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Abstract: The numerical analysis with dual boundary element method for shape optimal design in two-

dimensional linear elastic structures is proposed. The design objective is to minimize the structural compliance, 

subject to an area constraint. Sensitivities of objective and constraint functions, derived by means of 

Lagrangean approach and the material derivative concept with an adjoint variable technique, are computed 

through analytical expressions that arise from optimality conditions. The dual boundary element method, used 

for the discretization of the state problem, applies the stress equation for collocation on the design boundary 

and the displacement equation for collocation on other boundaries. The perturbation field is described with 

linear continuous elements, in which the position of each node is defined by a design variable. Continuity along 

the design boundary is assured by forcing the end points of each discontinuous boundary element to be 

coincident with a design node. The optimization problem is solved by the modified method of feasible directions 

available in the PYOPT program and the accuracy and efficiency of the analysis is assessed through two 

examples of a plate with a hole, making this formulation ideal for the study of shape optimal design of 

structures. 

Keywords:dual boundary element, shape optimization, feasible directions, pyopt software 

 

I. Introduction 

Shape optimal design is an important class of structural design problems in which the shape of a 

structural component is to be determined, subject to a given set of constraints. Sensitivity analysis plays a 

fundamental role in the determination of the shape optimal design. A unified theory of continuum shape design 

sensitivity analysis for elastic structures was developed by Choi et al. [1] and Haug et al. [2] by means of a 

variational formulation and material derivative concept. The major advantage of this theory is that the optimality 

conditions, derived on a continuum approach, lead to explicit design sensitivity expressions. The success of this 

formulation relies on the accurate computation of design sensitivities which, however, depend on boundary 

stresses that are often difficult to evaluate. 

In general, numerical methods must be used for shape optimal design of engineering structures. The 

finite element method has a long and well- documented history in shape optimal design [3] to [6]. An intrinsic 

feature of the finite element method, common to all displacement based formulations, is the inaccuracy obtained 

in the computation of boundary stresses, as reported by Yang et al. [7] and Choi et al. [8]. ]. In order to 

overcome this difficulty, mixed formulations of the finite element method have been presented by MotaSoares 

et al. [9] and Rodrigues [10]. Another drawback of the finite element method is the need for continuously 

remeshing, in order to eliminate the error generated by mesh distortion during the shape redesign process, as 

reported by Rodrigues [10]. Despite these drawbacks, the finite element method has been the most widely used 

technique for shape optimal design. 

The boundary element method (BEM) is a well-established numerical technique in the engineering 

community; see Brebbia et al. [11]. Its formulation in elastostatics can be based either on Betti’s reciprocity 

theorem, Rizzo [12], or simply based on the classical work theorem, Portela [13]. The BEM has also been 

applied for shape optimal design, since it overcomes the difficultiespointed out for the finite element method, as 

reported by MotaSoares et al. [14]. Despite its good performance in shape optimal design, the standard BEM 

still lacks some accuracy in the evaluation of boundary stress, see MotaSoares et al. [15]. Thus, there is a clear 

need for an alternative modelling strategy for the analysis of shape optimal design of structures. 

In this work the BEM is formulated by means of two independent boundary integral equations; the 

displacement and the stress boundary integral equations (DBEM). The use of the stress boundary integral 

equation, first reported by Portela et al. [16], allows high accuracy in the computation of boundary stresses, 

since this equation is independent of the displacement boundary integral equation and furthermore none 

approximation is introduced in its derivation. 

The present paper is concerned with the application of the DBEM to the analysis of shape optimal 

design of two-dimensional linear elastic structures. The optimization problem is presented, the boundary integral 

equations are de- fined and the modelling strategy is discussed. Determining the optimal shape of the design 

boundary, an iterative analysis is performed using the Modified Method of Feasible Directions (MMFD) 
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available in the pyOpt program [17]. In each iteration of the analysis, in which along the design boundary the 

state problem is modeled with straight quadratic boundary elements and the perturbation field is described with 

linear elements, the DBEM is applied for the evaluation of the objective and constraint functions, as well as 

their respective gradients. The effective treatment of the improper integrals of the boundary integral equations is 

a matter of fundamental importance in the DBEM. For curved boundary elements, the natural definition of 

ordinary finite-part integrals is applied to regularize the improper integrals. For straight boundary elements, 

analytic integration is carried out. 

