         

        

                     (32) 

where 

2
2 0

04 d

u

R D
  . 

Now, using boundary conditions Eq. (30) and Eq. (31) in general solution Eq. (32) for eliminating the arbitrary 

constant 1c  and 2c , we get 

 0 0
1 0 2 2

0 0

1 1

( ) ( )
c C

p p

 

   

 
   

  

 at 0X   

 2 0c   at X   

Thus, the particular solution in the Laplace domain may be written as 

 0 0
0 2 2

0 0 0

1 1
( , ) exp

( ) ( )

dpR
K X p C X

p p D

 

   

      
      

       

 

     0 0

2

0 0

1
exp

2 ( )

u
X

D p



 

 
  

 

                                                     (33) 

Applying inverse Laplace transform, the analytical solution of advection-diffusion equation for uniform 

input point source for continuous nature may be written in terms of ( , )c x T  by using back transformations Eq. 

(24), Eq. (16) and Eq. (14) as 

 
0 0 0

0 1 2

0 0 0

( , ) ( , ) ( , )c x T C F x T F x T
  

  

 
    

 
                                                                      (34) 

where  

 

2 1/ 2

0 0 0 0
1

0

{ ( 4 ) }1
( , ) exp

2 2 ( )

u u D x
F x T

D f mt

   
   

  
 

   
  

1/ 2
2

0 0 0

0

( ) 4
e

2

d

d

R x f mt u D T
rfc

D R T

  
 

  
 
 
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2 1/ 2

0 0 0 0

0

{ ( 4 ) }1
exp

2 2 ( )

u u D x

D f mt

   
   

  
 

  
1/ 2

2

0 0 0

0

( ) 4
e

2

d

d

R x f mt u D T
rfc

D R T

  
 

  
 
 

, 

 
0 0

2

0

( )1
( , ) exp 1 e

2 2

d

d d

T R x f mt u T
F x T rfc

R D R T

      
     

    

 

0 0

0 0

( )1
exp e

2 2

d

d

u R x f mt u T
X rfc

D D R T

    
    

    

 and 

0
( )

t
dt

T
f mt

  . 

 

IV.I.II   Increasing Input Point Source Condition 

 The source of input concentration may increase with time due to variety of reasons. This type of 

situation may be described by a mixed type or third type condition written as follows: 

0 0( , ) ( , )
c

D x t u x t c u C
x


  


        at   0x  , 0t                     (35) 

Using Eq. (8), Eq. (13), Eq. (14) and Eq. (16) the above condition may be written in ( , )X T  domain as 

0 0 0 0

c
D u c u C

X


  


        at   0X  , 0T                      (36) 

Now, Eq. (36) reduces by the applying the transformation Eq. (24), into 

20 0
0 0 0

0

exp( )
2

uK
D K u C T

X






 
    

  
; 0X  , 0T  , 

2
2 0

0

0

1

4d

u

R D
 

 
  

 
               (37) 

Applying the Laplace transform on Eq. (37), we have 

 
0 0

0 0 0 2

0

1

2 ( )

udK
D K u C

dX p



 

 
    

 
; 0X                                                                     (38) 

Now using the condition Eq. (38) in place of Eq. (30), for eliminating the arbitrary constants 1c  and 2c  in Eq. 

(32), the particular solution of Eq. (29) satisfying the conditions in Eqs. (31) and (38) may be obtained as 

 0 0 0 0
1 0 2 2

0 00 0

1 1

( )( ) ( )( )d d

u u
c C

R D p p R D p p

 

    

 
   

    

 at 0X   

2 0c   at X   

Thus, the particular solution in the Laplace domain may be written as 
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2
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2
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u
X

D
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

 

 
 
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

                                                                           (39) 

where 

2
2 0

04 d

u

R D
  , 

2
2 0

0

0

1

4d

u

R D
 

 
  

 

. 
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Now, applying inverse Laplace transform, the analytical solution of advection-diffusion equation for input point 

source for increasing nature may be written in terms of ( , )c x T  by using back transformations Eq. (24), Eq. 

(16) and Eq. (14) as 

 
0 0 0

0 1 2

0 0 0

( , ) ( , ) ( , )c x T C F x T F x T
  

  

 
    

 
                                                                      (40) 

where  
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and 

0
( )

t
dt

T
f mt

  . 

