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 Abstract: In this paper, an experimental investigation of    Water- Methanol system in a Spiral plate Heat 

Exchanger (SHE) is presented. Experiments have been conducted by varying the mass flow rate of cold fluid 

(Methanol), the mass flow rate of hot fluid (Water) and inlet temperature of the hot fluid, by keeping inlet 

temperature of the cold fluid constant. The effects of relevant parameters on the performance of spiral plate 

heat exchanger are studied. Also, in this paper, an attempt is made to propose Adaptive Network based Fuzzy 

Inference System (ANFIS) and Artificial Neural Network (ANN) models for the analysis of SHE. The data 

required to train the models are obtained from the experimental data based on Response Surface Methodology 

(RSM). The ANN models are developed using Back Propagation Network (BPN) algorithm, incorporating 

Levenberg-Marquardt (L-M) training method. The ANFIS models are developed based on advanced neural-

fuzzy technology. The ANFIS model possesses the robustness of fuzzy system, the learning ability of neural 

networks and can adapt to various situations. The accuracy of the trained networks are verified according to 

their ability to predict unseen data by minimizing root mean square error (RMSE), average percentage error 

(APE) and correlation coefficient (%R
2
) value. The prediction of the parameters can be obtained without using 

charts and complicated equations.   

The data obtained from ANFIS and ANN models for overall heat transfer coefficient (U) and pumping 

power (Wp) are compared with those of experimental data. It is observed that the accuracy between the ANFIS 

model’s predictions, NN model’s predictions and experimental values are achieved with minimum % error, 

APE, RMSE and Correlation coefficient (%R
2
). Also it is proved that ANFIS models give better performance 

than ANN models.  

Keywords: Spiral plate Heat Exchanger (SHE); Overall heat transfer coefficient (U); Pumping Power(Wp); 

Artificial Neural Networks (ANNs) and  Adaptive Network based Fuzzy Inference System (ANFIS) models . 

 

I. Introduction 
  Heat exchangers are devices which are used to enhance or facilitate the flow of heat. Their application 

has a wide coverage from industry to commerce. They are widely used in space heating, refrigeration, air 

conditioning, power plants, chemical plants, petrochemical plants, petroleum refineries and natural gas 

processing. One common example of a heat exchanger is the radiator in a car, in which a hot engine-cooling 

fluid, like antifreeze, transfers heat to air flowing through the radiator [1]. 

Compared to shell-and-tube heat exchangers, spiral plate heat exchangers are characterized by their 

large heat transfer surface area per unit volume, resulting in reduced space, weight, support structure, energy 

requirements and cost, as well as improved process design, plant layout and processing. Spiral plate heat 

exchangers have the distinct advantages over other plate type heat exchangers in the aspect that they are self 

cleaning equipments with low fouling tendencies, easily accessible for inspection or mechanical cleaning. They 

are best suited to handle slurries and viscous liquids. The use of spiral heat exchangers is not limited to liquid-

liquid services. Variations in the basic design of SHE makes it suitable for Liquid-Vapour or Liquid-Gas 

services .  

Few literatures have reported about Spiral Heat Exchanger [1 to 4]. Rajavel et al [2 and 3] have 

conducted experiments on different process fluids to study the performance of a spiral heat exchanger and 

developed correlations for different fluid systems. Martin [1] numerically studied the heat transfer and pressure 

drop characteristics of  a spiral plate heat exchanger. The apparatus used in the investigations had a cross section 

of 5300 mm
2
, number of turns n=8.5, core diameter of 250 mm and outer diameter of 495 mm. 

More number of experimental data are  required to develop correlations to predict the parameters such 

as U and Wp etc. using mathematical methods like regression analysis. The Artificial Neural Network (ANN) 

modeling technique has the capability to predict the unseen data by using a reasonable set of experimental data 

resulting in more speed and accuracy. Recently, many researchers have addressed about ANN modeling to heat 

exchangers [5 and 6].However, not many addressed about ANN modeling for Spiral plate Heat Exchangers 

(SHEs). Hence, an attempt is made in this work, to study the experimental behaviour of SHEs and model the 

SHE’s characteristics using ANN technique. In order to improve the performance of ANN further, an ANFIS 

model is proposed for SHE. Presently, much interest is focused in the field of neuro-fuzzy system because of its 
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cost effective methodology of modeling and its application to model any non-linear systems. An ANFIS model 

combining the robustness of fuzzy systems and the learning ability of neural networks (NNs) offers a more 

powerful tool for modeling [7- 9].Hence in this work, a new attempt is made to model the  performances of SHE 

using ANFIS technique. 

