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Abstract : In this work, a system consisting of a main structure with a nonlinear tuned vibration absorber 

having a hardening spring attached to it is considered. The nonlinearity in the absorber's spring is a cubic 

nonlinearity and is obtained by attaching two additional, relatively soft, similar linear springs to the absorber's 

mass. These added springs are attached to the absorber's mass in such a way that they are initially normal to 

the absorber's displacement axis. The dynamics of main structure and that of the nonlinear absorber are 

analyzed using the first order harmonic balancing method (HB1) and the results are compared against those of 

a system composing of a linear vibration absorber attached to a similar main structure. A numerical example is 

considered. The results obtained are in agreement with the known features of nonlinear absorbers. They showed 

that the absorber's effective frequency band width is increased when a nonlinear absorber is employed instead 

of a linear one. The results also showed that the displacement amplitude of the absorber during operation is 

decreased when using a nonlinear absorber. It is also found that the absorber's effective band width depends on 

the original length of the added linear springs, that are used to obtain the nonlinearity in the absorber, in such a 

manner that it increases as the original length of the two springs is decreased. 
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I. Introduction 
Hermann Frahm[1] invented Dynamic Vibration Absorber (DVA) in 1909 and its characteristics were 

studied in depth by Den Hartog [2] in 1959. Since then, DVA became of interest to many researchers and has 

been extensively used in eliminating or reducing unwanted vibrations in many engineering applications. It is 

practically the most popular passive device for vibration mitigation. Although there are other ways to reduce 

unwanted vibrations, the DVA has certain advantages over other methods. In its simplest form, DVA consists of 

a mass attached by an elastic element to the primary structure whose vibration is to be suppressed. Being 

external to the primary structure, so no re-installation of equipment is necessary, is one of the big advantages of 

DVA. Another big advantage is that it can be designed and tested before being installed. It can be adjusted in the 

laboratory environment with predictable field results.  

The DVA mass and spring are chosen such that they will resonate at a particular frequency called the 

tuned frequency. Ideally, with the addition of the tuned DVA, the main mass will not vibrate at that frequency 

regardless of the excitation amplitude applied. However, the perfectly tuned DVA has very little effect on all but 

the closest frequencies to the tuned frequency. Thus, tuned DVAs are generally only effective if the principle 

frequency of excitation is well known and constant. As the excitation frequency drifts from the tuned frequency, 

tuned DVA becomes less effective. In other words, the principle drawback of tuned DVA is its small effective 

frequency band width.  

The tuned DVA's important limiting feature of having small effective band width directed researches 

toward searching for modifications and improvements to overcome this drawback. Some researchers considered 

multiple absorbers to overcome this disadvantage, see for example [3,4,5,6] and the references therein. Although 

linear vibration absorbers were and still are of interest to many researchers, many other researchers considered 

implementing nonlinear absorbers to overcome the above mentioned drawback of tuned DVA. One of the 

earliest studies on nonlinear vibration absorbers was the work by Roberson [7]. He investigated the performance 

of an undamped nonlinear vibration absorber and concluded that the absorbers' effective band width improves 

significantly when a nonlinear absorber is used instead of a linear one. Many other researchers then became 

interested in nonlinear absorbers. For example, a nonlinear absorber with a softening spring consisting of a stack 

of Belleville washers was considered by Hunt and Nissen [8] to overcome the previously mentioned drawback 

of linear absorbers. Nissen et al. [9] studied the optimal parameters of a nonlinear absorber and considered the 

technical aspects for realization. Optimal parameter design of linear and nonlinear dynamic vibration absorbers 

for damped primary systems were investigated by Soom [10] and Jordanov [11]. They investigated optimization 

criteria other than traditional measures and obtained a small improvement in the steady state response by using 

nonlinear springs.  

Other researchers, however, pointed out that there are some unpleasant features of the nonlinear 

absorbers. For example, Rice [12] and Shaw et al. [13] studied the response of the nonlinear vibration absorber 

and pointed out that nonlinearities introduce dangerous instabilities that may increase unwanted vibration in the 

system instead of suppressing it.  
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Studies on linear and nonlinear absorbers are still going on. This work is aimed to be a contribution in 

this direction. Here, a simple spring configuration that gives a spring element with a cubic nonlinear stiffness is 

considered. It is installed in a vibration absorber attached to a primary mass under single harmonic excitation. 

The system is then analyzed analytically using the harmonic balancing method and is compared with the tuned 

linear DVA. 

