A CFD Analysis of Smoke Movement in Steel Industry Sheds

Sandeep V. Lutade1, Krunal Mudafale2, Ranjan Kishore Mallick3
1,2 Mechanical Dept. Dr. Babasaheb Ambedkar College of Engineering and Research, Nagpur
3 Mechanical Dept. Pursing PhD. VNIT, Nagpur

ABSTRACT: The problem has taken from a steel making industry which is situated at Wardha, Nagpur. There is a furnace in the shed where smoke is generated and some smoke is passed through the duct and removed by the blower, situated at the base of the chimney but remaining smoke is moving inside the furnace. Due to this, the workers in the shed were not working properly or even they could not see towards each other. A model similarly with the physical shed has designed by work bench. This model mainly covers the analysis of smoke movement, distribution of shed temperature, pressure, and calculation of mass flow and capacity of blower. Results predicted by the model are compared with the experimental results by NPFA charts.

Keywords: Ansys Fluent, CFD, NPFA chart, Smoke movement.

I. INTRODUCTION

Smoke may be simply defined as a cloud of well mixed gases and unburnt solid particles which are a product of combustion. Smoke generation is greatly influenced by the amount and type of fuel and the air available for combustion.

Smoke control techniques are used to manage smoke movement in buildings and to direct smoke away from escape routes. Smoke control can involve passive and/or active means to modify and direct the passage of smoke to minimize its harmful effects on occupants and property.

The amount of smoke generated can be estimated by NFPA 92B as

\[m = 0.071K \cdot (2/3) Q^{(1/3)} Z^{(5/3)} + 0.0018Qr \]

Where \(m \) = mass flow rate of smoke at height \(z \), kg/sec
\(K \) = wall factor
\(Q \) = heat release of fire, kW
\(Z \) = height of smoke
\(Qr \) = convective heat release rate of fire, kw = 0.7Q

II. DEFINATION OF PROBLEM.

The problem has taken from a steel making industry which is situated at Wardha, Nagpur. There is a furnace in the shed where smoke is generated and some smoke is passed through the duct and removed by the blower, situated at the base of the chimney but remaining smoke is moving inside the furnace. As a result after few hours, there are huge amount of smokes, moving inside the shed. Due to this, the workers in the shed were not working properly or even they could not see towards each other.

Now my aim is to modify and direct the passage of smoke to minimize its harmful effects on occupants and property. Before analyzing, I have assumed various parameters such as Geometry has considered in 2dimensional.
The furnace is located at the middle of the shed
Smoke distributions has been considered to be 2dimensional in nature
There is no effect of wind on the shed.

III. PROBLEM FORMULATION

The problem is formulated in two parts. In the first part, the smoke movement in the shed was analyzed by CFD approach. In the second part of problem formulation, the capacity of induced blower is calculated.

IV. CFD MODELLING

4.1 Introduction:
Based on control volume method, 2-D analysis of smoke movement inside the shed is done on fluent software

4.2 Geometry part:
The geometry of the model is done using workbench.
Specification of shed-
4.3 Meshing part
The geometry is modeled in workbench and the mesh is fine meshed to cope-up the thermal and velocity boundary layer formation as shown in figure.

4.4 Fluent part
A. Problem Setup
1. General
 1. a. solver
 (i) Type-pressured based
 (ii) Velocity formation-absolute
 (iii) Time-steady
 (iv) 2d space-planner
 1. b. Model
 - k-epsilon
 - Standard
 - Standard Wall Functions-
 - Model constants table

Table 4.1 Model constants table

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmu</td>
<td>0.09</td>
</tr>
<tr>
<td>C1-Epsilon</td>
<td>1.44</td>
</tr>
<tr>
<td>C2-Epsilon</td>
<td>1.92</td>
</tr>
<tr>
<td>TKE Prandtl Number</td>
<td>1</td>
</tr>
<tr>
<td>TDR Prandtl Number</td>
<td>1.3</td>
</tr>
<tr>
<td>Energy</td>
<td>0.85</td>
</tr>
<tr>
<td>Wall</td>
<td>0.85</td>
</tr>
</tbody>
</table>

B. Solution
1. a. Solution method
 (i) Scheme-Simple
 (ii) Pressure-standard
 (iii) Momentum-2nd order
 (IV) energy- 2nd order
1. b. Solution control-
 Relaxation factors are taken to be default values

Table 4.2 Relaxation factors table

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>0.3</td>
</tr>
<tr>
<td>Density</td>
<td>1</td>
</tr>
<tr>
<td>Body force</td>
<td>1</td>
</tr>
<tr>
<td>Momentum</td>
<td>0.7</td>
</tr>
</tbody>
</table>
5.1. Initial Smoke flow simulation
In this section, the initial smoke flow simulation has analyzed. The initial velocity and temperature of smoke is taken as 1m/s and 400K respectively. The simulation shows that the smoke generated at the periphery of furnace are moving inside the shed.