 

II. Experimental Set-up 
The experimental heat exchanger set-up is shown in Fig.1. The heat exchanger was constructed using 

316 stainless steel plates. The spiral plate heat exchanger had a width of 304 mm and a plate thickness of 1 mm. 

The total heat transfer area is 2.24 m
2
. The end connections are shown in Fig.1. The radius of curvature 

(measured from the centre) of the plate is 177.4 mm and the gap between the plates is 5 mm. The dimensions of 

the spiral plate heat exchanger are tabulated in TABLE I.  

The heat transfer and flow characteristics of water- methanol system were tested in a spiral plate heat 

exchanger as shown in Fig.1. Water was used as the hot fluid. The hot fluid inlet pipe was connected to the 

central core of the spiral heat exchanger and the outlet pipe was taken from the periphery of the heat exchanger. 

Hot fluid was heated by pumping steam from the boiler to a temperature of about 60°C to 80°C. The hot fluid 

was pumped to the heat exchanger by using a fractional horse power (0.367 kW) pump.  Methanol was used as 

the cold fluid. The cold fluid inlet pipe was connected to the periphery of the exchanger and the outlet was taken 

from the centre of the heat exchanger. The cold fluid was supplied at room temperature from a tank and was 

pumped to the heat exchanger using a fractional horse power (0.367 kW) pump. The inlet cold fluid flow rate 

and the inlet hot fluid flow rate were varied using the control valves V1 and V2, respectively. Hot and cold fluid 

flow paths of  the heat exchanger are as shown in Fig.1. Thermocouples T4 and T2 were used to measure the 

outlet temperature of hot and cold fluids, respectively and T3 and T1 were used to measure the inlet temperature 

of hot and cold fluids, respectively. The inlet temperature of the cold fluid is kept constant. For different process 

conditions viz. hot fluid flow rate, cold fluid flow rate and the inlet temperature of hot fluid, the corresponding 

outlet temperature of hot and cold fluids were recorded. Temperature data was recorded in the span of ten 

seconds. The data used in the calculations were obtained after the system attained steady state. Temperature 

reading fluctuations were within  +/-0.15°C. Though the type-K thermocouples had limits of error of 2.2°C or 

0.75% when placed in a common water solution the readings at steady state were all within +/- 0.1°C.All the 

thermocouples were constructed from the same roll of thermocouple wire and hence the repeatability of the 

temperature readings was high. 

The operating ranges of different variables are given in TABLE II.The experiments were conducted by 

keeping the cold fluid inlet temperature at 26°C.The experimental data were obtained by varying hot and cold 

fluid flow rate from 0.1 to 0.9 kg/s for different hot fluid inlet temperatures 60°C, 70°C and 80°C based on the 

experimental design formulated by Response Surface Methodology (RSM) using Design Expert software [10] 

and [11]. The experimental results and the corresponding Overall heat transfer coefficient (U) and Pumping 

Power (Wp) are tabulated in TABLE III. 

 

2.1. Variables to be considered for investigation 

2.1.1 Overall heat transfer coefficient (U) 

In the case of heat exchangers, various thermal resistances in the path of heat flow from the hot fluid to 

the cold fluid are combined and represented as the overall heat transfer coefficient (U).The overall heat transfer 

coefficient is obtained from the relation:    

     

                                                            
lm

Q/(AΔU )T                                                                               (1)                                                                                                                                                  

where U is the  overall heat transfer coefficient (W/m
2
 K), A is the heat transfer area (m

2
)  and Q is the log 

mean temperature difference  ( K). 

 

2.1.2 Pumping power (Wp) 

 It is the power required to pump the fluid through the flow channel against the pressure drop. WPOWER 

is measured in Watt (W): 
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TABLE I. Dimensions of the Spiral Plate Heat Exchanger 

Sl.No. Parameter Dimensions 

1 Total heat transfer area (m2) 2.24 

2 Plate width (mm) 304 

3 Plate thickness (mm) 1 

4 Plate material     316 Stainless steel 

5 Plate conductivity (W/m oC) 15.364 

6 Core diameter  (mm) 273 

7 Outer diameter  (mm) 350 

8 Channel spacing (mm) 5 

 

TABLE II.  Experimental conditions 

 

 

 

 

 

 

 
  Figure 1. Schematic diagram of the SHE experimental set-up 

 

                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE III. Experimental  Readings for water-methanol system 

Sl.No. Variables Range 

1 Hot fluid inlet temperature 60-80 oC 

2 Cold fluid inlet temperature 26  oC 

3 Mass flow rate of hot fluid 0.1- 0.9  kg/s 

4 Mass flow rate of cold fluid 0.1- 0.9  kg/s 

Sl.No 

Cold fluid 

flow rate 

c
m (kg/s) 

Hot fluid 

flow rate 

h
m  (kg/s) 

  Hot fluid 

     inlet 

temperature  

inh,
T (oC) 

Overall Heat 

Transfer 

Coeff. 

