A Study on IoT-Driven Safety Monitoring and Control in Coal Mining Operations

Sumathi B H ¹, Anitha P ²

¹ Senior Scale Lecturer, Department of Electronics and Communication Engineering, S J (Govt.) Polytechnic, Bangalore, Karnataka, India.

Abstract

Within the scope of this article, we are putting up an Internet of Things (IoT) screen, which is a safety initiative for excavators, which is the most fundamental aspect of underground mining applications. For the purpose of this project, the system is constructed by using certain sensors that are subject to MEMS. These sensors are used to monitor the environmental factors of the underground mine location. Additionally, the system drives each and every detected parameter or characteristic to an ARM7-based Microcontroller Unit (MCU). With the help of the MCU unit, a completely automated surveying system that is characterized by high precision, smooth control, and consistency may be implemented. A warning is sent by the structure precisely when an important situation is identified, and comparative estimates are transmitted to the website by the commencing ESP8266 module, which is subject to Wi-Fi communication. When the recognized assortments in the characteristics are shown on the webserver site, it becomes less difficult for the subterranean control center to screen and to take significant and prompt action in order to avert actual harm.

Keywords: Safety Monitoring, IoT, Coal Mining Operations, Wireless Sensors Network (WSN).

I. INTRODUCTION

The essential element in operating any industry successfully is to guarantee the well-being of each individual engaged in that sector. The underground mining sector operates under a similar framework, where every parameter, such as methane gas levels, elevated temperatures, fire hazards, and others, must be monitored consistently. Every mining sector pursues essential safeguards to avoid adverse incidents. This paper explores recently defined conditions while also examining the practices of excavators, such as the Fall Detector that indicates the position of workers. An important enhancement involves gathering comprehensive data regarding parameters and sensor metrics related to web servers. The organization of IoT frameworks in mining operations for enhanced safety and efficient monitoring is dependent on remote sensor systems. These systems can effectively transmit real-time data regarding the conditions of workers in underground areas to data servers, allowing for consistent monitoring through web applications and servlets within a computer network. The proposed exhibit features a radio multiplication display within the mutt underpass, highlighting the free space spread and the altered waveguide effects. In any event, employing noticeable radio communication within subterranean mines presents several limitations.

Regardless of how radio signals are transmitted, issues such as tightening, diffraction, multipath, and dissemination is consistently significant. Consequently, remote communication has become essential for the efficient and adaptable success, accurate and timely processes in underground mining. We are utilizing IEEE802.11 Wi-Fi standards to transmit the identified parameters to server farms or web servers. Various insights on remote communication have been put forth by a range of individuals. A framework known as the chain-type remote underground mine sensor mastermind (CWUMSN) is being proposed, which includes three types of sensor hubs: detecting hubs, aggregate head hubs, and a build station positioned at regular intervals along the path to monitor the underground environment and locate the miners. A novel foundational approach to predicting coal and gas transformation using multisensory data integration is presented. This IoT framework integrates various components, enabling it to measure temperature, detect weight, monitor fire and gas, assess moisture levels, and even recognize instances of a person's fall.

Consequently, the standard framework is providing a commendable reaction to the majority of the challenges encountered in my setbacks. A robust communication framework needs to be established between excavators and the Remote Base Station. In this wired framework, communication proves to be ineffective in underground mining areas. We are selecting a remote framework system that utilizes Radio Frequency communication at 2.4 GHz, specifically the ESP8266-01 Module, which is a Wi-Fi transceiver module

DOI: 10.9790/0050-08052128 www.iosrjournals.org 21 | Page

² Senior Scale Lecturer, Department of Computer Science and Engineering, S J (Govt.) Polytechnic, Bangalore, Karnataka, India.

providing user-friendly RF connections at this frequency. This setup allows us to transmit identified data to a web server.

II. LITERATURE REVIEW

The coal mine checking and control system can be categorized into four distinct classes: database oriented, message oriented, resource oriented, and REST-based methodologies.

