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Abstract: Joint flexibility limits the performance of an industrial robot by introducing resonant frequencies in 

the same range of the control bandwidth. If joint flexibility is considered in the modelling, advanced control 

techniques can be designed to achieve a higher performance. This paper presents an adaptive control scheme 

for a two- degree of freedom flexible joint robot. The adaptive approach is applied to design a control signal for 

each joint (modeled by two- equations of second order), to withstand all uncertainties in parameters and load 

disturbances. Asymptotic stability is insured regardless of the joint flexibility value, by the use of Liapunov's 

direct method, i.e., the results are not restricted to weak joint elasticity. A simulation study was carried out to 

evaluate the performance of the proposed control law in case of flexible joint robot model. It was found that the 

adaptation technique is robust to parameters and load changes. 

Keywords: Joint flexibility, model reference adaptive control, Tracking error, Liapunov's direct method, 

Dynamic interaction, Chatter, Adaptation signal. 

 

I. Introduction 
Many control strategies have been proposed for the tracking control of robotic manipulators modelled 

by the rigid body dynamics of open kinematic chains [1,2]. This inherently nonlinear problem is further 

complicated by the changes in system parameters which occur when payloads are handled, leading to the 

development of controllers based on both model adaptation[3,4] and variable structure techniques[5-8]. 

However, the applicability of these controllers to practical robots is limited because the assumption of perfect 

rigidity is never satisfied exactly. 

Sweet and Good [9, 10] have investigated the problem of robotic manipulation experimentally and 

identified several problems that limit the performance of a typical robot manipulator. One of the main issues is 

the unmodeled dynamics, especially the flexibility of the mechanical arm. For the particular manipulator tested, 

a resonance frequency of approximately 9 HZ was observed due to joint torsional flexibility. Rivin [11] studied 

several robot manipulators and determined many sources of flexibility such as harmonic drives, the presence of 

elastic drive belts and the compressibility of hydraulic fluid in hydraulic manipulators. The presence of this 

flexibility in the drive system leads to lightly damped oscillations in the open –loop response and the use of 

"rigid" control laws in such systems has been shown to result in poor tracking performance with a low controller 

bandwidth and instability at higher bandwidth [12]. 

Several control strategies [13-15] have been proposed for the control of manipulators with joint 

flexibility based on reduced-order system models derived in separate time-scales using singular perturbation 

techniques. However, the problems associated with parameter variations have not been addressed in these 

works. Therefore, consideration of the joint flexibility in the course of modelling and control can contribute 

significantly to a better performance for most industrial robots. 

Robust tracking controller for (FJR) is developed using voltage control strategy [16], achieving pre-set 

performance on link position error [17] both are free of manipulator dynamics and nonlinearities. Adaptive 

trajectory control scheme consists of a direct (MRAS) is presented [18] to improve damping of vibration at the 

joints. An adaptive fussy output feedback approach is proposed [19] to compensate for nonlinear dynamics 

while only requiring the measurement of link position.  

This paper investigates the position control of a two-degree of freedom flexible joint robot (FJR) 

manipulator. A model reference adaptive control (MRAC) algorithm is introduced. An adaptive signal is applied 

to the robot model additionally to conventional control signal. The proof of the stability of the proposed control 

is carried out by the use ofLiapunov's direct method. The adaptation criterion is the asymptotic stability of the 

generalized error vector. Finally comparativesimulation is presented to evaluate the performance of the (MRAC) 

algorithm for position control of (FJR) under parameter uncertainty and payload variations. 

 

Dynamic Model for (Fjr) 
This section describes the dynamic model of the robot. This model is used for the design and control 

development. The dynamic model for flexible joint robot developed by Spong [20] is adopted. It is derived for 

the experimental robot using Euler-Lagrange equation [21], and it is given by the following equations: 
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D(q)  ̈   +  C ( q ,  ̇ )  +  B   ̇  -  K  (qm  -  q )  =  -J
T
 F                                                                                       (1) 

Im ̈m     +  Bm ̇m    +  K  (  qm  -  q )  =  U                                                                                                               (2) 

 Where q is the  2 x 1 link angular position vector, qm is the  2 x 1 motor angular position vector,  D (q) 

is the 2x2 manipulator inertia matrix, C (q, ̇)is the 2x1 coriolos and centrifugal forces vector, K is 2x2 diagonal 

matrix with entries equal to the joint stiffness, J
T
 is the 2x2 transpose of the manipulator Jacobian, F is 2x1 

forces vector at the end effector expressed in the reference frame, Im is the 2x2 diagonal matrix with entries 

equal to the rotors inertia, Bm is the 2x2 diagonal matrix with entries equal to the coefficient of viscous damping 

at the motors, and U is 2x1 applied motor torque vector. The inertia matrix and the coriolos and centrifugal 

forces vector are given by: 