        U 

(W/m2K) 

Pumping power 

Wp 

(W) 

1 0.5 0.5 70 719 1.13 

2 0.5 0.5 70 719 1.13 

3 0.5 0.1 80 316 0.01 

4 0.5 0.1 60 292 0.02 

5 0.9 0.9 70 1050 6.01 

6 0.9 0.5 80 819 1.13 

7 0.1 0.5 60 397 1.10 

8 0.5 0.9 80 933 6.02 

9 0.1 0.1 70 229 0.02 

10 0.9 0.5 60 781 1.13 

11 0.1 0.5 80 411 1.11 

12 0.5 0.9 60 880 6.10 

13 0.9 0.1 70 318 0.01 

14 0.1 0.9 70 451 6.20 

15 0.5 0.5 70 719 1.13 
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III. Modeling of Spiral Heat Exchanger 
In this paper, an attempt is made to develop ANFIS and ANN models for U and Wp of SHE. The data 

required to train the models were obtained from the experimental data as given in TABLE III, based on RSM for 

fifteen trials [10 and 11]. 

 

3.1. ANN Models 

    In order to find the relationship between the input and output data derived from experimental work, a 

more powerful method than the traditional ones are necessary. ANN is an especially efficient algorithm to 

approximate any function with finite number of discontinuities by learning the relationships between input and 

output vectors. These algorithms can learn from the experiments and also are fault tolerant in the sense that they 

are able to handle noisy and incomplete data. The ANNs are able to deal with non-linear problems and once 

trained can perform estimation and generalization rapidly. They have been used to solve complex problems that 

are difficult to be solved, if not impossible, by the conventional approaches, such as control, optimization, 

classification and so on. Specially it is desired to have the minimum difference between the predicted and 

observed outputs. ANNs are biological inspirations based on the various brain functionality characteristics. They 

are composed of many simple elements called neurons that are interconnected by links and act like axons to 

determine an empirical relationship between the inputs and outputs of a given system [6]. General multiple layer 

arrangement of a typical interconnected neural network is shown in Figure2.  

 

 
Figure 2. General neural network architecture of a neural model. 

 

It consists of an input layer, an output layer and one hidden layer with different roles. Each connecting 

line has an associated weight. ANNs are trained by adjusting these input weights (connection weights), so that 

the calculated outputs may be approximated by the desired values. 

The output from a given neuron is calculated by applying a transfer function to a weighted summation 

of its input to give an output, which can serve as input to other neurons as follows: 

                                                   




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
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 The model fitting parameters 
ijm

w  are the connection weights and jmα is the predicted output. The 

nonlinear activation transfer functions Fm may have many different forms. The classical ones are threshold, 

sigmoid, Gaussian and linear function etc. The training process requires a proper set of data i.e., input (Ini) and 

target output (ti). During training, the weights and biases of the network are iteratively adjusted to minimize the 

network performance function. The typical performance function that is used for training feed forward neural 

networks is the network Mean Squared Errors (MSE):  

                                                                  




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1i N

12
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(e

N

1
MSE                                          (4)              

In this paper, the back propagation learning algorithm, which is one of the most commonly used 

algorithms, is designed to predict the performances of SHE. The back propagation learning network is the 

simplest in implementation, in which, the weights and biases are updated in the direction of the negative 

gradient so that the performance function decreases most rapidly. There are various back propagation algorithms 

such as Scaled Conjugate Gradient (SCG), Levenberg-Marquardt (LM) and Resilient back Propagation (RP). 

LM is the fastest training algorithm for networks of moderate size and it has the memory reduction feature to be 

used when the training set is large. 
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The neural networks learn to recognize the patterns of the data sets during the training process. Neural 

networks teach themselves, the patterns of data set letting the analyst to perform more interesting flexible work 

in a changing environment. Neural networks build informative models whereas the more conventional models 

fail to do so. Because of handling very complex interactions, the neural network can easily model data, which is 

too difficult to model traditionally (statistics or programming logic). Performance of neural networks is at least 

as good as classical statistical modeling and even better in most cases. The neural network built models are more 

reflective of the data structure and are significantly faster.  

