Rapeseed oil blended with Methanol on Performances and Emissions in Turbocharged Diesel Engine

Dr. Hiregoudar Yerrenggoudar1, Manjunatha K2, Nobin K B3
1(Mechanical Engg. Department, RYMEC/VTU, INDIA)
2(Mechanical Engg. Department, RYMEC/VTU, INDIA)
3(Mechanical Engg. Department, RYMEC/VTU, INDIA)

Abstract: All over the world the use of petroleum products has been increased tremendously. As we know that the diesel vehicle population is growing at an alarming rate. The emission caused by these fossil fuels combustion in IC engines has been led to air pollution, greenhouse effect and also ozone layer thinning. The search for reduction of exhaust emissions from the exhaust gases of IC engines has been underway for the past three decades. The exhaust emissions will irritate skin, eyes, nose, and throat and also leads to bronchitis asthma with continuous expose with this atmosphere in the long run. It is a serious concern with the pollution point of view. In view of existing fissile fuel deposit may come another 40 years, Costs of Fissile Fuels are day by day increasing. Emissions caused by these fissile fuels on Environment, As the population increase the vehicle population also increases, the existing deposits may not come even 40 years, Developing Countries like India depends on its fissile fuel requirement on foreign countries for which spars huge forgoing currency in purchasing the crude oil, thus the inflation rate increases, rupees valve decreases hence the country economy and development decrease. The present investigation evaluates Rape seed oil blended with Methanol in Diesel Engine. A Twin cylinder Diesel Engine adapted to study the Brake thermal efficiency, Brake specific energy consumption, and emissions in Low Cetane fuels. In this study, the diesel engine was tested using Diesel and Low Cetane Fuels. From this study the emissions like HC and CO has been reduced and Low Cetane Fuels are substitute to diesel fuel.

Keywords: Diesel, Performance, Emissions, Biofuel, Rape seed oil

I. Introduction

Rising petroleum prices, increasing threat to the environment from vehicle exhaust emissions and fastly depleting stock of fossil fuels have generated an intense international interest in developing alternative renewable fuels for IC engines. Bio fuel is an oxygenated fuel which increases the combustion and makes reduce exhaust emission. It can be produced from crops with high sugar or starch content. Some of these crops include sugarcane, sorghum, corn, barley, cassava, linseedplants, sugar beets etc. Besides being a biomass based renewable fuel, Biofuel has cleaner burning and higher octane rating than the various vegetable oils [1-5]. Jason and Marc (2002) presented the exegetic environmental assessment of lifecycle emissions from M-85, E-85 (used for the gasoline engine) and other alternative fuels [6]. Diesel exhaust is a major contributor to various types of air pollution, including particulate matter (PM), oxides of nitrogen (NOx), and carbon monoxide (CO) [7]. It has been demonstrated that the formation of these air pollutants can be significantly reduced by incorporating or blending oxygenates into the fossil fuels matrix [8]. Diesel engines are an important part of the public and private transportation sector and their use will continue and grow into the future. But their smoke has become biggest threat to health and environment [9]. Keeping in mind the higher octane number of the ethanol, variable compression ratio engine is a good option in this direction using the ethanol diesel blend as fuel. Shaik et al. (2007) demonstrated VCR engine has great potential for improving part-load thermal efficiency and reducing greenhouse gas emissions [10].There were many attempts made to use Biofuel in compression ignition (CI) engine. Huang et al. (2008) carried out tests to study the performance and emissions of the engine fuelled with the ethanol diesel blends [11]. They found it feasible and applicable for the blends with n-butanol to replace pure diesel as the fuel for diesel engine. Bhattacharya and Mishra (2002) evaluated the feasibility of preparing diesel-ethanol blends using 200° (anhydrous ethanol) and ethanol lower proof [12]. They found that ethanol blends indicated power producing capability of the engine similar to that of diesel. Hansen et al. (2001) found that the properties of ethanol-diesel blends have a significant effect on safety, engine performance, durability and emissions [13]. Wang et al. (2003) analyzed that the most noteworthy benefits of E-diesel use lie with petroleum fuel reductions and reductions in urban PM10 and CO emissions by heavy vehicle operations [11]. Ajav and Akingbehin (2002) experimentally determined some fuel properties of local ethanol blended with diesel to establish their suitability for use in compression ignition engines [14]. Eckland et al. (1984) presented, State-of-the-Art Report on the Use of Alcohols in Diesel Engines [15]. Techniques that have been evaluated for concurrent use of diesel and alcohols in a compression-ignition engine include (1) alcohol fumigation, (2) dual
injection (3) alcohol/diesel fuel emulsions, and (4) alcohol/diesel fuel solutions. Heisey and Lestz (1981) reported significant reductions in particulate generation; however, NOx generation increases [16]. Likos et al. (1982) reported increased NOx and hydrocarbon emissions for diesel-ethanol emulsions [17]. Khan and Gollahalli (1981) reported decreased NOx and hydrocarbon emissions with increased particulate emissions for diesel-ethanol emulsions [18]. Lawson et al. (1981) reported increased NOx and decreased particulate emissions with diesel methanol emulsions [19]. Performance and Emission Characteristics of Twin Cylinder CI Engine Using Cottonseed Oil Blended With Methanol [20]. Ahmed (2001) found Diesel engines are major contributors of various types of air polluting exhaust gasses such as particulate matter (PM), carbon monoxide (CO), oxides of nitrogen (NOx), sulfur, and other harmful compounds [21]. Experimental Investigation of Twin Cylinder Diesel Engine Using Linseed oil blend with Ethanol [22]. Raoet al. (2008) carried out experiment in order to found out optimum compression ratio, experiments were carried out on a single cylinder four stroke variable compression ratio diesel engine [23]. Experimental Investigation of Twin Cylinder Diesel Engine Using Diesel & Methanol [24] Investigation of Methanol in Twin cylinder in line 4 Stroke liquid cooled Diesel Engine [25] Investigation of Alternative fuels in Diesel Engine [26-37] T. Le Anh, I.K. Reksowardjo, K. Wattanavichien (1) This chapter summarises findings on the use of biofuels in conventional diesel engines [38] Seung Hyun Yoon, Chang Sik Lee (2) This study was performed to investigate the effect of biogas–biodiesel fuel combustion on the emissions reduction and nanoparticle characteristics in a direct injection (DI) diesel engine[39] F.J. Salvador, J. Martínez-Lopez, J.-V. Romero, M.-D. Rosello (3) In this paper, the behavior of the internal nozzle flow of a standard diesel fuel has been compared against a biodiesel fuel (soybean oil) at cavitating and non-cavitating conditions, using a homogeneous equilibrium model[40]

