
IOSR Journal of Mobile Computing & Application (IOSR-JMCA)

e-ISSN: 2394-0050, P-ISSN: 2394-0042.Volume 3, Issue 5 (Sep. - Oct. 2016), PP 55-60

www.iosrjournals.org

DOI: 10.9790/0050-03055560 www.iosrjournals.org 55 | Page

A Tiered Distributed Network Traffic Analyzer in Big Data using

Hadoop Framework

Sharmi Sankar
*
, Ishtiaque Mahmood

*
, Jehad Al Khalaf Baniyounis*

*
College of Applied Sciences, Ibri, Postal Code 516, Sultanate of Oman.

Abstract: Elevating swiftness on networks with growing traffic dimensions oblige and demand a better

computation domain in today’s era.The growing volume of distributed network traffic which needs to be

analyzed levies new-fangled challenges on the Quality of Service (QoS).The captured traffic assists to

comprehend the network’s state awareness such as spotting the network abnormalities, refining the QoS of the

network and propose better future architectural deliberations. The traffic prediction is quite resource intensive

in term of storage and processing. With a predetermined evaluation on the record growth of the traffic to be

stored and on ensuring the scalability issue nowadays,administrations move towards Hadoop to obtain better

precision in their investigation. A nifty tiered network traffic predictor algorithm, evaluates the critical traffic in

detail and helps the network administrators to mitigate the QoS issues by predicting the traffic in detail well in

advance. This research paper, confers upon the thoughts and verdicts to be made whilescheming a tiered

network traffic predictor version.It comprises of a scheme on Hadoop framework, to detect network behavior

and accordingly parsing the pcap file and classifying the parameters, based on a network traffic predictor

algorithm that uses the MapReduce methodology implemented on a Hadoop platform which can help the

administrators to make decisions and plan early, to overcome the network traffic irregularities and refine QoS

issues. In this research, we have used real-world traffic to showcase the tiered predictor benefits to the realm.

Keywords: QoS, Hadoop, Map Reduce, predictor.

I. Introduction
Architectures are basically built on tier-style so as to facilitate different functionalities segregated into

sections or segments. The layered style collectively reported as a section is to be located physically on the

computer. This tier architecture on Hadoop framework characterizes and decomposes the application based on

its role play.Jointly stated as “endpoints”, the number of devices linked to every single network infrastructure is

rising by a massive rate. The latest revolution has fueled a major problem for the network administrating teams

to maintain corporate endpoint security and strategy. The progression of networked devices all over our family

unit and organizations, have given ample opportunities for attack to the hackers, hence it is necessary to have

the traffic behavior analyzedprior. A deployment of this predictor architecture of this kind facilitates the features

such as scalability, readiness and proper resource utilization. Each tier encompasses of layers as more than one

functional dependent services are encountered. This traffic flow prediction architecture will be used by network

operators to manage a network. The service assured can deliverseamless benefits even after apartialset up. If

completelyset up in a network, then this can provisionand guaranteeat most all services. Internet Service

Providers always ensures and sets-up guaranteed services in its backbone and offers guaranteed service among

clients. Hadoop provides a precise track for being well-equipped, easiness of management, and maximum

performance. The methodical performance of Hadoop permits counter tack to afford near real-time response to

possible threats, which vividly contracts the gap of exposure for its clients on the network.

II. Related Work
Predictions are highly possible by having a thorough analysis on the independent parameters that

influence the dependent. Hadoop is one such massive data analytics facility we ought to use for processing, such

dynamically growing data and storage amenities[1]. The elasticity and scalable property of the Hadoop has

immensely impressed us to deploy this working infrastructure in our research. Hadoop has been showcased as

an open-source computing platform, which has two primary use cases, the Map-reduce and the HDFS (Hadoop

Distributed File System)[2]. Despite of using the traffic captured or downloaded from research supportive data

stores on the web it can also be created with synthesized traffic to imitate Internet traffic among the subnets and

the Internet. The internal traffic inside the local subnet was not simulated. A simplified simulated traffic data has

been used by some researchers for preciseness[3].HT Condor aids to manage jobs or tasks on a devoted cluster

of PCs and make use of uncommitted resources, for instance idle workstations, below a distributed possession.

Thus, it can efficiently yoke the use of all existing computing possessions [4].

A Tiered Distributed Network Traffic Analyzer in Big Data using Hadoop Framework

DOI: 10.9790/0050-03055560 www.iosrjournals.org 56 | Page

III. Methodological facts on the proposed scheme
This division describes various prefaces of the mathematical context cast-off in the algorithm and the

methodological facts of the structures used to implement it. It reports on Hadoop and MapReduce, HTCondor,

network analyzer a terminal built form of Wireshark referred as Tshark and a classifier using Weka that reduces

the number of extracted parameters by embedding the input data into a lower dimension space and finally the

results are analyzed using SPSS. These procedures and information are needed for the implementation of the

NTP in Big Data using Hadoop framework as depicted in Figure 1.