 

3.1.1. Implementation of Neural Model for SHE 

    The two neuro models for overall heat transfer coefficient (U) and pumping power (Wp) are 

developed based on 
c

m , 
h

m  and 
inh,

T .The neural network is built with three inputs, one output with one 

hidden layer that contains ten neurons, so the design is 3-10-1.The activation function for the hidden layer is 

Tansigmoidal, while for the output layer linear function is selected and they are bipolar in nature. The 

Levenberg Marquardt (LM) learning algorithm available in MATLAB software does the correct choice of the 

weight. The parameters used for training the neural model for U and Wp are given below: 

                                            Input vectors                      : [ (k)
c

m , k)
h 

m ( and (k)
inh,

T ] 

                                            Output vector                          :   [ (k)Û ] or [ (k)
p

Ŵ ] 

                                            Momentum factor           :   0.05 

                                            Learning rate              :   0.0001 

           Training parameter goal         :   1e-4 

 

The data set used for training is sufficiently rich to ensure the stable operation, since no additional learning takes 

place after training. During training the NN learns by fitting the input-output data pairs for (k)
c

m , k)
h 

m ( and 

(k)
inh,

T Vs overall heat transfer coefficient (U), (k)
c

m , k)
h 

m ( and (k)
inh,

T Vs pumping power (Wp). This 

is achieved by using the LM algorithm. The training is taking place until the error goal is achieved. Figures 12 

to 17 demonstrate the relationship between the training data and the predicted network output after training for 

U and Wp with respect to the inputs (k)
c

m , k)
h 

m ( and (k)
inh,

T . As can be seen from Figs., the error 

between the training data (target) and the ANN model output is small and the points almost fit except for a few 

points. This may be improved by several factors such as increasing the number of epochs, increasing learning 

rate, decreasing goal, etc. The error goal at 1e-4 is attained within 119 and 25 epochs for U and Wp, 

respectively. TABLE IV and V show the comparison of experimental data, ANN model output and the relative 

error (% error) between the actual values and NN model output for U and Wp, respectively. Hence, it is proved 

that the Neural Network has the ability to predict U and Wp as a function of (k)
c

m , k)
h 

m ( and (k)
inh,

T . 

However, the % error, APE and RMSE are found to be more and % R
2
 is found to be less (Referring TABLE IV 

to VI).To improve the above drawbacks, an ANFIS model is proposed in this work. 

 

3.2. ANFIS Model 

    The integration of fuzzy systems and NNs can combine the merits of both systems and offer a more 

powerful tool for modeling. A neural-fuzzy system is such an integrated system. It uses NNs as tools in fuzzy 

systems. A neural-fuzzy system, i.e., adaptive network-based fuzzy inference system (ANFIS), is employed in 

this work as an attempt to develop an adaptive and robust generic model for complex SHE system. In this work, 

an ANFIS model, proposed by Jang (1993), based on the first order Sugeno fuzzy model  has been developed 

for U and Wp in SHE .The NN paradigm is a multilayer feed forward back propagation network. For simplicity, 

if a fuzzy inference system has two inputs x1 and x2 and one output, y then a first-order Sugeno fuzzy model, a 

typical rule set with fuzzy IF-THEN rules can be expressed as  

 

                          Rule 1: IF 
1

x is 
1

A , and 
2

x is 
1

A THEN  rxqxpy
1

21111

+ +=  
                                          (5)                 

 

           Rule 2: IF 
1

x  is 
2

A  and  x2 is 
2

B THEN  rxqxpy
2

22122

+ += 
        

                              
(6) 
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The output (y) of the TS fuzzy model is obtained by firing the above rules and applying weighted 

average defuzzification. The detailed algorithm for ANFIS can be found in the literature (Jang 1993). For 

practical applications, Jang [7] suggested that the ANFIS algorithm is subjected to some constraints, such as 

first order Sugeno type system, single output derived by weighted average defuzzification and unity weight of 

rules. As for a system with multiple outputs, models for each output can be built separately and then combined 

together to form an overall model [9].The membership functions of the antecedents of the rules as given in 

equations 5  and 6, the corresponding equivalent ANFIS architecture are shown in Figs. 3 and 4, respectively. 