Finally, numerical results are obtained for a plate with a hole, for different loading conditions, and for 

the graphical visualization are used the MATLAB tool. It is demonstrated that the present modelling strategy 

can be used for shape optimal design of structures accurately and efficiently. 

 

II. Shape Optimal Design 
The design objective is to find the shape of a traction-free regular boundary such that, under an area 

constraint, the structure exhibits minimum compliance. Let Ω be the domain of a two-dimensional linear elastic 

structure and Γ its boundary subdivided in Γuand Γt. Consider that the structure has constrained displacements, 

defined on Γuand is loaded by a system of tractions, applied on Γt. The design boundary Γd, assumed as regular, 

is defined on Γt, as presentedin Figure 1. 

 

 
Figure1:Two-dimensionalelasticstructurewhere  -domain;

u -boundarywithfixeddisplacements

 u = 0 ;
t -boundarywithappliedtractions;

d -designboundary  t = 0 ; u -displacements; t -tractions;
ix -

cartesiancoordinates. 

 

The linear elastic problem is defined as 

, , 0
1 2j iiu i ij
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(1) 

 

withthe boundaryconditions 

 

i uu u on   (2) 

and 

i i tt t on   (3) 

 

where iu and i ij jt n  arerespectivelythedisplacementandthetractioncomponents; ij  

arethestresscomponents; jn arethecomponentsoftheunitoutwardnormaltotheboundary; G

istheshearmodulusand isPoisson’scoefficient.Itisfurtherassumedthat d

isacinematicallyfixedboundary,thatis 0iu   on u and d isatraction-freeboundary,thatis 0it  on d . 

The objective function is the compliance of the structure, given by 
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inwhich iu and it

arethestatevariables,obtainedfromthesolutionofthestateproblem,equations1to3.Thedesignoptimizationproble

misexpressedasfinding d suchthatthecompliance 0

isminimizedundertheconditionthatthetotalareaofthestructure 1

doesnotexceedaprescribedvalueA.Thisconstraintconditioncanbeexpressedas 

1

1
,

2
i id x n d A

 

        
(5) 

inwhich ix representcartesiancoordinates.Thenumericalsolutionofthisnon-

linearoptimizationproblem,derivedbymeansofLagrangeanapproachandthematerialderivativeconceptwithanadjoint

variabletechnique,requirestheevaluationofthefirstvariationofboththeobjectiveandconstraintfunctionalfordesignsen

sitivityanalysis.Thefirstvariationofboththecomplianceandtheareaconstraintisrespectivelygivenby 

 

0

d

nW d 


     
(6) 

and 

1

d

nd 


    
(7) 

in which W is the strain energy density and n is the normal perturbation of the design boundary. Since d is a 

traction-free boundary, the strain energy density can be defined as 

 

 
22

11 22

1 1 1

2 2 ' 2 '
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E E
         

 

(8) 

where  2' 1E E   inplanestrainand 'E E inplanestress,inwhich E isthemodulusofelasticity; I

istheprincipalstressand I isthecorrespondingprincipalstrain. 

Thenormalperturbationofthedesignboundary n isrepresentedinFigure2.Atapointofthedesignboundary d

,adesignvariable b
isdefinedasthenormofthepositionvectorofthatpointwithrespecttoapredefinedoriginO,asshowninFigure2.Thus,fora

variationofthedesignvariableb

,thecorrespondingnormalperturbationofthedesignboundaryisgivenbytheorthogonalprojectionofb
ontothedirectionoftheunitoutwardnormaltotheboundary n ,thatis 

 

n i ib n   b.n  (9) 

 
Figure 2: Normal perturbation of the design boundary where b - design variable; b - variation of 

the design variable; n - unit outward normal to the boundary;
n  - normal perturbation of the design 
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= 

boundary;
ix  - cartesian coordinates; O - origin of design variables. 