Figure 1. NTP in Big Data using Hadoop framework

IV. Hadoop and MapReduce
Hadoop [5] is a well-established prominent Apache open source platform that offers tools for parallel

processing of enormous amount of data using the MapReduce archetype [6]. It can process and handle huge

amounts of data in a distributed way on huge clusters in a consistent and fault-tolerant manner [7]. MapReduce

is a programming model for processing large datasets which was earlier recommended by Google during 2004

[8].

4.1 HTCondor

HTCondor[9]is an open-source referred as High-Throughput Computing (HTC) software infra-

structure for distributed batch tasks. Like other batch systems, HTCondor affords task administration/organizing

mechanism that withholds precedence scheme, resource monitoring and management [10]. As a task is rendered

to HTCondor, it tracks an available device on the network to execute the task on that device. HTCondor has the

ability to identify or spot a machine running an HTCondor job which is no longer available and can drift the task

to another idle device which will continue the job exactly from where it had left-off.

4.2 Network Traffic Analyzer & classifier –Tshark, Weka

Tshark is a packet capture tool that does potentsensing and describing features for pcap scrutiny[11]. It

captures packet-data as of from an alive network, or inspect packets from an earlier file captured and decodes

the form of those packets to the standard output file. TShark's built-in default capture file format is pcap[12].

Weka comprises of tools for data pre-processing, classification, regression, clustering, association and

visualization that well-suits for developing new schemes[13].

4.3 Network Traffic Prediction Algorithm

The input dataset X for the NTP is a matrix of size N x n. Each row in the matrix Xrelates to features in

vectors, which is referred as data point DP with n mined features. The matrixis prepared subsequently after the

preprocessing stage of features extraction, which is achieved from unprocessed pcap files. This algorithm for

prediction is to be transformed to the MapReduce jobs in Hadoop as shown below in the job flow diagram for

NTP in MapReduce in Figure 2.

Figure 2. Job flow diagram for NTP in Map Reduce

A Tiered Distributed Network Traffic Analyzer in Big Data using Hadoop Framework

DOI: 10.9790/0050-03055560 www.iosrjournals.org 57 | Page

V. Proposed scheme
The proposed scheme involves a tiered architecture, which encompasses 4 levels of progress to achieve

or accomplish the need. The levels are pre-processing, classification, transformation and evaluation. The tiered-

architecture flow diagram for the proposed scheme is shown below in Figure 3.

Figure 3. A tiered-architecture flow diagram for the proposed scheme

5.1 Preprocessing stage:

The preprocessing stage is accomplished by the packet analyzer Tshark[14], a version of Wireshark)

and by the HTCondor framework. The course of mining features from each pcap file is made by Tshark and the

distributed computation by HTCondor. The analysis of each pcap file is allotted as a distinct job by

HTCondor[2]. After the parsing of a pcap file is finished, the derived output file is moved to HDFS.The

preprocessing stage converts the pcap files into appropriate input format to Hadoop. Each line in the output file

from the preprocessing stage signifies a data point in the matrix X. Each line is divided into a key and a value

parts separated by a tab. A sample record in matrix X is shown below:

12/12/2015 9:09 80,0,0,64,1655,0,0,64,0,134,0,0,0,695,15,0,0,772,915,32,32.

5.2 Classification

Weka has been used here for classification of the reliable parameters based on E and M estimations

made by this EM algorithm[15]. E(xpectation) it acquires the probable values for the missing data using an

initial parameter estimate and M(aximization) tries to acquire the maximum likelihood approximation for the

parameters by means of the estimated data[16]. The classified parameters are used as the required input-data for

NTP in MapReduce. The unclassified parameters are henceforth removed from HDFS.A sample record in

matrix X after classification is shown below:

12/12/2015 9:19 80,64,1655,64,134,695,772,915,32.

5.3 Transformation of NTP to MapReduce

The MapReducer’s map, relates the input-data in the usage form of key and value pairs, to a list the

intermediary key-value pairs by the map technique which is referred as Map-Attribute (Key1; Value1) List <

Key2; Value2 >. The mapped intermediate-records need not be of the similar form as that of the input-data

records. An input-data pair can get mapped to any number of multiple output-data pairs or may even be mapped

to zero or none.