D(q)  =  [
                         
               

]  

   

C(q, ̇    =  [
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Where I1 , I2 , m1 , m2 , a1 , a2 , l1 , l2 , and mr2 are the moment of inertia about an axis parallel to the axis 

of rotation passing through the center of mass, the mass, the distance from the center of rotation to the center of 

mass, length of the first and second link, respectively, and the mass of the second rotor. The system undamped 

natural frequencies are given by the following characteristic equation: 

|*
   
   

+    [
     
   

]|                                                                                                                        (3) 

The system has four natural frequencies. The first two correspond to the rigid body modes which are 

the free rotation of the two rotors. The remaining two natural frequencies are due to joint flexibility and are used 

in the design of the flexible joints. 

 

II. Problem Formulation 
The process of controlling the dynamic model given by equations (1) and (2) is difficult because the 

system is multi-input multi-output (MIMO) nonlinear. However, considering each link and its driving motor 

only reduces the system to two single input multi-output linear subsystems, whichsimplifies the identification 

and control process.  [22] Has implemented this identification technique on a two-link flexible joint 

experimental robot Fig. 1.The first subsystem is the first joint (the first motor and the first link) and the second 

subsystem is the second joint (the second motor and the second link). The following procedures are performed 

to control these two subsystems. 

a)  First, constrain the first subsystem by clamping the first link to the fixed table, and thus the second 

subsystem characteristic can be isolated, identified, and control. 

b) To identify and control the first subsystem, the brake of the second motor is applied. Hence, the second 

subsystem is considered as extra mass add to the end of the first link. 

The following state space model represents any of the two subsystems discussed above. 
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Where qm, q are the motor and the link angular position respectively, k is the joint torsional stiffness, jm 

and jl are the effective inertias of the rotor and the link, respectively. U, is the applied motor torque which is 

proportional to the desired position at time equal zero. 

Equation (4) is used to represent the robot axis dynamics for each joint, taking into account the load 

variation disturbance F(t), and using conventional controller with tuning parameters kp and kt as shown in Fig. 2. 

From this diagram one can drive the following: 

 

( s
3
 + a s

2
 + b s + k )  ̇ (s)  =  k  (s)  + k ( g(s) – F(s) )                                                                                        (5) 

 
Where 
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a = 
         

    
 

b = 
             

    
                                                                                                                                                    (6) 

 k = 
               

    
 

 

For the system of equations (5, 6) one can increase the response time if higher gain ktis applied. Also, it 

is possible that by tuning the value of kt and kp a good transient response of the overall system can be achieve. 

All these can be done only on the base of the previous knowledge of all parameters in Eqn. (5,6). Due to 

existence of disturbance force F(t) there is a steady state error in position. To overcome this one can introduce a 

feed forward signal g(t), for computing g(t) it is need to know F(t) and its derivative which is difficult because 

its variation is not always known in advance. 

It is very reasonable to apply an adaptive control signal g(t) to withstand all uncertainties and 

disturbance effects. In robot control the position and velocity of each joint can usually be precisely measured. 

Thus all the state variable of the joint dynamics are reachable. Thus, Model Reference Adaptive Control 

(MRAC) approachis applied to position control of the flexible joint robot (FJR). 

 

Design Of Adaptation Signal For (Fjr) 
We introduce a stable reference model of the form 

( s
3
 + am s

2
 + bm s + km )  qm (s) =  km qd(s)                                                                                                            (7) 

Without the information about the parameters k, a, b and disturbance F we intend to find such an 

adaptation signal g(t) that the movement of the robot joint qs(t) follows qm(t) as closely as possible. 

By defining error in the following form: 

                                                                                                                                                          (8a) 

        ̇       ̇                                                                                                                                          (8b) 

        ̈       ̈                                                                                                                                           (8c) 

X =  [[        ]
                                                                                                                                                   (8d) 

                                                                                                                                                           (8e) 

The following equation can be obtained using Eqn.[ 5, 7, 8 ] 

(s
3
+ am s

2
 + bm s + km) x1(s) = (km – k) e(s) + ( a – am) ̈            ̇                                      (9) 

Eqn. (9) is named as the error dynamics and intend to find such adaptation signal g(t) which would 

make this error dynamics asymptotically stable. In this case, the model matching is achieved. The signal g(t) is 

to be found in the following form. 