 

V. Illustrations And Discussion 

 Concentration values are evaluated from the Eq. (34) and Eq. (40) in a finite domain  

0 (meter) 10x   at different values of time. The input data in both the cases are chosen as 0 1.0C  , 

initial velocity 0 0.21 (meter/day)u  , initial dispersion coefficient, 
2

0 0.71 (meter /day)D   and unsteady 

parameter 0.1m  1(day) . In addition to these, first order decay term 0 0.02   and zero order production 

term 0 0.0011   are considered. 

 In both the cases analytical solutions may be obtained from Eqs. (34) and (40) for 

( ) exp( )f mt mt , at different time (day)t 1.5 , 2.5 , 3.5  and 4.5 . Thus the time interval is 

considered to be 1.0 day. The full line curves in all figures are drawn for exponentially increasing function of 

( )f mt  which is the unsteady pattern of the flow field nature. It may be observed that concentration values 

decreases with position and increases with time. In uniform input point source, concentration distribution is 

uniform at 0x  ,  at every time t  and its increases with time and decreases with position, while in increasing 

input point source, it is not uniform at 0x  , at every time t . Its increases with increasing time.  
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 In Figs. 1 and 4, shows the concentration distribution behavior for different time     (day)t 1.5 , 

2.5 , 3.5  and 4.5 , at 1.15dR   and 
10.1 (day)m  for uniform and increasing input source respectively. 

It may be observed that the concentration values are increases with time and decreases with position. It is also 

compared with the another retardation factor 1.35dR   at time (day)t 1.5 , and another unsteady 

parameter 
10.5(day)m   at time (day)t 1.5 . It is observed that the solute concentration distribution is 

slower for the higher retardation factor from lower retardation factor and faster for the higher unsteady 

parameter from the lower unsteady parameter at particular times, which are shows with solid, dashed and dotted 

curves in Figs 1 and 4.  

The concentration distribution behavior at particular time  (day)t 2.5  for three expressions (i) 

exponentially increasing function; ( ) exp( )f mt mt , (ii) exponentially decreasing function;
 

( ) exp( )f mt mt  , and (iii)
 
sinusoidal nature; ( ) 1 sin( )f mt mt  , at one retardation factor and unsteady 

parameter for uniform and increasing input source respectively are shown in Figs. 2 and 5. It may be observed 

that solute concentrations values are higher for exponentially increasing and lower for exponentially decreasing 

functions and sinusoidal nature at particular position and time. It is also observed that the concentration values 

are higher for exponentially decreasing function from sinusoidal nature at a particular time and position.  

Figs. 3 and 6, represents the concentration distribution behavior for different time interval 

(day)t 1.5  to 4.5  for the three expressions (i) exponentially increasing function; ( ) exp( )f mt mt , (ii) 

exponentially decreasing function;
 

( ) exp( )f mt mt  , and (iii)
 

sinusoidal nature; ( ) 1 sin( )f mt mt  , 

respectively,  at a particular position 5.0 (meter)x   for uniform and increasing input source respectively. It 

is observed that the solute concentration is higher in exponentially increasing function from the exponentially 

decreasing function and sinusoidal function at particular position.  

Fig. 7 shows the effect in concentration distribution within the domain when zero-order production 

term is presence and absence in the domain. Comparison of concentration level is illustrated for various zero-

order production (i.e. presence and absence of production term) with fixed first order decay, unsteady parameter 

and retardation factor at one time for the function ( ) exp( )f mt mt . It is observed that, when the zero order 

production increases the concentration level is increase at particular time throughout domain. For better 

accuracy, zero order production and first order decay cannot be neglected. The nature of the function ( )f mt  

must be same has discussed in section 4.1.  

Some examples of transport phenomena are smoke coming out from a chimney of a factory; particulate 

particles coming out of a volcano; the sewage outlet of a municipal area or effluent outlet of a factory or 

industry in a surface water medium; infiltrations of wastes from garbage disposal sites, septic tanks, mines, 

discharge from surface water bodies polluted due to industrial and municipal influents, and reaching the ground 

water level, particularly with rainwater.  