 

III. Boundary Integral Equations 
Theboundaryintegralequations,onwhichtheBEMisbased,arethedisplacementandthestressboundaryintegra

lequations.ThepresentationoftheboundaryintegralequationsfollowsPortelaetal.[18].Intheabsenceofbodyforces,the

boundaryintegralrepresentationofthedisplacementcomponents iu ,ataninternalpoint X' ,isgivenby 

 

             ' ', ',i ij j ij ju X T X x u x d x U X x t x d x
 

      (10) 

where i and j denote cartesian components;  ',ijT X x and  ',ijU X x represent the Kelvin traction 

and displacement fundamental solutions, respectively, at a boundary point x . The distance between the points 

X'and x  is denoted by r . The integrals in equation (10) are regular, provided 0r  . As the internal point 

approaches the boundary, that is as X'→ x' , the distance r  tends to zero and, in the limit, the fundamental 

solutions exhibit singularities; they  are a strong singularity of order1 r in ijT and a weak singularity of order

 ln 1 r  in ijU . Assuming continuity of the displacements at x' , this limiting process produces, in the first 

integral of equation (10), a jump term on the displacement components and an improper integral.  For a 

boundary point, equation (10) can now be written as 

 

    ' '' ' ( , ) (x)d (x) ( , ) (x)d (x)ij j ij j ij jc x u x CVP T x x u U x x t
 

      (11) 

whereCVP stands for the Cauchy principal-value integral, and the coefficient cij(x’) is given by ij/2 for a 

smooth boundary at the point x’ (ij is the Kronecker delta). 

Intheabsenceofbodyforces,thestresscomponentsσijareobtainedbydifferentiation ofequation(10), 

followedbytheapplication of Hooke’slaw; they aregivenby 

 

             ' ', ',ij ijk k ijk kX S X x u x d x D X x t x d x
 

      (12) 

 

In this equation, Sijk(X’, x) and Dijk(X’, x) are linear combinations of derivatives of Tij(X’, x) and 

Uij(X’, x), respectively. The integrals in equation (12) are regular, provided r ≠ 0. As the internal point 

approaches the boundary, that is X’ → x’, the distance r tends to zero and Sijk exhibits a hypersingularity of the 

order 1/r
2
, while Dijk exhibits a strong singularity of the order 1/r. Assuming continuity of both strains and 

tractions at x’, the limiting process produces improper integrals and jump terms in strains and tractions, in the 

first and second integrals of equation (12), respectively. For a point on a smooth boundary, these jump terms are 

equivalent to boundary stresses. Hence, equation (12) can now be written as 

 

             
1

' ', ',
2
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 

      
 

(13) 

 

whereHPVstands for the Hadamard [19] principal value integral. On a smooth boundary, the traction 

components, tj, are given by 

         

       
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i ijk k
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



  






 

 

 

(14) 

 

wherenidenotestheicomponentoftheunitoutwardnormaltothe 

boundary,atthepointx’.Equations(11)and(14)constitutethebasisoftheBEM.Onatraction-

freeboundary,asinthecaseofthedesignboundary,theseequationsaresimplified;thedisplacementandthestressequation

saregivenby 

 



Analysis Of Dual Boundary Element In Shape Optimization 

DOI: 10.9790/1684-130304127141                                        www.iosrjournals.org                                131 | Page 

 

= 
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d
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

    
  (15) 

and 

       ' ', 0

d

i ijk kn x HPV S x x u x d x


    
(16) 

respectively, where d denotes the traction-free boundary. 

BothCauchyandHadamardprincipal-

valueintegralsarefinitepartsofimproperintegrals,seeLinz[20]andPortela[21].Principal-

valueintegrals,computedthroughfinite-

partintegrals,wereintroducedintheboundaryelementmethodbyPortelaetal.[16]. 

 

IV. ModelingStrategy 
The necessary conditions for the existence of principal-value integrals, assumed inthederivationofthe 

boundary integralequations,imposespecialrestrictionsonthe boundarydiscretization.Considerthat 

boththegeometryand boundarystate variablesaredescribed byapiece-

wisecontinuouslydifferentiableapproximation.Thus,CauchyandHadamardprincipal-

valueintegralsareequivalenttofinite-partintegralsoffirstandsecondorder,respectively. 