The MapReduce architecture shows the working fashion in the below given Figure 4. The

MapReducer’s reducer reduces the set of intermediate-values that share a common key to a smaller set of values

by a reduce function, which is referred as Reduce-Attribute (Key2; List < Value2 >) List < Value3 >. The

reducer has three major stages, they are sort, shuffle and reduce accordingly. The sort stage framework clusters

the inputs for each reducer by a key as various mappers can produce output pair for the similar key. The shuffle

stage framework will reduce the copy of related sorted output pair from each mapper by means of HTTP

through the network. The shuffle and sort phases shall work hand-in-hand at the same time as a result of which

as the outputs are produced they are merged together. Finally, the reduce function is called for each key-value

pairs and are grouped. The outcome yielded by the reducer is copied to Hadoop Distributed File System

(HDFS).The algorithm is transformed to predict the traffic by internally dividing the process into corresponding

jobs to enable distributed computation using MapReduce work-structure. The flow and the division of the jobs

are shown in the job-flow diagram that has 3 divisions based on their movement in the process activity. Job

1optimizes; job 2 deploys and job 3 compares as stated above in Figure 2.

A Tiered Distributed Network Traffic Analyzer in Big Data using Hadoop Framework

DOI: 10.9790/0050-03055560 www.iosrjournals.org 58 | Page

Figure 4. MapReduce work-flow architecture.

Algorithm for Job2 in MapReduce – Deploy the WF’s for NTP

Function Map-Deploy

Called once at the beginning of the map task.
Z- Read into memory from a file on HDFS.

Num-Permutations = Number of rows in matrix P

(R) = Read into memory from file on HDFS.
Xn= Read as parameter.

Yn = Read as parameter

 # Yn is an array of size n
n Number of tokens in Yn.

For iAttribute = 1 to n do

Yn[iAttribute] =Yn[iAttribute] + iR-WF
iR-WF # Optimize the initial designated DP

End for

Function Map (Key; Value)

Key = Timestamp of the DP.

Value = DP. The delimiter is “,”.
Xn = Parse value to tokens by the delimiter `,'

Xn is an array of size n

For iAttribute = 1 to n do
Xn[iAttribute] = Xn[iAttribute]+ iR-WF

iR-WF # Optimize the input DP

End for
For each permutation in P:

For iPermutation = 1 to Num-Permutations do

iR-WF # Initialize WF(weight-factor)
Permutation Parse line iPermutation in P to tokens by the delimiter `,'

For iAttribute = 1 to n do

For each feature in the permutation iPermutation
j=0

if Permutation[iAttribute] = 1 then

Xk[j] = Xn[iAttribute]
Yk[j] = Yn[iAttribute]

iR-WF = iR-WF + (Xk[iAttribute] + Yk[iAttribute])2

j = j + 1
End if

End for

If Value = Yn then # The DP is the initial designated DP

Give (iPermutation; (TimeStamp; 0; Xk))

End if
If iR-WF (Value) < 1 then # The DP is added with iR-WF

Give (iPermutation; (TimeStamp; Xn; Xk))

End if
End for

Algorithm for Job3 in MapReduce– Compare actual vs predicted traffic

Function Map(Key; Value)

Key = Timestamp of Data Point (DP).

Value = DP. (It is separated by “,”).
Xn = an array of size n

n = Total number of tokens in Xn

normalFlag= true
For iRow = 1 to numRows do

if iRow[Xn] = iRow[Xk] then

Give (eventsCells[iRow]; 1)
normalFlag=false# This DP is not matching with actual.

Break for loop # Terminate the for loop when the mismatch is found

End if
End for

If normalFlag = true then # If this DP is matching (Actual traffic and Predicted traffic match)

Give(Normal, 1)

A Tiered Distributed Network Traffic Analyzer in Big Data using Hadoop Framework

DOI: 10.9790/0050-03055560 www.iosrjournals.org 59 | Page

End if

Function Reduce (Key; Values)

Key = pattern type
Values = A list of f1ags.

sum = 0

For all value belonging to values do
sum = sum + Value

End for

Give (key; sum)

5.4 Evaluation – Performance metrics

The permutation matrix castoff for the trials are of size 21,648 X 31i.e., 21,648 permutations with 31

attributes for each permutation. The attributes were well defined in section 3.The parameters of the permutation

matrix were chosen to be min-attributesas 3 andmax-attributesas 31.The periodchosen for the attribute

classification was 0.9 minutes. The parameter classification preferredhere, deploys EM algorithm with a minor

time interval, such as 30 milliseconds, 0.5 seconds, etc. The error rate eventually sinks low due to the use of the

weight adjustment factors done in Map Reduce. Hence, the performance evaluation here counting on the True

Positive (TP) and False Positive (FP) showcases that the error rate is down as TP signs up than FP as shown

below in Table 1.