 

II. Mathematical Background 
A primary structure attached to ground by a linear spring and a viscous damper and subjected to a 

single harmonic excitation force with a vibration absorber attached to it as shown schematically in Fig. 1 is 

considered. The equations of motion that describe the dynamics of this system are: 

𝑚 �̈� + 𝑐 �̇� + 𝑘 𝑥 − 𝑐𝑎  (�̇�𝑎 − �̇�) − 𝑘𝑎(𝑥𝑎 − 𝑥) − 𝛼𝑎(𝑥𝑎 − 𝑥)3 = 𝐹𝑜 sin𝜔 𝑡  (1) 

𝑚𝑎  �̈�𝑎 + 𝑐𝑎(�̇�𝑎 − �̇�) + 𝑘𝑎(𝑥𝑎 − 𝑥) +  𝛼𝑎(𝑥𝑎 − 𝑥)3 = 0  (2) 

where, ( ̇ ) =
 

 𝑡
( )    ( ̈ ) =

  

 𝑡 
( ), m, c, k are the main structure mass, its damping coefficient and its 

spring stiffness respectively and  ma , ca , ka  are those for the absorber. The coordinates x and xa are the 

displacement coordinates of the main mass and the absorber mass respectively. Lastly, αa is the coefficient of 

the cubic nonlinearity in the absorber spring. 

 

 
      The steady state amplitudes of vibration of the main structure and the absorber can be found by solving 

these equations. To do so, we will consider two cases, namely linear vibration absorber case and nonlinear 

vibration absorber case. 

 

LINEAR VIBRATION ABSORBER 

For the case of a linear absorber, i.e., αa = 0, equations (1) and (2) can be written in the following 

matrix form: 

𝑴 �̈� +  𝑪 �̇� + 𝑲 𝒙 = 𝑭 sin(𝜔 𝑡)  (3) 

where, the vectors x and F are: 

𝒙 = (
𝑥
𝑥𝑎
)     𝑭 = (

𝐹𝑜
0
) 

and  the matrices M, C, and K are: 

𝑴 = (
𝑚 0
0 𝑚𝑎

)     𝑪 = (
𝑐 + 𝑐𝑎 −𝑐𝑎
−𝑐𝑎 𝑐𝑎

)     𝑲 = (
𝑘 + 𝑘𝑎 −𝑘𝑎
−𝑘𝑎 𝑘𝑎

) 

 

The steady state response of the main mass and the absorber mass will be of the form: 

 

𝒙 = [
𝑋 sin(𝜔𝑡 + 𝜙1)
𝑋𝑎 sin(𝜔 𝑡 + 𝜙2)

] = 𝑨 sin(𝜔 𝑡) + 𝑩 cos(𝜔 𝑡)  (4) 

where,  𝑨 = (
 1
 2
)  𝑩 = (

 1
 2
)  

The main mass and the absorber mass vibration amplitudes from equation (4) are: 

𝑋1 = √ 1
2 +  1

2  𝑋𝑎 = √ 2
2 +  2

2 (5) 
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Appling simple linear algebra, one can reach to the following expressions for the vectors A and B: 

 

(
𝑨
𝑩
)
4𝑋2

= [𝑲 − 𝜔2𝑴 −𝜔 𝑪
𝜔 𝑪 𝑲 − 𝜔2𝑴

]
4𝑋4

−1

(
𝑭
𝟎
)
4𝑋2

  (6) 

 

NONLINEAR VIBRATION ABSORBER 

Here a cubic nonlinearity in the absorber spring is allowed, i.e.  αa ≠ 0. A simple way to obtain such a 

spring is by employing the spring configuring shown in Fig. 2. To show that this simple configuration gives the 

desired stiffness, suppose the point that joins the two springs is displaced downward by a displacement y, the 

restoring force in the y direction, Fsv, coming from the two springs will then be: 

𝐹𝑠𝑣 = 2
𝑦

√𝐿 +𝑦 
[𝑘ℎ(√𝐿

2 + 𝑦2 − 𝐿) + 𝐹𝑠𝑜]  (7) 

where, Fso is the initial force in each spring. Expanding this in power series about y =0, yields: 

 

𝐹𝑠𝑣 =
2 𝐹𝑠𝑜

𝐿
 𝑦 + (

𝑘ℎ 𝐿−𝐹𝑠𝑜

𝐿3
) 𝑦3 +  𝑂(𝑦5)  (8) 

 

 
It is clear from equation (8) that one can obtain the desired spring effect just by choosing the 

parameters Fso  k  and L. Fig. 3 schematically shows this spring configuration employed in the dynamic 

vibration absorber. 