Consider that collocation is always done at the boundary element nodes. Under this circumstance, the finite-

part integral of first order, in the displacement equation (15), requires continuity of the displacement 

components at the nodes: any continuous or discontinuous boundary element satisfies this requirement. In the 

stress equation (16), the finite-part integral of second order requires continuity of the displacement derivatives at 

the nodes, on a smooth boundary: discontinuous quadratic boundary elements implicitly have the necessary 

smoothness, since the nodes are internal points of the element. 

For the sake of efficiency and to keep the simplicity of the standard boundary elements, along the design 

boundary the present formulation uses discontinuous quadratic elements to model the elastic field and 

continuous linear elements to describe the perturbation field. The general modelling strategy developed in the 

present paper, schematically represented in Figure 3, can be summarized as follows: 

 Discontinuous quadratic elements are used to model the design boundary, as well as other boundaries on 

which remeshing is allowed; 

 All the remaining boundaries of the body are modeled with continuous quadratic elements; 

 The stress equation (14) is applied for collocation at the nodes of the design boundary; 

 The displacement equation (11) is applied for collocation at the nodes of the remaining boundaries; 

 Continuous linear elements are used to model the normal perturbation field; 

 On the design boundary, each quadratic element of the state problem is forced to be coincident with a linear 

perturbation element. Therefore, straight quadratic discontinuous elements are considered in this modelling 

strategy to describe the state problem on the design boundary, as shown in Figure 3. 

 

 
Figure 3: Modellingstrategy. 
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V. ComputationofGradients 
When the discretization of the design boundary, defined in the previous section, is considered, that is 

the use of straight discontinuous quadratic elements to model the elastic field and continuous linear elements to 

model the normal perturbation field, as represented in Figure 3, all the integrals in equations (6) and (7) are most 

effectively computed by direct analytic integration, which is presented in the following. Consider a straight 

discontinuous quadratic boundary element, with the nodes positioned arbitrarily at the points
2

3
   ,  0 

and  
2

3
   . The shape functionsof thiselement are given by: 

1

9 3

8 4
N  

 
  

 
 2

3 3
1 1

2 2
N  

  
    
  

 3

9 3

8 4
N  

 
  

 
 

Consideralsoacontinuouslinearboundaryelement,withthenodespositionedatthepointsξ=−1andξ=+1.Forthisele

ment,theshapefunctionsaregivenby: 

 

 1

1
1

2
M     2

1
1

2
M    

For an element of the design boundary, the gradients of both the compliance and the area constraint, 

respectively equations (6) and (7), are represented by: 

     
1

0 1

1

1

2 '
e

e

n i j njW d W N M J d
E

      


 

 
       

 
   

 

(17) 

and 

   
1

1

1e

e

n j njd M J d     


 

 
     

 
   

(18) 

whereWiandvnjarenodalvariablesandJ(ξ)istheJacobianofthecoordinatetransformation.Sincetheseelementsar

eassumedstraight, 𝐽 =
𝑙

2
inwhichlrepresentstheelementlength.Thus,equations17and18canbeintegratedanalyticallytoleadto, 

respectively: 

     0 1 2 1 1 2 2 1 2 35 2 5
32 '

e

n n n n n n

l
W W W

E
                 

(19) 

and 

 1 1 2
2

e

n n

l
      

(20) 

 

The improper integrals that arise in the boundary integral equations are easily handled by the classical 

singularity-subtraction technique, Davis and Rabinowitz [22], which leads to the natural definition of ordinary 

finite-part integrals. In the vicinity of a collocation node the regular part of the integrand is expressed as a 

Taylor’s expansion. If a sufficient number of terms of the expansion are subtracted from the regular part of the 

integrand and then added back, the singularity can be isolated. The original improper integral is thus 

transformed into the sum of a regular integral and an integral of the singular function. This latter integral is then 

evaluated analytically, while standard Gaussian quadrature is used for numerical integration of the regular 

integral. Portela [21] has shown that this procedure is general and applicable to any type of boundary element, in 

which the necessary conditions for the existence of the finite-part integrals are implicitly satisfied. 