- 1. Database-Centric Methodology A database designed for monitoring the prosperity of coal mines utilizes a Structured Query Language (SQL)-based approach to query underground coal mine sensors and various devices in a fundamental illustrative manner from the application layer. Therefore, this does not represent the useful and illustrative nature of the aggregated material data, and the device-specific data separation and integration extraction is essential. This methodology is designed to gather data from the framework, and it is essential to enhance data planning within the system and sensor centers to minimize data and energy consumption. In this way, countless observational data are generated and processed during the coal age. It is similarly essential for the advancement of safety in coal mines through the analysis of extensive safety monitoring data using a SQL-based approach to effectively assess the safety conditions of coal mines.
- 2. Message-Centric Methodology Message organized coalmine security monitoring framework, enables underground sensor devices to communicate with one another regardless of the concealed equipment. This philosophy conceals the essential framework interfaces from the application layer, enabling the user to focus on application development, which provides an asynchronous communication mode. In many instances, the applications for monitoring and controlling coal mine prosperity are driven by events and place greater emphasis on conventional interest response models. This approach serves as a unique message and event-driven communication framework that facilitates many-to-various interactions. Additionally, the structured communication strategy effectively captures the essence of conveying and acquiring within various frameworks. In a sense, the disseminated messages can be characterized regardless of the number of followers, and consumers engage with their interests during events they wish to attend. Consequently, a message orchestrated procedure examines a loosely coupled relationship between publishers and subscribers while fundamentally enhancing flexibility and supporting heterogeneity.
- 3. Approach Focused on Organization The service-arranged structure (SOA) enhances the operations of existing mechanical affiliations by fostering high-level interoperability among various components across the domain. This approach also addresses the challenges of systems integration, where functionalities are represented as interoperable services. Our foundational research demonstrated an innovative approach to managing the integration of remote sensors within service-oriented architecture (SOA) frameworks. This method employs event-driven SOA advancements to enhance the closed-loop security exchange process in coal mining operations, with BPEL utilized to articulate the complexities of the coal mine safety exchange process. The proposed limitations on steady coal extraction and the subsequent framework integrate a continuous coal mining dynamic introduction, a 3D Geographic Information System (GIS) user interface, and address various challenges while ensuring emergency support.
- 4. Illustrative State Transfer (REST) Methodology REST represents a collection of standards aimed at aligning with web standards, characterized by a decentralized approach to software architecture. RESTful APIs do not necessitate XML-based web standards (SOAP and WSDL) to support their interfaces. In our detailed analysis, a remote sensor system was integrated with the controller area network (CAN) bus technology for comprehensive and efficient monitoring and intelligent early warning in the underground environment, the production data, and the operational status of the equipment, as well as developing the RESTful API interface for monitoring and controlling the underground sensor system. A comprehensive range of parameters was collected and sent to the remote screen network for analysis to provide critical insights to users.

III. DESCRIPTION OF THE SYSTEM SCENARIO

The proposed system is divided into two components. Immediately is a wearable device that will be attached to the bodies of the Mine Workers. The appropriate configuration for this wearable is a health protective garment.

The device is designed using a sensor module that includes several sensors to monitor continuous underground parameters such as volatile oil release, humidity, fire and light, temperature, and the physical position of the excavator. An excess combustible gas center is being developed to address hazardous gases such as carbon monoxide, methane, butane, and propane.

DOI: 10.9790/0050-08052128 www.iosrjournals.org 22 | Page

Figure 1: Wi-Fi interface with PC connection

An ARM7 based microcontroller is utilized, which is essential for preparing the bearings provided as firmware. The MCU detects variations in physical parameters and processes them to transition into advanced designs. The alteration may also arise from simple data or an obstruction in data flow or an advanced signal. If the temperature exceeds a predefined prosperity level set in the microcontroller, an alert is transmitted to the ground station controller, which activates the alarm connected to the MCU. If the intentional clamminess concern exceeds a certain threshold at the microcontroller, it triggers alarms. When the fixation on gas surpasses the threshold, the MCU interprets caution signals. When a working individual falls for any reason, the fall sensor will promptly alert nearby locations and also notify the ground control unit via Wi-Fi repeaters. A light sensor facilitates the configuration of PWM-controlled lighting, adjusting resources based on the intensity of light. The Fire Sensor plays a crucial role in preventing fire accidents and curbing rapid spread by detecting fire and sending alerts to key stations, ensuring that no risks are taken.