II. Experimental Setup

Fig 1: Test engine (Twin cylinder Diesel Engine)

III. Objective

Objective of the present study is to:

- It is proposed to use Rape seed oil blended with Methanol in the diesel engine.
- The emissions like HC, CO₂, NOx, and Smoke in the exhaust gases are proposed to reduce during the combustion itself.
- To study the performance evaluation of the using Bio fuel blended with Methanol in the diesel engine.
- To analyse the exhaust emissions and measurement, reduction in the exhaust gas.

IV. Properties of Biofuel blended with Alcohol

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Fuel</th>
<th>CV KJ/Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Diesel</td>
<td>44,800</td>
</tr>
<tr>
<td>2.</td>
<td>Rape seed oil blended with Methanol</td>
<td>31,315</td>
</tr>
</tbody>
</table>

V. Engine Specification

<table>
<thead>
<tr>
<th>Test Engine specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection Pressure</td>
</tr>
<tr>
<td>Engine type</td>
</tr>
<tr>
<td>No. of cylinders</td>
</tr>
<tr>
<td>Stroke</td>
</tr>
<tr>
<td>Bore Diameter</td>
</tr>
</tbody>
</table>
VI. Results

1. Performance Graphs

1.1 Brake Specific Energy Consumption

Fig-2 shows the variations of Brake Specific Energy Consumption for Diesel and Rape seed oil blended with Methanol at Zero Load and Full Load.

1.2 Brake Thermal Efficiency

Fig-3 shows the variations of Brake Thermal Efficiency for Diesel and Rape seed oil blended with Methanol at different Loads.

2. EMISSION Graphs

2.1 Unburnt Hydro Carbon
2.2 Carbon Dioxide

Fig-5 shows the variations of Carbon dioxide for Diesel and Rape seed oil blended with Methanol at Zero Load and Full Load.

2.3 Nitrogen Dioxide

Fig-6 shows the variations of Nitrogen dioxide for Diesel and Rape seed oil blended with Methanol at Zero Load and Full Load.
2.4 Smoke

Variations of Smoke in %

![Variations of Smoke in %](image)

Fig-7 shows the variations of Smoke for Diesel and Rape seed oil blended with Methanol at Zero Load and Full Load

VII. Conclusion

Based on the experimental results the performance and emissions of Rape seed oil blended with Methanol, it is Concluded that the Rape seed oil blended with Methanol represents a good alternative fuel with closer performance and better emission characteristics in Diesel Engine. From the above experimental results the Rape seed oil blended with Methanol shows better performance Diesel Engine. From the above experimental results the Rape seed oil blended with Methanol shows performance characteristics like Brake thermal efficiency, Brake specific Energy consumption and decrease in the emission parameters like HC, CO₂, NOx, Smoke are lower Biofuel blended with Methanol compared with Diesel. Hence the Rape seed oil blended with Methanol can be used as a substitute for diesel effectively in diesel engines.

References


DOI: 10.9790/1684-1303049196 www.iosrjournals.org 95 | Page
Rapeseed oil blended with Methanol on Performances and Emissions in Turbocharged Diesel Engine


[16.] Van Sudhakar “Performance Analysis of Adiabatic Engine” Sae 840431.


[26.] Dr.Hiregoudar Yerrennagoudar, Manjunatha K et.al “Investigation of Ethanol in Common Rail Direct Injection (CRDI) Diesel Engine” International Conference on Science, technology and Management (ICSTM),Bangkok, Thailand,23rdAugust 2015.


DOI: 10.9790/1684-1303049196 www.iosrjournals.org 96 | Page