Inthispaperthenormalperturbationfieldismodeledwithapiece-

wiselinearapproximation,asshowninFigure3.Consequently,inordertobecompatiblewiththe 

assumedlinearapproximationof theperturbationfield,the designboundaryismodeledaspiece-

wisestraight,whentheelasticfieldisregarded. Therefore, forpiece-wisestraightboundaries,alltheintegrals resulting 

from equations(15)and(16)aremosteffectivelycarriedoutbydirectanalyticintegration,whichispresentedinAppendix. 
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VI. PYOPT Softwarecharacteristics 
The pyOpt is an open-source software Python-based package for formulating and solving nonlinear 

constrained optimization problems.Different type of open-source and licensed optimizers that solve the general 

nonlinear optimization problem have been integrated into the package, but in this work has been used the 

MMFD optimizer, an extension of the method of feasible directions, which utilizes the direction-finding sub-

problem from the Method of Feasible Directions [23] to find a search direction but does not require the addition 

of a large number of slack variables associated with inequality constraints. 

The operatingstructure ofpyOptfollows thestepsin solvingoptimization problems, found on [17]: 

 

1. Optimization Problem Definition: Solving general constrained nonlinear optimization, that is 

 

min f(x) w.r.t. x 

s.t.g_j(x) = 0, j = 1, ...,m_e 

g_j(x) <= 0, j = m_e + 1, ..., m 

x_i_L<= x_i<= x_i_U, i = 1, ..., n 

 

where: 

 x is the vector of design variables 

 f(x) is a nonlinear function 

 g(x) is a linear or nonlinear function 

 n is the number of design variables 

 m_e is the number of equality constraints 

 m is the total number of constraints (number of equality constraints: m_i = m - m_e) 

 

2. Optimization Class: Instantiatethe optimization problem with the following settings 

 Objective Function Template 

• Objective value (f) 

• Array of constraint values (g) 

 Design Variables (continuous, integer and discrete) 

• Single Design Variable 

• A Group of Design Variables 

 Constraints (inequality and equality) 

• Single Constraint 

• A Group of Constraints 

 

3. Optimizer Class: Instantiate an Optimizer (e.g. CONMIM, MMFD). Here, we have been used the MMFD 

algorithm. 

 

4. Optimizing: 

 Solving the Optimization Problem (opt method) 

 Output (initial values, specific solution and file output) 

 History (stores all function evaluations) 

 

5. Parallel Processing 

 Gradient-based optimizers 

• Parallel Objective Analysis (default) 

• Parallel Gradients 

 Population-based 

• Parallel Objective Analysis 

• Static Process Management 

• Dynamic Process Management 

 

1.1. Modelling the optimization problem 

The two examplesof a plate, consideredin the next section,followingthe stepsgiven above, and the step 

5was based on thegradientoptimizer. Thus,the optimization problemwith pyOpt package consists of twosteps: 

1. Setting up 

 Set an Objective Function: in this case, the objective function is the compliance of the plate given by 

equation (4); 
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 The objective function takes in the design variables array and returns a value. The array, in this case, it has 

five and four design variables, respectively for each example; 

  Set an array of Constraints: in this case, the objective function is subject to an area constraint given by 

equation (5), in which the maximum admissible area is equal to the initial area of the plate; 

 Initializes the optimization problem:                         

opt_prob = pyOpt.Optimization(‘Optimization Problem with MMFD’, objfunc); 

 Finally, we complete the setupby adding, separately, the objective function, the designvariablesand the 

array of constraints:  

 opt_prob.addObj(‘f’)   : add objective function name 

 opt_prob.addVar(‘dv name’,’dv type’,lower bound,upper bound,dv value) : add one-by-one design 

variables (dv) 

 opt_prob.addConGroup(‘g name constr’,total constr,’type constr’)  : add a group of constraints 

 