The LCD interface will display all parameters such as temperature, humidity, and more on the wearable device. The ESP8266 is connected to the module to transmit sensor data to the server at regular intervals, and it also relays this information to the local ground monitoring station via Wi-Fi repeaters.

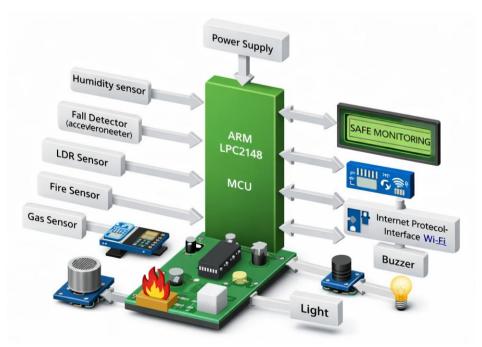


Figure 2: IoT safety monitoring system diagram

IV. DESCRIPTION OF HARDWARE

4.1 SENSOR

- **4.1.1 Temperature Sensor (LM35):** The Linear LM35 is utilized to measure temperature consistently over time. This device functions as a precise temperature sensor, providing a yield voltage that corresponds directly to Centigrade temperature measurements. The direct voltage to advanced reference data conversion is managed by the LPC2148, and the obtained digital value will be displayed on the LCD connected to the LPC2148.
- **4.1.2 MEMS Accelerometers (ADXL335):** The ADXL335 is a low-power, three-axis accelerometer that provides voltage outputs in a banner format. Objects are experiencing acceleration with a full-scale range of ± 3 g. This sensor can measure the static expansion rate of gravity in a tilt-distinguishing device, as well as detect significant disturbances from vibration, shock, or movement. The X-center point is associated with the controller and meticulously observes the changes in the "g" value.
- **4.1.3 HUMIDITY SENSOR:** This sensor provides a direct measurement in contrast to relative humidity, indicating the amount of water vapor present in the air. The HSM-20G dampness sensor operates on a resistive principle. This is a basic sensor designed to measure humidity and temperature, providing crucial voltage readings related to these environmental factors.
- **4.1.4 FIRE SENSOR:** The fire sensor will identify warm radiations under various conditions. The sensor is designed to detect any signs of fire and will issue an alert when it identifies fire in underground areas. This addresses the criteria for identifying infrared bars or heat radiation.
- **4.1.5 MQ-4 Semiconductor Sensor for Natural Gas:** The gas sensor is interfaced for the detection of common gases such as Methane, as well as Propane and Butane, which are the primary hazardous gases found in underground coal mines. It features 6 pins; 4 of these are configured to receive signals, while the remaining 2 are designated for supplying heating current.

4.1.6 Light sensor (LDR):

A light sensor facilitates the establishment of PWM-controlled lighting, adjusting resources based on the intensity of light. If the working zone is reduced, the LDR circuit will activate the light connected to the wearable device. The use of PWM enhances the structure's battery support significantly.

4.2 ESP8266 MODULE

The process of reviving web data using an ESP8266 modem, when connected to a microcontroller or PC, is considerably less complex compared to using an Ethernet module. This is largely due to the ESP's status as a System on Chip (SoC) with an integrated TCP/IP protocol stack. The AT firmware provides a user-friendly bearing set that can typically be configured or operated at various Baud Rates, including 9600, 115200, or 57600. Plain text can be transmitted via the modem by connecting just three signals from the modem to the microcontroller: TxD, RxD, and GND. The RTS and CTS signals of consecutive port interfaces of the ESP Modem are interconnected. The transmit banner of the microcontroller's successive port is associated with the consecutive interface's receive signal (RxD) of the ESP Modem, while the receive banner of the microcontroller's successive port is linked to the transmit signal (TxD) of the ESP Modem's successive interface.