Table 1. Error rate (%) on Netrsec dataset.
Traffic Type Parameters Number of TP Number of FP Error rate (%)

x1 x2 x3

Mail 3 1 2 2.95 0.05 0.0005

TCP 3 2.8 3 2.99 0.001 0.00001

UDP 2 0 2 1.98 0.02 0.0002

FDP 1 1 0 0.94 0.06 0.0006

RTP 4 3 0 3.9 0.1 0.001

ATTACK 6 6 5 5.97 0.03 0.0003

SPAM 4 0 4 3.99 0.01 0.0001

VI. Experimental Results and comparison
The performance assessment was executed on a cluster and a single Hadoop-node. Figure 5

demonstrates that 10 iterations of the NTP algorithm performed on a cluster got executed completely in 9

minutes for 1TB, which show casts an excessive speed in computing of about 3 to 10 times faster than their

actual completion time performed by only one node. These results illustrate the increased performance

enhancement as the volume of the input traffic grows bigger.

Figure 5. Experimental Results of NTP in BigData using Hadoop for dataset from NETRSEC

VII. Conclusion and Future Work
The experimental tests were performed on the dataset downloaded from Netresec a software vendor

who emphasis on the network security field.The application described in this paper, is based on the development

and application of a Network traffic prediction algorithm in Big Data using MapReduce methodology deployed

on a Hadoop framework.Though the outcomes obtained at this time have proven the efficiency of the NTP

algorithm, it may possibly be further technologically advanced in a number of means. There can be extensions

done as follows:

90%

92%

94%

96%

98%

100%

Mail TCP UDP FDP RTP ATTACK SPAM

Experimental Results of NTP in BigData using Hadoop for traffic dataset from

NETRSEC

Number of TP Number of FP Error rate (%)X axis: Traffic TypeY
 a

x
is

:
A

cc
u

ra
cy

 a
n

d
 E

rr
o
r

ra
te

 %

A Tiered Distributed Network Traffic Analyzer in Big Data using Hadoop Framework

DOI: 10.9790/0050-03055560 www.iosrjournals.org 60 | Page

1. Outspreading the algorithm to deploy a more erudite feature selection procedure that can also remove

redundant and irrelevant characteristics to produce better accuracy by increasing the matching rate and

decrease the false positive rate.

2. Spreading the algorithm to apply the preprocessing stage too over Hadoop.

References
[1]. Venkatesh, C. and D. Kumar, Increasing Efficiency of Recommendation System using Big Data Analysis.

[2]. Ackerman, D., et al., Similarity Detection via Random Subsets for Cyber War Protection in Big Data using Hadoop Framework.
2015.

[3]. Gharaibeh, M. and C. Papadopoulos, DARPA-2009 Intrusion Detection Dataset Report. 2014, Technical report, Colorado State

University.
[4]. Macdonald, A., The Architecture Of An Autonomic, Resource-Aware, Workstation-Based Distributed Database System. 2012.

[5]. Pries, K.H. and R. Dunnigan, Big Data Analytics: A practical guide for managers. 2015: CRC Press.

[6]. Fahringer, T., et al., ASKALON: a tool set for cluster and Grid computing. Concurrency and Computation: Practice & Experience,
2005. 17(2): p. 143-169.

[7]. Zaharia, M., et al. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. in Proceedings of the

9th USENIX conference on Networked Systems Design and Implementation. 2012. USENIX Association.
[8]. Dean, J. and S. Ghemawat, MapReduce: a flexible data processing tool. Communications of the ACM, 2010. 53(1): p. 72-77.

[9]. Sobie, R., et al. HTC scientific computing in a distributed cloud environment. in Proceedings of the 4th ACM workshop on

Scientific cloud computing. 2013. ACM.
[10]. De, K., et al., Extending the ATLAS PanDA Workload Management System for New Big Data Applications. 2013, ATL-COM-

SOFT-2013-017.

[11]. Davidoff, S. and J. Ham, Network forensics: tracking hackers through cyberspace. 2012: Prentice hall.
[12]. Lee, Y. and Y. Lee, Toward scalable internet traffic measurement and analysis with hadoop. ACM SIGCOMM Computer

Communication Review, 2013. 43(1): p. 5-13.
[13]. Menon, R. and O.G. MENON, Mining of textual databases within the product development process. 2004.

[14]. Davis, J.J. and A.J. Clark, Data preprocessing for anomaly based network intrusion detection: A review. Computers & Security,

2011. 30(6): p. 353-375.
[15]. Hall, M., et al., The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 2009. 11(1): p. 10-18.

[16]. Park, H., P.H. Bland, and C.R. Meyer, Construction of an abdominal probabilistic atlas and its application in segmentation. Medical

Imaging, IEEE Transactions on, 2003. 22(4): p. 483-492.