 

VI. Conclusion 
Analytical solutions are obtained for temporally dependent solute dispersion for uniform and increasing 

input source in a semi-infinite one-dimensional longitudinal domain. Certain transformations are helped us to 

obtain the analytical solutions using the Laplace transform technique. LTT is simpler, more viable and 

commonly used in assessing the stability of numerical solutions in more realistic dispersion problems, to 

understand and manage the pollution distributions along ground water, surface water and air flow domains. The 

solutions in the both cases are obtained in terms of a function ( )f mt  in time variable and may be used for a 

variety of time-dependent expressions. It is observed that the solute transport along the medium for an 

expression of ( )f mt  of an increasing nature is faster than that obtained for ( )f mt  of a decreasing nature and 

sinusoidal nature. The analytical solutions are obtained in the present work for uniform and increasing input 

conditions which may be useful in examining the degradation levels of the surface. Such solutions will be very 

useful in validating a numerical solution of a more general dispersion problem by infinite element technique
36-37

. 

The solutions in all possible combinations of increasing or decreasing temporally dependence are compared 

with each other with the help of graph. 

 

VII. Acknowledgment 
 This work is carried out under Post Doctoral Fellowship programme of first two authors. Financial 

assistance provided by the funding agency to first two authors in the form of Dr. D. S. Kothari Post Doctoral 

Fellowship, University Grants Commission,  Government of India, are gratefully acknowledged.  

 



Analytical Solutions of One-Dimensional Temporally Dependent Advection-Diffusion Equation  

www.iosrjournals.org                                                       9 | P a g e  

References 
[1] G I Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proceedings of Royal Society of London, A219, 

1953, 186-203. 

[2] A E Scheidegger, The Physics of Flow through Porous Media (University of Toronto Press, 1957). 
[3] R R Rumer, Longitudinal dispersion in steady and unsteady flow, Journal of Hydraulic Division, 88, 1962, 147-173. 

[4] R A Freeze and J A Cherry, Groundwater (Prentice-Hall, New Jersey, 1979). 

[5] M Th van Genuchten and W J Alves, Analytical solutions of the one-dimensional convective-dispersive solute transport equation 
(Technical Bulletin No 1661, US Department of Agriculture, 1982). 

[6] F T Lindstrom and L Boersma, Analytical solutions for convective-dispersive transport in confined aquifers with different initial 

and boundary conditions, Water Resources Research, 25, 1989, 241-256. 
[7] A Ogata, Theory of dispersion in granular media, US Geol. Sur. Prof. Paper 411-I, 34, 1970. 

[8] M Marino, Flow against dispersion in non-adsorbing porous media, Journal of Hydrology, 37, 1978, 149-158. 

[9] A Ogata and R B Bank, A solution of differential equation of longitudinal dispersion in porous media, U. S. Geol. Surv. Prof. Pap. 
411, A1-A7, 1961. 

[10] D R F Harleman and R R Rumer, Longitudinal and lateral dispersion in an isotropic porous medium, Journal of Fluid Mechanics, 

16(3), 1963, 385-394. 
[11] V Guvanasen and R E Volker, Experimental investigations of unconfined aquifer pollution from recharge basins, Water 

Resources Research, 19(3), 1983, 707-717. 

[12] T J Marshal, J W Holmes and C W Rose, Soil Physics (Cambridge University Press, 3rd Ed, 1996). 
[13] J Bear, Dynamics of fluids in porous media (New York: Amr. Elsev. Co., 1972). 

[14] M M Aral and B Liao, Analytical solutions for two-dimensional transport equation with time-dependent dispersion coefficients, 

Journal of Hydrologic Engineering, 1(1), 1996, 20-32.  
[15] M A Marino, Longitudinal dispersion in saturated porous media, Journal of Hydraulic Division, 100, 1974, 151-157. 

[16] A N S Al-Niami and K R Rushton, Analysis of flow against dispersion in porous media,  Journal of  Hydrology, 33, 1977, 87-97.  

[17] N D Gershon and A Nir, Effects of boundary conditions of models on tracer distribution in flow through porous mediums, Water 
Resources Research, 5(4), 1969, 830-839. 

[18] R W Cleary and D D Adrian, Analytical solution of the convective-dispersive equation for cation adsorption in soil, Soil Sci. Soc. 