 

 
To find the system response, equations (1) and (2) need to be solved. To do so, first order harmonic 

balancing method, HB1, is employed but first it is more convenient to rewrite equations (1) and (2) in non-

dimensional forms as follows: 

𝑥𝑛
′′ +

2

(1 + 𝜇)
𝜉 𝑥𝑛

′ + 𝑥 −
𝜇

(1 + 𝜇)
=

1

(1 + 𝜇)
sin(𝑟 𝜏) 

 

(9) 

 

𝑧𝑛
′′ +  2𝜉𝑎𝑟𝑜  𝑧𝑛

′ + 𝑟𝑜
2𝑧 + 𝛾 𝑧3 = 𝑥𝑛

′′  (10) 

where, 
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𝜏 = 𝜔1𝑡 ( )′ =
 

 𝜏
 ( ) ( )′′ =

  

 𝜏 
( ) 𝑥𝑛 = 𝑥

𝑘

𝐹𝑜
 𝑧𝑛 =

(𝑥−𝑥𝑎)𝑘

𝐹𝑜
 𝜇 =

𝑚𝑎

𝑚
    

𝜉 =
𝑐

2√𝑘 𝑚
 𝜉𝑎 =

𝑐𝑎

2√𝑘𝑎𝑚𝑎
  𝑟𝑜 =

𝜔𝑎

𝜔1
 𝑟 =

𝜔

𝜔1
 𝜔𝑎 = √

𝑘𝑎

𝑚𝑎
 𝜔1 = √

𝑘

𝑚
 𝛾 =

𝛼 𝐹𝑜
 

𝜇 𝑘3
    

 

Many researchers implemented harmonic balancing method in studying nonlinear dynamics 

applications, see for example [14-15] and the references therein. In implementing the first order harmonic 

balance method, it is assumed that the displacement of the main mass and that of the absorber will be harmonic 

with both having a frequency equal to the applied force frequency, or in equation form: 

𝑥𝑛 = 𝑋𝑛 sin(𝑟 𝜏 + 𝜙)  𝑧𝑛 = 𝑍𝑛 sin(𝑟 𝜏 + 𝜃)  (11) 

To find the amplitudes of vibration, Xn and Zn, equations (11) need to be substituted in equations (9) and 

(10), then collect the coefficients of similar trigonometric functions to form a set of nonlinear algebraic 

equations. The solutions of the resulting algebraic equations give the desired amplitudes of vibration. Doing 

that, the following expressions for the amplitudes of vibrations can be reached [16]: 

𝑋𝑛 =
1

𝑟 
√  𝑍𝑛

6 +  𝑍𝑛
4 + 𝑑 𝑍𝑛

2  (12) 

  𝑍𝑛
6 + 𝑒𝑍𝑛

4 + 𝑓 𝑍𝑛
2 + 𝑔 = 0  (13) 

where, 

 =
9

16
 𝛾2     =

3

2
𝛾 (𝑟𝑜

2 − 𝑟2)    𝑑 = 𝑟4 + 4𝜉𝑎
2 𝑟2 𝑟𝑜

2 + 𝑟𝑜
4 − 2 𝑟2 𝑟𝑜

2    𝑒 =  + 𝑟4


𝑝
    

𝑓 = (𝑟𝑜
2 − 𝑟2)2 + 4𝜉𝑎

2 𝑟2𝑟𝑜
2 + 𝑟4

𝑞

𝑝
    𝑔 = −

𝑟4

𝑝
     = −

3

2
𝛾𝜇(1 − 𝑟2(1 + 𝜇))    

𝑝 = (1 − 𝑟2(1 + 𝜇))
2
+ 4𝜉2𝑟2    𝑞 = 𝑟4𝜇2 − 2𝜇(1 − 𝑟2(1 + 𝜇))(𝑟𝑜

2 − 𝑟2) + 8𝜉𝜉𝑎𝜇 𝑟𝑜𝑟
2 

 

Equation (13) is solved for the relative vibration amplitude of the absorber. The solutions of (13) are: 

𝑍𝑛
1 = √𝑤 + 𝑛 −

𝑒

3 𝑎
  (14) 

𝑍𝑛
2 3 = √−

1

2
 (𝑤 + 𝑛) −

𝑒

3𝑎
± 𝑗

√3

2
(𝑤 − 𝑛)  (15) 

Where,  

𝑤 = (𝑣 + √−
𝜅

108  4
 )

1
3

    𝑛 = (𝑣 − √−
𝜅

108  4
 )

1
3

    𝑣 =
9 𝑒𝑓 − 27 2𝑔 − 2𝑒3

54  3
   

 

𝜅 = 18  𝑒𝑓𝑔 − 27  2𝑔2 − 4𝑒3𝑔 + 𝑒2𝑓 − 4𝑓3   

 

The absorber normalized relative amplitudes of vibration from equations (14) and (15) are then 

substituted in equation (12) to find the main mass normalized amplitudes of vibration. It should be noted here 

that only real roots are accepted since complex roots don't have physical meanings. 