5.2. Temperature profile
The temperature is maximum at the bottom of the middle of the shed because the furnace is located at the bottom of the shed. The profile shows that temperature also decreases from bottom to top of the shed as shown below figure.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Vertical Position from furnace(m)</th>
<th>Temperature(K) (CFD)</th>
<th>Experimental (NFPA chart) (K)</th>
<th>%of error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>380</td>
<td>373</td>
<td>1.84</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>378</td>
<td>363</td>
<td>4.76</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>350</td>
<td>353</td>
<td>0.85</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>330</td>
<td>348</td>
<td>5.45</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>328</td>
<td>338</td>
<td>3.04</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>320</td>
<td>333</td>
<td>4.06</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>318</td>
<td>330</td>
<td>3.77</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>315</td>
<td>328</td>
<td>4.12</td>
</tr>
</tbody>
</table>

Table 5.1 Comparison of temperature with CFD and NFPA Chart

5.4 Validation of temperature
The temperature is maximum at the bottom of the middle of the shed and it also decreases from bottom to top of the shed. The graph between temperatures vs. position has drawn (denoted as blue curve) from CFD data and it almost matches with national fire protection association (nfpa) chart.

Figure 5.4 - validation by temperature

5.4 CALCULATION OF MASS FLOW BY NFPA

The amount of smoke generated can be estimated by NFPA 92B as

\[m = 0.071K \left(\frac{2}{3} \right) Q \left(\frac{1}{3} \right) Z \left(\frac{5}{3} \right) + 0.0018Qr \]

Where m= mass flow rate of smoke at height z, kg/sec
K=wall factor
Q=heat release of fire, kW
Z=height of smoke
Qr=convective heat release rate of fire, kW

\[Qr = 0.7Q \]

\[m = 0.071 \times 1 \times 2000^{\frac{1}{3}} \times 28^{\frac{5}{3}} + 0.0018 \times 0.7 \times 2000 = 230 \text{ kg/sec} \]

5.5 Calculation of capacity of blower

INLET OF BLOWER

Static head (Ps) = -2050 Pa = -207 mm of H2O
Velocity head (Pv) = ρv^2/2g = 1.2 \times 40^2/2 \times 9.81 = 96 mm of H2O
Friction head = f L / m * (v/4.04)^2 = 0.005 \times 35 / 25^2 \times (40/4.04)^2 = -68.66 mm of H2O
Total inlet head (H1) = -207 + 96 - 68.66 = -197.66 mm of H2O

OUTLET OF BLOWER

H = mm of H2O of N.D. IN CHIMENEY = 176.5H/Ta = 176.5 \times 30/300 = 17.65 mm of H2O
Total head = H = 17.65 - (-197.66) = 197.31 mm of H2O
Discharge = Q = A \times V = 7 \times 40 = 28 m^3/s
Total power = 9.81 \times Q \times H / 1000 = 9.81 \times 28 \times 197.31 / 1000 = 54 Kw
Considering \eta_{motor} = 80\% and \eta_{blower} = 50\%,
TOTAL POWER = 54 \times 0.5 \times 0.8 = 136 Kw

But available capacity of blower in market Q = 150 m^3/h - 150000 m^3/h,
H = 100mm - 1500mm of H2O, power = 1HP - 50HP (37 Kw)
Total no of blowers = 136/37 = 3.66 = 04

CONCLUSION

The smoke flow simulation inside the shed is minimum at outlet duct pressure -2050 pascal.
The capacity of each blower is 37 Kw.
The no of blowers is recommended to be 04.
All the outlet ducts are located in same line along z axis at a distance of 25m from floor.

REFERENCES

- NFPA 92B, Guide for smoke management systems in malls, atria and large areas, National Fire.