Am. Proc., 37, 1973, 197-199. 
[19] G B Davis, A Laplace transform technique for the analytical solution of a diffusion-convection equation over a finite domain, 

Applied Mathematical Modeling, 9, 1985, 69-71. 

[20] R S Chauhan and J B Shukla, Unsteady-state dispersion of a reactive gaseous species from an elevated time-dependent point source 
forming secondary species, Applied Mathematical Modeling, 13, 1989, 632-640. 

[21] G Severino and P Indelman, Analytical solutions for reactive transport under an infiltration-redistribution cycle, Journal of 

Contaminant. Hydrology, 70, 2004, 89-115. 
[22] N Su, G C Sander, F Liu, V Anh and D A Barry, Similarity solutions for solute transport in fractal porous media using a time- and 

scale-dependent dispersivity, Applied Mathematical Modeling, 29, 2005, 852-870. 

[23] S Wortmanna, M T Vilhenaa, D M Moreira and D Buske, A new analytical approach to  simulate the pollutant dispersion in the 
PBL, Atmospheric Environment, 39, 2005, 2171-2178. 

[24] K S M Essa, S M Etman and M Embaby, New analytical solution of the dispersion equation, Atmospheric Research, 84, 2007,  337-
344. 

[25] F D Smedt, Analytical solution and analysis of solute transport in rivers affected by diffusive transfer in the hyporheic zone, Journal 

of Hydrology, 339, 2007, 29-38. 
[26] J C Carvalho, M T Vilhena and D M Moreira, Comparison between Eulerian and Lagrangian semi-analytical models to simulate the 

pollutant dispersion in the PBL, Applied  Mathematical Modeling, 3, 2007, 120-129. 

[27] N Singhal and J Islam, One-dimensional model for biogeochemical interactions and permeability reduction in soils during leachate 
permeation, Journal of Contaminant Hydrology, 96, 2008, 32-47. 

[28] D K Jaiswal, A Kumar, N Kumar and R R Yadav, Analytical solutions for temporally and spatially dependent solute dispersion of 

pulse type input concentration in one-dimensional  semi-infinite media, Journal of Hydro-environment Research, 2, 2009, 
254-263. 

[29] D K Jaiswal, A Kumar and R R Yadav, Analytical solution to the one-dimensional advection-diffusion equation with temporally 

dependent coefficients, Journal of Water  Resource and Protection, 3, 2011, 76-84. 
[30] A Kumar, D K Jaiswal and N Kumar, Analytical solutions of one - dimensional advection - diffusion equation with variable 

coefficients in a finite domain, Journal of Earth System Sciences, 118(5), 2009, 539-549. 

[31] A Kumar, D K Jaiswal and N Kumar, Analytical solutions to one - dimensional advection - diffusion equation with variable 
coefficients in semi-infinite media, Journal  of Hydrology, 380, 2010, 330-337. 

[32] R R Yadav, D K Jaiswal, H K Yadav and Gulrana, One-dimensional temporally dependent advection-dispersion equation in porous 

Media: analytical solution, Natural Resource  Modeling, 23(4), 2010, 521-539. 
[33] G Matheron and G deMarsily, Is transport in porous media always diffusive? 527 A counter example, Water Resources Research, 

16, 1980, 901-917. 

[34] L Lapidus and N R Amundson, Mathematics of adsorption in beds, VI. The  effects of  longitudinal diffusion in ion-exchange 
and chroma to graphic columns, Journal of Physical Chemistry, 56, 1952, 984-988. 

[35] J Crank, The Mathematics of Diffusion (Oxford Univ. Press, London, 2nd Ed, 1975). 

[36] C Zhao and S Valliappan, Transient infinite element for contaminant transport problems,  International Journal of Numerical 
Methods in Engineering, 37, 1994, 1143-1158.  

[37] C Zhao, Dynamic and Transient Infinite Elements: Geological, Geotechnical and Geo  environmental Applications (Springer, 

2009). 