 

III. Numerical Example and Discussion 
As an example, a vibration absorber for suppressing the excessive vibration of a machine over the 

widest possible frequency range of the single harmonic excitation force applied on the machine and causing it to 

vibrate is to be designed and analyzed. The magnitude of the excitation force, Fo, is taken to be 1 kN. The 

machine is modeled as a simple mass of 100 kg with light damping and has a natural frequency of 15 rad/s. The 

mass of the absorber, ma, and its linear spring stiffness, ka, are chosen so that the primary resonance of the main 

system and its damaging effects are avoided. The numerical values of the absorber mass and its linear stiffness 

are  10 kg and 2250 N/m.  

Fig. 4 shows the normalized amplitude of vibration of the machine with and without attaching the 

linear vibration absorber and for different frequency ratios. It is clear that the linear absorber is effectively doing 

its job in suppressing the main mass vibration at an excitation frequency equal to the natural frequency of the 

main mass and at the very close nearby frequencies. 
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Fig. 4. Normalized amplitude of vibration for the main mass for different frequency ratios 

 

Now, as pointed out earlier, a nonlinear absorber can be obtained by attaching two horizontal springs in 

the configuration shown in Fig. 3, but for the sake of having more freedom in choosing the linear spring 

coefficient (for tuning purpose), horizontal springs are assumed to be initially un-stretched, i. e., Fso=0. 

 

 
Fig. 5. Main mass normalized amplitude of vibration for different frequency ratios 

with linear and nonlinear absorbers 
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If the horizontal springs are chosen with kh=200 N/m and each with an un-stretched length of 25 cm, 

then the nonlinear spring coefficient will be 𝛼𝑎 = 𝑘ℎ 𝐿
2 = 3 2 𝑘  𝑚3. Fig. 5 shows the normalized amplitude 

of vibration of the main mass for different frequency ratios with linear and nonlinear absorbers. If the band 

width is defined as the frequency range at which the amplitude of vibration of the main mass is below its 

spring's static extension due to a static force of amplitude Fo, then it is clear that the band width is almost 

doubled when employing the nonlinear absorber (Fig. 5-b). The multivalued responses are also clear in Fig. 5-a, 

but one need not to worry about them since they are beyond the absorber's working range.  

Fig. 6 shows the normalized steady state relative amplitude of vibration for the linear and the nonlinear 

absorbers during operation at different frequency ratios. It is clear that the nonlinear absorber amplitude of 

vibration is less than that of the linear absorber for the whole working ranges of the absorbers. This gives 

nonlinear absorber another advantage regarding an important design factor which is the available space 

limitations. 

 
Fig. 6. Normalized relative amplitude of vibration for the linear and the nonlinear absorbers 

at different frequency ratios 

 
Fig. 7. Normalized relative amplitude of vibration for the linear and the nonlinear absorbers 

at different frequency ratios 

 

Fig. 7 shows the band widths for different nonlinear absorbers obtained by changing the value of length 

of the added horizontal springs. It is clear that as the length is decreased, the absorber's effective band width 

increases. This is due to the increase in the nonlinearity in the absorber spring stiffness as the added spring 

length is decreased, see equation (8). Caution should however be taken here in order not to bring the undesirable 

nonlinear effects close to the absorber's effective band width.   
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IV. Conclusions 
In this work, a system consisting of a main structure with a nonlinear tuned vibration absorber having a 

hardening spring attached to it is considered. The dynamics of a main structure, where the absorber is attached, 

and that of the absorber are analyzed using first order harmonic balancing method and the results are compared 

with that of a similar structure but with a linear tuned vibration absorber attached to it. The nonlinearity in the 

absorber spring is a cubic nonlinearity and is achieved by attaching two similar, relatively soft, linear springs to 

the absorber mass so that they are initially normal to the absorbers displacement axis. This simple configuration 

gave the required nonlinearity. The results of the analysis are in agreement with the known features of nonlinear 

absorbers. The absorber's effective frequency band width is increased by employing a nonlinear absorber instead 

of a linear one. The absorber's displacement amplitude during operation is decreased when using a nonlinear 

absorber. It is also found that the absorber's effective band width depends on the original length of the added 

springs in such a manner that it increases as the springs original length is decreased. 
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