                        ̇                 ̈                                                                                       (10) 

The state space equation of the error dynamics Eqn.(9) is : 

 ̇                         ̇           ̈                                                                                          (11) 
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If Eqn. (11) is asymptotically stable then our goal is attained. Thus we have to find an adaptation law 

for gi(t) i= 1 to 4 that the dynamic Eqn. (9) will be asymptotically stable. 

By choosing the Liapunov function as: 

         ∑     
   

 
                                                                                                                                      (13) 

Where  P = P
T
> 0 and αi> 0  ; for i = 1,2,3,4. 

Its derivation with respect to time is: 

 ̇        ∑   
 
     

                      ̇                   ̈                                     (14) 

If we choose  

 ̇ 
    

 

  
                                                                                                                                                   (15a) 

 ̇ 
    

 

  
    ̇                                                                                                                                              (15b) 

 ̇ 
    

 

  
                                                                                                                                                      (15c)  



Higher Performance Adaptive Control of a Flexible Joint Robot Manipulators 

www.iosrjournals.org                                                             134 | Page 

 ̇ 
     

 

  
    ̈                                                                                                                                          (15d)     

and 

        
                                                                                                                                    (16) 

 ̇                                                                                                                                                  (17) 

With the assumption that the joint's parameters and disturbance forces are slowly variable one can use the 

following algorithms: 

 ̇         
                                                                                                                                                 (18a) 

 ̇         
    ̇                                                                                                                                            (18b) 

 ̇         
                                                                                                                                                   (18c) 

 ̇         
    ̈                                                                                                                                            (18d)  

Where γi>  0  ( I = 1,2,3,4) ;  P3 denotes the third column of matrix P. 

One can deduce from Eqn. (13) to Eqn. (18) that the error dynamics of Eqn. (11) is globally stable. 

 

The steps of the proposed method 

1) Choose the reference model according to Eqn.(11). This means setting the value         . 

2) Choose    I = 1,2,3,4> 0. 

3) Choose the Q matrix to be positive definite symmetric and solve the Liapunov equation for Q if we choose 

       Q = diag {λi  I = 1,..,4}, the solution of Eqn. (16) is  

P3 =  

[
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                                                                                                      (19)

  

4)   Compute the error vector x as given in Eqn. (8) by using the measured values of        ̇     computing the 

derivation of  ̇            ̈        the precomputed values of        ̇    ,  ̈      Also compute e(t) 

according to Eqn. (8e). 

5)   Compute the adaptation signal g(t) according to Eqn. (18) and (10) by an appropriate choice of  γ ii = 1,..,4. 

      The block diagram of the overall adaptive control system is shown in Fig. 2. 

 

III. Simulation Study 
To evaluate the performance of the proposed model reference adaptive controller developed for 

position control of a two-degree of freedom flexible joint robot (FJR) manipulator, a series ofsimulation studies 

was carried out.Simulation program for each joint prepared using VisSim language. The obtained results were 

compared with those of conventional controller whose gain is constant. Eqn. (5) and (6) were used for the 

mathematical model of the robot joint systems. Ofcourse we do not need to know exactly the total robot joint 

dynamic model but the system parameters used in the simulation study are chosen as listed in table 1.[22]. 

 

Table 1.  Robot parameter from design and Sin Sweep Identification 
 Jl1 

(Kg.m2) 

Jl2 

(Kg.m2) 

d1 

(Kg.m2) 

d2 

(Kg.m2) 

b1 

(N.m.s/rad) 

b2 

(N.m.s/rad) 

Sin Sweep   2.087 0.216 2.041 0.242 

I - DEAS 0.2269 0.0429 2.110 0.223   

 
 bm1 

(N.m.s/rad) 

bm2 

(N.m.s/rad) 

k1 

(N.m/rad) 

k2 

(N.m/rad) 

Jm1 

(Kg.m2) 

Jm2 

(Kg.m2) 

Sin Sweep 1.254 0.119 125.56 31.27 0.1224 0.0168 

I - DEAS   198.49 51.11 0.1226 0.017 

 

Evaluation of the control methodology was carried out for: 

a) Different external load disturbance, as shown in Fig. 3a and Fig. 3b. 

b) Various controller parameters [ λi  ,γi ]. 