The computing flow chart of ANFIS model is shown in Fig.5.The model consists of key components such as 

inputs and outputs, database and a preprocessor, a fuzzy system generator, a fuzzy inference system and an 

adaptive NN representing the fuzzy system. The fuzzy inference system generated based on the above procedure 

for SHE based on the three inputs (k)
c

m , k)
h 

m ( and (k)
inh,

T is shown in Fig.6.The adaptive network can 

tune the fuzzy system with a backpropagation algorithm based on the collection of input-output data. 

This provides the fuzzy system with the ability to learn. It is clear that the network just described can 

easily be extended to a Sugeno-fuzzy model with multiple inputs and rules. A data base that contains system 

performance data is a prerequisite for model development. Generally, it is developed by collecting regularly 

monitored parameters. The quality of the training data base is critical for the model to produce correct 

information about the system. For the model to describe the system accurately, the data base should contain 

adequate and correct information on the system. On the other hand, it is common for a raw database to contain 

some redundant and conflicting data. Thus it is sometimes necessary for the raw training data base to be 

pretreated to remove redundancies and resolve conflicts in the data. In addition, a more concise training data 

base will sufficiently reduce the ANFIS training time. 

A1

A2

B1

B2

X1

X2

W1

W2

 
2211

21

2211
ywyw

ww

ywyw
y =  
 






 

Figure 3. Takagi-Sugeno Fuzzy Model.  

 
Figure 4. Equivalent ANFIS Model. 
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3.2.1. Implementation of ANFIS Model 

The raw data collected as given in Table III are first transformed into  a data file with a specified 

structure and format using MATLAB software. The quality of the training database (input and output 

parameters as mentioned in neural model) is important for the model to produce correct information about the 

system. It is not so easy to manually pretreat the data. A fuzzy clustering method is utilized to automatically 

carry out this task. As the ANFIS usually starts with a prototype fuzzy system, a fuzzy system generator is 

needed as given in Figure 5. The fuzzy system generator helps in designing a Sugeno fuzzy system prototype for 

each output (U) and (Wp) from training data. To speed up the process, the automatic generator ‘genfis2’ is 

implemented. Once a fuzzy system prototype is available, the ANFIS algorithm will tune and optimize the fuzzy 

system by learning the training data and finally produce a Sugeno fuzzy system with the same structure as the 

prototype. 

 For spiral plate heat exchanger (SHE) two separate fuzzy system have been generated for U and Wp as 

‘FIS U’ and       ‘FIS Wp’ with same three inputs 
c

m , 
h

m  and 
inh,

T as shown in Fig.6.Thus, the overall 

computing results is a group of Sugeno fuzzy systems and it is referred to as a resulting ANFIS model. 

 

 
Figure 5. Computing flowchart of ANFIS model. 

 

The input membership functions (MFs) of the inputs were as Gaussian MF.It is defined by:  

                                                             Gaussian(x;σ,c) = 
}2]c)/-{-[(x

e


                               (7) 

where c and σ represents the center and width of the MFs and they are usually called as premise parameters. The 

variable x is [x1,x2,x3] input and they are 
c

m , 
h

m  and 
inh,

T . The MFs of inputs are shown in                             

Figs.7, 8 and 9.Each has three labels Low, Medium and High. 
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Figure 6. Structure of resulting Fuzzy model of SHE. 

 

 
Figure 7.Membership functions of cold fluid flow rate. 

 

 
Figure 8.Membership functions of hot fluid flow rate. 

 
Figure 9.Membership functions of hot fluid inlet  temperature. 

 



ANFIS Modeling For A Water-Methanol System In A Spiral Plate Heat Exchanger 

www.iosrjournals.org                                                             9 | Page 

The output membership functions of outputs were specified by the following equation: 

                                                             f(x;a,r) = a.x + r                                                               (8) 

 

where a = [a1,a2 and a3] and r is constant. The variables {a,r} are called consequent parameters that are trained 

along with the premise parameters {σ,c} by the model building process as shown in Fig.5.The Root Mean 

Squared Error (RMSE) obtained by ANFIS model for U and Wp are shown in Figs.10 and 11,respectively. 
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Figure 10.Root mean squared error (RMSE) for heat transfer coefficient (U). 
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Figure 11.Root mean squared error (RMSE) for pumping power (Wp). 