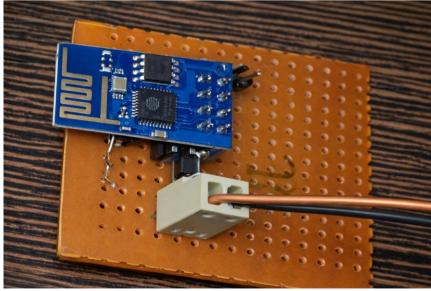


Figure 3: ESP8266 module on prototyping board

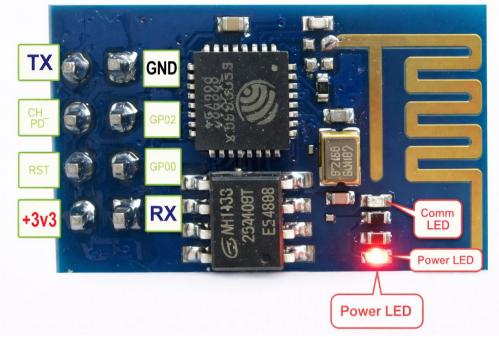


Figure 4: Wi-Fi module circuit board

4.3 LCD INTERFACING

Within firmware is made for Bare Metal microcontroller and flashed to inside rom. Firmware is made Embedded C tongue. In like manner, entire undertaking is sorted out keil thing progress contraptions, for example, keil IDE, armcc cross-compiler for ARM controllers. Phillips Flash loader for eating up firmware to ROM. HyperTerminal utilized as successive port customer for motivation driving investigating hard programming appropriately.

Figure 5: Electronic setup with LCD display

4.3.1 About Keil IDE. Keil is free programming that handles enormous quantities of the misery centers for an embedded designer. This is an organized headway condition (IDE) programming that joined a substance administrator to form, a compiler to accumulate it and convert source code to hex records.

4.3.2 About HyperTerminal.

The HyperTerminal contraption is utilized to screen Serial Ports in PC. Terminal composition PC programs are fundamentally utilized for beginning setup of Wi-Fi module, i.e. to resuscitate setting or empowering AT firmware for ESP module gave from make. It is like way unfaltering in inquiring about the functionalities of model of our task. Thusly at the Remote station the collected information from Wi-Fi Receive is showed up as made reference to in the Results parcel.

V. RESULTS

The outcomes of the whole system are shown in this particular segment. The LPC2148 Evolution Board, which is seen in the image below, serves as the central component of all the activities that are included in the digger module. These functionalities include monitoring, processing the gathered data, and making critical decisions based on the goals of constraint that are provided for specific sensors.

Figure 6: Close-up of ARM PCB on wood

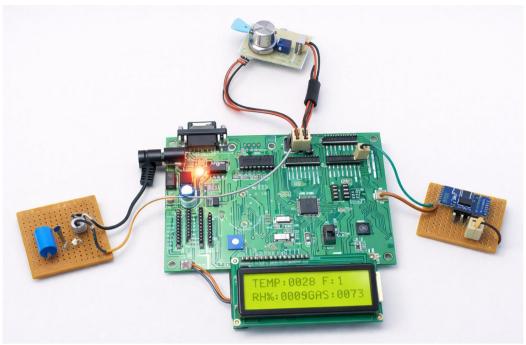


Figure 7: Embedded electronics with sensors and display

The following figure illustrates how all of the sensors and modules are connected to the edge, which is the most significant model of the system that we have suggested. When an abnormal augmentation is detected at the excavator module, the internal structure will transmit an alarm to the interrupt source using the subject designation. When a Fall Status is present, it indicates that a digger is on the mind. It is also common practice to capture obvious data throughout regular intervals of time. This enables us to monitor the info that is being propelled at a certain point in time that is not conventional.

VI. CONCLUSIONS

This Internet of Things security framework that is suggested in this study has the potential to serve as a suitable replacement for the existing underground Mines system. This Internet of Things structure enclosed the most astounding Key and authentic portion of the proper security for excavators that is presently being delivered. As a result of the fact that this system is composed of a low-power Wi-Fi module and controls the light using a PWM approach, the amount of force that is used is reduced, which is essential for any gadget that is powered by a battery. Additional prosperity may be sent to data servers, which may then be used to maintain accurate information on mines.