 

The reference model is selected to be: ( S
3  

+ 32 S
2 
+ 340 S + 1200 )  qm(t)  =  1200  qd(t)  

To study the effect of the controller parameters, different values of  γii = 1,..,4 were selected and they are listed 

in Table 2. Also, component of P matrix [ P31, P32, P33 ] were varied by varying the Q matrix. In this case P3 and 

Q matrix were selected so as to satisfy the inequality conditions Eqn. (13) to Eqn. (19). 
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Table  2. Controller parameter values for computer simulation ( λi , P3 ,and γi ) 
case γi λi P3 

1 [100,100,100,100]T [150,150,150,150]T [0.063,9.55,2.643]T 

2 [100,100,100,100]T [100,100,100,100]T [0.042,6.368,1.762]T 

3 [100,100,100,100]T [60,60,60,60]T [0.025,3.821,1.057]T 

4 [75,75,75,75]T [100,100,100,100]T [0.042,6.368,1.762]T 

5 [50,50,50,50]T [100,100,100,100]T [0.042,6.368,1.762]T 

 

The value of  Kp = 0.68,  Kt = 0.0101 for first joint, and Kt = 0.0015 for the second joint were chosen. 

 

IV. Results And Discussion 
A number of simulations have been carried out to evaluate the performance of the proposed control 

strategy. The obtained results of the simulation,(the robot position responses of the (MRAC) and also, those of 

the conventional constant feedback controller) are plotted for a comparison purpose. 

 

Effects of controller parameters [       ] 

Effects of (  ).To study the effect of  (  ) on the performance of the proposed control strategy, different values 

of the third column of the matrix P3 were determined and varied while keeping the other controller parameters 

(  ) at a constant value. Utilizing these values as given in Table 2; the robot position responses of the (MRAC) 

were obtained for the case of the load disturbance given in Fig. 3b. Fig. 4 and Fig. 5 show the position responses 

for controller parameters cases 1 and 3 respectively. One can see that increasing [(λi) or P3] to an optimum 

value, the robot position response is almost identical to the model reference. It can be concluded that the value 

of (λi) has a significance effect on the robot response. 

Effects of (γi). As shown in Eqn.'s (18a) & (18b) the (γi's) behave as a weighting factor of the position error, 

velocity and acceleration. To investigate the effect of this controller parameter their values were varied while 

keeping the other parameters (λi) at a constant value. Refer to values given in Table 2, the robot position 

response of the (MRAC) were obtained for the case of load disturbance given in Fig. 3b. Fig. 6 and Fig. 7 show 

the robot position response for cases 2 and 5 respectively. It is easy to see that the robot position response of the 

proposed (MRAC) system using the optimum value of (γi) is almost identical to the model reference response. 

So, in view of these cases   both of the controller parameters have a significant effect and must be carefully 

selected in consideration of each problem. 

 

Effects of load disturbance 

Let the variation of load disturbance be considered as shown in Fig. 3a and Fig. 3b. Fig. 8 and Fig. 9 

show the robot position responses for the two previous load disturbances respectively, and for controller 

parameters defined in Table 2 case 4. As can see from these figures, changing the load disturbance from 

sinusoid to a series of severe step changes leads to increase the steady state error in both the conventional and 

(MRAC) responses. Fig. 10 shows the robot response for controller parameters case 1, and step disturbance 

case. Comparing with response in Fig. 9, one can see that optimum controller parameters case 1 decrease the 

steady state error for the same disturbance. Based upon the obtained results, it can be concluded that the 

proposed control strategy for the presented (FJR) model is robust to various uncertainties and load variations in 

comparison to conventional controller. 

 

V. Conclusion 
The problem of tracking control of a two-link direct drive robot with flexible joints  (FJR) is 

considered, in the presence of disturbances and parameters uncertainties. Each joint is represented by two 

second order equations. It was found that joint stiffness can be used alone as the design criterion to allocate the 

resonant frequencies as desired. The response characteristics were investigated for different controller 

parameters and load disturbances. The results were compared with those of conventional constant gain 

controller. It seems that, the position response follows exactly that of the desired model, in spite ofthe existing 

disturbances. Also, it was found that the controller parameters (γi ,λi) have a significant effect on the robot 

response (tuning parameters). The results assure that the presented flexible joint model support to design an 

advanced control technique to achieve a higher control performance. 

 

References 
[1]. Freund E., "Fast nonlinear control with arbitrary pole-placement for industrial robots and manipulators", Int. J. Robotics Research, 

1(1), pp.65-78, 1982. 
[2]. Tam T.j. et al., "Nonlinear feedback in robot arm control", Proc. 23rd IEEE conf. Decision and Control, Las Vegas, Dec. 1984. 

[3]. Niscosia S. and Tomei P., "Model reference adaptive control algorithms for industrial robots", Automatica, 20(5),pp. 635-644, 

1984. 
[4]. Slotine J. and Li w., "On the adaptive control of robot manipulators", Int. J. Robotics Research, 6, pp. 49-59, 1987. 



Higher Performance Adaptive Control of a Flexible Joint Robot Manipulators 

www.iosrjournals.org                                                             136 | Page 

[5]. Slotin J and Sastry S., "Tracking control of non-linear systems using sliding surfaces with application to robotic manipulators", Int. 