 

IV. Results and Discussion 
The performances of spiral plate heat exchanger were assessed for U and Wp by evaluating  the scatter 

between the experimental readings and the predicted outputs obtained by ANN and ANFIS models via root 

mean square error (RMSE), average percentage error (APE) and correlation coefficients (R
2
) [7].They are 

calculated as follows: 

                           

2
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j
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1
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)
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APE 








N

i

norm

                                        (11)
 

where 
j

t and 
j

O are j
th 

 target and output value. The ANN and ANFIS model output for U are compared with 

the experimental values for various inputs like 
c

m , 
h

m  and 
inh,

T and are shown in Figures 12, 13 and 14, 

respectively. From all these results, it is observed that ANFIS model output almost fit with the experimental 

results. But ANN model output does not match with all points. The corresponding % error calculated for ANN 
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and ANFIS models are tabulated in Table IV. Similarly the ANN and ANFIS model output for Wp are compared 

with the experimental values for various inputs like 
c

m , 
h

m  and 
inh,

T and are shown in Figures 15, 16 and 

17, respectively. From all these results, it observed once again that ANFIS model output almost fit with the 

experimental results. But ANN model output does not match with all  the points.  

 

 

Figure 12.Experimental and predicted values of U Vs 
c

m . 

 
Figure 13.Experimental and predicted values of U Vs 

h
m . 

 
Figure 14.Experimental and predicted values of U Vs 

inh,
T . 
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TABLE V. Experimental  readings and models output of U for water-methanol system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.Experimental and predicted values of Wp Vs 
c

m . 

 
Figure 16.Experimental and predicted values of Wp Vs 

h
m . 

 
Figure 17.Experimental and predicted values of Wp Vs 

inh,
T . 

Overall heat transfer coefficient (U) %Error 

Experimental NN model output ANFIS model output NN model ANFIS model 

719 735 719 -2.2253 0 

719 735 719 -2.2253 0 

316 316 316 0 0 

292 265 292 9.2 0 

1050 1000 1050 4.7619 0 

819 819 818 0 0.1221 

397 396 396 0.2519 0.2519 

933 907 933 2.7867 0 

229 235 228 -2.6201 0.4367 

781 780 781 0.1280 0 

411 411 410 0 0.2433 

880 905 880 -2.8409 0 

318 318 317 0 0.3145 

451 501 451 -11.0865 0 

719 735 719 -2.2253 0 
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V. Conclusion 
In this paper, ANN and ANFIS models have been developed for the prediction of heat transfer 

coefficient (U) and pumping power (Wp) as a function of 
c

m , 
h

m  and 
inh,

T with good degree of accuracy. 

The experimental data obtained based on RSM were used to develop the models. However from the simulation 

results and the performance Tables IV to VI, it is observed that the ANFIS models have high prediction 

performance with less relative error, RMSE, APE and large % R
2
 when compared to ANN models. The ANN 

model produces maximum % error of -11.0865 and -12 for U and Wp when compared to ANFIS model 

(Referring to Table IV and V), which produces 0.3145 and 1.0 only for U and Wp. Also, the ANN model 

produces more RMSE (26.2755) value and less % R
2
 (85.84) value for U and also the ANN model produces 

more APE value (-11.0381) and less % R
2
 (82.3876) for Wp, when compared to ANFIS model (Referring to 

Table VI). Therefore, ANFIS model can be used as a modeling tool for the performance analysis of SHE. 

 

TABLE VI. Experimental  readings and model outputs of Wp for water-methanol system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                           

TABLE VI. Performance Measures of ANN and ANFIS models. 
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Pumping power(Wp) %Error 

Experimental NN model output ANFIS model output NN model ANFIS model 

1.13 1.1059 1.13 2.1327 0 

1.13 1.1186 1.129 1.0088 0.0885 

0.01 0.011 0.0099 -10.0000 1.0000 

0.02 0.0187 0.02 6.5000 0 

6.01 6.0795 6.01 -1.1564 0 

1.13 1.0975 1.129 2.8761 0.0885 

1.10 1.1970 1.09 -8.8182 0.9091 

6.02 6.0784 6.02 -0.9701 0 

0.02 0.0187 0.02 6.5000 0 

1.13 1.1619 1.129 -2.8230 0.0885 

1.11 1.0645 1.11 4.0991 0 

6.10 6.0815 6.09 0.3033 0.1639 

0.01 0.012 0.0099 -12.0000 1.0000 

6.20 6.0800 6.19 1.9355 0.1613 

1.13 1.1770 1.13 -4.1593 0 

 

Model 

Performance Measures 

RMSE APE %R2 

ANN 

 

U 26.2755 0.2817 85.8464 

Wp 0.0514 -11.0381 82.3876 

 

ANFIS 

U 0.5774 0.0912 99.68 

Wp 0.0045 0.2333 98.4595 