REFERENCES

- [1]. E. K. Stanek, "Mine Electrotechnology Research: The Past 17 Years", IEEE transactions on industry applications, vol. 24(5), pp 818-19, 1988.
- [2]. S. Wei, L. Li-li, "Multi-parameter Monitoring System for Coal Mine based on Wireless Sensor Network Technology", Proc. International IEEE Conference on Industrial Mechatronics and Automation, pp 225-27, 2009.
- [3]. Y.P. Zhang, G. X. Zheng, J. H. Sheng, "Radio Propagation at 900 MHz in Underground Coal Mines", IEEE transactions on antennas and propagation, vol.49(5), pp. 752-62, 2001.
- [4]. S. Jin-ling, G. Heng-wei, S. Yu-jun, "Research on Transceiver System of WSN Based on V-MIMO Underground Coal Mines", Proc. International Conference on Communications and Mobile Computing, pp 374-378, 2010.
- [5]. N. Chaamwe, W. Liu, H. Jiang, "Seismic Monitoring in Underground Mines: A case of Mufulira Mine in Zambia Using wireless Sensor Networks for Seismic Monitoring", Proc. IEEE international Conference on Electronics and Information Engineering, vol. 1(V1), pp 310-14, 2010.
- [6] X. Ma, Y. Miao, Z. Zhao, H. Zhang, J. Zhang, "A novel approach to Coal and Gas Outburst Prediction Based on Multi-sensor Information Fusion", Proc. IEEE international conference on automation and logistics, pp 1613-18, China 2008.
- [7]. C. Qiang, S. J. Ping, Z. Zhe, Z. Fan, "ZigBee Based Intelligent Helmet for Coal Miners", Proc. IEEE World Congress on Computer Science and Information Engineering, pp. 433-35, 2009.
- [8]. D. Koenig, M. S. Chiaramonte, A. Balbinot, "Wireless Network for Measurement of Whole-Body Vibration", J. Sensors, vol. 8, pp. 3067-81, 2008.
- [9]. Rida Khatoun and Sherali Zeadally. Smart cities: concepts, architectures, research opportunities. Communications of the ACM, 59(8):46–57, 2016.
- [10]. S. Kumari, S. Kulkarni, N. Patil, V. Deshpande, An internet of things (IoT) based implementation of smart digital city prototype, in: Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 2020, pp. 176–184.
- [11]. I. Aydin, M. Karakose, E. Karakose, A navigation and reservation based smart parking platform using genetic optimization for smart cities, in: 2017 5th International Istanbul Smart Grid and Cities Congress and Fair (ICSG), 2017, pp. 120–124.

- [12]. C. Ajchariyavanich, et al., Park king: an IoT-based smart parking system, in: 2019 IEEE International Smart Cities Conference (ISC2), 2019, pp. 729–734.
- [13]. S.N. Shukla, T.A. Champaneria, Survey of various data collection ways for smart transportation domain of smart city, in: 2017 International Conference on ISMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2017, pp. 681–685.
- [14]. F.A. Lincy, T. Sasikala, Smart dustbin management using IOT and Blynk application, in: 2021 5th International Conference on Trends in Electronics and Communication Informatics (ICOEI), 2021, pp. 429–434.
- [15]. B.S. Malapur, V.R. Pattanshetti, IoT based waste management: an application to smart city, in: 2017 International Conference on Energy, Data Analytics and Soft Computing (ICECDS), 2017, pp. 2476
- [16]. S.K. Gupta, S. Vanjale, S. Rasal, M. Vanjale, Securing IoT devices in smart city environments, in: 2020 International Conference on Emerging Smart Computing and Informatics (ESCI), 2020, pp. 119–123.
- [17]. M.A. Pradhan, S. Patankar, A. Shinde, V. Shivarkar, P. Phadatare, IoT for smart city:improvising smart environment, in: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), 2017, pp. 2003–2006.
- [18]. S.D. Bhogaraju, V.R.K. Korupalli, Design of smart roads a vision on indian smart infrastructure development, in: 2020 International Conference on Communication Systems & NetworkS (COMSNETS), 2020, pp. 773–778.