 

 

 

 

 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TYC-45DHY9G-13&_user=2508949&_coverDate=02%2F28%2F1985&_alid=1367437658&_rdoc=11&_fmt=high&_orig=search&_cdi=5615&_sort=r&_docanchor=&view=c&_ct=170&_acct=C000057646&_version=1&_urlVersion=0&_userid=2508949&md5=022698a54c0805312d698618adc6032b
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TYC-45DGVXC-93&_user=2508949&_coverDate=11%2F30%2F1989&_alid=1367437658&_rdoc=21&_fmt=high&_orig=search&_cdi=5615&_sort=r&_docanchor=&view=c&_ct=170&_acct=C000057646&_version=1&_urlVersion=0&_userid=2508949&md5=20dff2d4c5f5b2e5ade02c529c01543b
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TYC-45DGVXC-93&_user=2508949&_coverDate=11%2F30%2F1989&_alid=1367437658&_rdoc=21&_fmt=high&_orig=search&_cdi=5615&_sort=r&_docanchor=&view=c&_ct=170&_acct=C000057646&_version=1&_urlVersion=0&_userid=2508949&md5=20dff2d4c5f5b2e5ade02c529c01543b


Analytical Solutions of One-Dimensional Temporally Dependent Advection-Diffusion Equation  

www.iosrjournals.org                                                       10 | P a g e  

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

f(mt) = exp(mt)

t = 4.5 (day)

t = 3.5 (day)

t = 2.5 (day)

t = 1.5 (day)

c/
C

0

x (meter)

 R
d
 = 1.15, m = 0.1 (day)

-1

 R
d
 = 1.35, m = 0.1 (day)

-1

 R
d
 = 1.15, m = 0.5 (day)

-1

 
 

 

 

 

 

 

 

 

 

 

             

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

f(mt) = exp(mt)

t = 4.5 (day)

t = 3.5 (day)

t = 2.5 (day)

t = 1.5 (day)

c/
C

0

x (meter)

 R
d
 = 1.15; m = 0.1 (day)

-1

 R
d
 = 1.35; m = 0.1 (day)

-1

 R
d
 = 1.15; m = 0.5 (day)

-1

 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Distribution of the solute concentration for 

solution (34) at different time (day) 1.5,t  2.5,  

3.5  and 4.5 , represented by four solid curves for 

( ) exp( )f mt mt  and compare with the another 

retardation factor (dashed curve) and another unsteady 

parameter (dotted curve) at one time 1.5(day)t  . 
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Figure 2. Comparison of the solute concentration for 

solution (34) at time (day) 2.5t  , represented by 

solid curve for ( ) exp( )f mt mt , dashed curve for 

( ) exp( )f mt mt   and dotted curve for 

( ) 1 sin( )f mt mt   at one retardation factor and 

unsteady parameter. 
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Figure 4 Distribution of the solute concentration for 

solution (40) at different time (day) 1.5,t   2.5,  

3.5  and   4.5 , represented by four solid curves for 

( ) exp( )f mt mt  and compare with the another 

retardation factor (dashed curve) and another unsteady 

parameter (dotted curve) at one time 1.5(day)t  . 

Figure 5. Comparison of the solute concentration for 

solution (40) at time (day) 2.5t  , represented by 

solid curve for ( ) exp( )f mt mt , dashed curve 

for ( ) exp( )f mt mt   and dotted curve for 

( ) 1 sin( )f mt mt   at one retardation factor and 

unsteady parameter. 
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 Figure 7. Effect of the production term in the presence and 

absence of zero-order production for distribution of solute 

concentration of solution (34) at one time for 

( ) exp( )f mt mt .  

Figure 3. Comparison of the solute concentration for 

solution (34) at different time (day) 1.5 to 4.5t  , 

represented by solid curve for ( ) exp( )f mt mt , 

dashed curve for ( ) exp( )f mt mt   and dotted 

curve for ( ) 1 sin( )f mt mt   at particular position  

(meter) 5.0x  .  

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
R

d
 = 1.15

t = 2.5 (day)

m = 0.1 (day)
-1

f
1
(mt) = exp(mt)

f
2
(mt) = exp(-mt)

f
3
(mt) = 1-sin(mt)

c/
C

0

x (meter)

Figure 6. Comparison of the solute concentration for 

solution (40) at different time (day) 1.5 to 4.5t  , 

represented by solid curve for ( ) exp( )f mt mt , 

dashed curve for ( ) exp( )f mt mt   and dotted 

curve for ( ) 1 sin( )f mt mt   at particular 

position  (meter) 5.0x  .  