J. Control, 38(2), pp.465-492, 1983. 
[6]. Young K., "A variable structure model following control design for robotics applications", IEEE J. Robotics and Automation, 4(5), 

pp.556-561, 1988. 

[7]. Bailey E. and Arapostathis A., "Simple sliding mode control scheme applied to robotic manipulators", Int. J. Control, 45(4), 
pp.1197-1209, 1987. 

[8]. Wijesoma S. and Richards R., "Robust trajectory following of robots using computed torque structure with VSS", Int. J. Control, 

52(4), pp.935-962, 1990. 
[9]. Good M., Sweet L., and Strobel K., "Dynamic models for control system design of integrated robot and drive systems", J. of Dyn. 

Sys. Meas. And Cont., Vol. 107, pp. 53-59, March 1985. 

[10]. Sweet L. and Good M.,"Re-definition of robot motion control problem: effects of plant dynamics, drive system, constraints and user 
requirements", Proc. Of the 23rd Conf. on decision and Control, Las Vegas, NV, pp724-732, Dec. 1984. 

[11]. Riven E., "Mechanical design of robots", New York, McGraw-Hill Book Co., 1988. 

[12]. Hung J.Y., "Control of industrial robots that have transmission elasticity", IEEE trans. Ind. Electronics, 38(6), pp.421-427, 1991. 
[13]. Spong M. W., Khorasani K. and Kokotovic P.V., "An integral manifold approach to the feedback control of flexible joint robots", 

IEEE J. Rob. Aut. RA-3(4), pp291-300, 1987. 

[14]. Khorasani K., "Nonlinear feedback control of flexible joint manipulators: A single link case study", IEEE Trans. Aut. Control, 
35(10), pp. 1145-1149, 1990. 

[15]. Ozgoli S. and Taghirad H. D., "A survey on the control of flexible joint robots", Asian Journal of Control, Vol. 8, No. 4, pp.1-15, 

December 2006. 
[16]. Fateh M.M., "Robust control of Flexible-joint robots using voltage control strategy", J. of Nonlinear Dynamics, Vol. 67, Issue 2, pp. 

1525-1537, Jan. 2012. 

[17]. Artemisk K., Zoe D. and George A.R., "Prescribed performance tracking for flexible joint robot with unknown dynamics and 
variable elasticity", Automatica, Vol. 49, Issue 5, pp. 1137-1147, May 2013. 

[18]. Ulrich S., Sasiadek J.Z., and Barkana I., "Modeling and direct adaptive control of flexible joint manipulator", J. of Guidance, 

control and Dynamic, Vol. 35, No. 1, pp.25-39, 2012. 
[19]. Yongming LI., Shaocheng T. and Tieshan LI., "Adaptive fuzzy output feedback control for a single link flexible robot manipulator 

driven DC motor Via backstepping", Nonlinear Analysis Applications, Vol. 14, Issue 1, pp. 483-494, Feb. 2013. 

[20]. Spong M., "Modeling and control of elastic joint robots", J. of Dyn. Syst. Meas. Cont., Vol. 109, No.4, pp. 310-319, December 
1987. 

[21]. Spong M. and  Vidyasagar M.W., "Robot dynamics and control", John Wiley & Sons, Inc., 1989. 

[22]. Massoud A. and Elmaraghy H., "Design, dynamics, and identification of a flexible joint robot manipulator", Proc. Of theIASTED 
Conf. on Robotics and Manuf. Oxford, England, pp. 72-75, Sept.1993. 

 

 
 

 
 

 

 

 



Higher Performance Adaptive Control of a Flexible Joint Robot Manipulators 

www.iosrjournals.org                                                             137 | Page 

 
 

 

 



Higher Performance Adaptive Control of a Flexible Joint Robot Manipulators 

www.iosrjournals.org                                                             138 | Page 

 
 

 

 
 

 

 
 



Higher Performance Adaptive Control of a Flexible Joint Robot Manipulators 

www.iosrjournals.org                                                             139 | Page 

 
 

 

 



Higher Performance Adaptive Control of a Flexible Joint Robot Manipulators 

www.iosrjournals.org                                                             140 | Page 

 
 

 

 
 

 

 
 



Higher Performance Adaptive Control of a Flexible Joint Robot Manipulators 

www.iosrjournals.org                                                             141 | Page 

 
 

 
 

 

 

 

 

 



Higher Performance Adaptive Control of a Flexible Joint Robot Manipulators 

www.iosrjournals.org                                                             142 | Page 

 
 

 