2. Solver 

 Initializes the optimizer: in this case, we have used the MMFD (Modified Method of Feasible Directions) 

algorthm, that is 

 mmfd = pyOpt.MMFD()  

 Define the Parallel Processing: in this case, the parallel-gradient has been used because the sensitivities are 

provided by the user. Here, the sensitivities are given by equations (19) and (20), respectively. 

 mmfd(opt_prob, sens_type=gradfunc) 

 

VII. NumericalResults 
Two applications of shape optimal design will be studied in this section. Consider an infinite square 

plate of side h with a central traction-free square hole of side a, loaded with biaxial uniform traction, 𝑡 1 and 𝑡 2, 

as presented in Figure 4a. The objective function is the compliance of the plate, subject to an area constraint, in 

which the maximum admissible area is equal to the initial area of the plate. When the central hole is considered 

as the design boundary, the analytical solution of this problem is given by Banichuk [24]; the optimal shape of 

the hole is a circumference, when 𝑡 1 = 𝑡 2, and it is an ellipse with a semi-axis ratio equal to the ratio of the 

applied tractions, when 𝑡 1 ≠ 𝑡 2. It was considered in both applications with the ratio a/h = 0.125, in plane stress 

with the elastic constants E = 200 GPa and ν = 0.3. Since the problem is symmetric, only 1/4 of the plate was 

considered in the analysis and a mesh with 16 quadratic boundary elements was set up, in which 4 

discontinuouselements were used along the design boundary, as presented in Figure 4.b. 

Figure 4: a) Infinite plate with a square hole (a/h = 0.125); b) Mesh with of 1/4 the plate. 

 

For the first application a loading ratio given by 𝑡 1 / 𝑡 2 = 1 was considered. Results of the shape 

optimal design problem were obtained with five design variables that are schematically represented in Figure 5. 

Figure6showstheinitialandfinalBEMmeshofthedesignboundary, which theanalyticalsolutionis a  

circumference.Here, the boundary design has been enlarged for better viewing. 

 

 
(a) 

 
(b) 

 



Analysis Of Dual Boundary Element In Shape Optimization 

DOI: 10.9790/1684-130304127141                                        www.iosrjournals.org                                135 | Page 

 

Figure 5: Design variables: b1 to b5 in the case t̄ 1/t̄ 2=1; b1 to b4 in the case t¯1/t̄ 2=0,75 

 

 

Figure 6: Initial and final BEM mesh of the design boundary(t̄ 1/t̄ 2=1) 

 

The design variables of the final shape with their respective values, which is the radius of the 

circumference, as well as the ratios between the mean value and each design variable, are presented in Table 1. 

Figure 7 shows the radius and the normalized design variables, obtained with the pyopt program and compared 

with the reference radius, which we note that the maximum deviation from the mean value is 0.24%. 

 

Table 1: Radius and normalized designvariables 
DesignVariable T 1̄/t̄ 2=1.0 t̄ 1/t̄ 2=0.75 

Radius bj/5j 
Radius a/2bi 

b1 0.501002 0.997406 0.336022 0.744000 
b2 0.499002 1.001404 0.307882 0.812000 
b3 0.498504 1.002403 0.281215 0.889000 
b4 0.499002 1.001404 0.256148 0.976000 
b5 0.501002 0.997406 -  
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Figure 7: Radius and normalized design variables (t¯1/t¯2=1) 

 

The evolution of the design boundary during the optimization process is represented in Figure 8. Figure 

9 shows the evolution of the compliance, normalized by its initial value, as well as the percentage error of the 

principal stresses, computed at BEM nodes of the design boundary. It can be seen that the error is slightly higher 

at the mid-side node of each element than it is at the end nodes. This is due to the straightness of BEM quadratic 

elements assumed along the design boundary, in order to be compatible with the linearapproximation denied for 

the perturbation field. 

 

 

Figure 8: Evolution of the design boundary(t̄ 1/t̄ 2=1). 
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Figure 9: Evolution of the compliance and Error of principal stress at BEM nodes of the design boundary (t̄ 1/t̄ 2=1) 

 

A loading ratio given by (t̄ 1/t̄ 2=0.75) was considered in the second application. Results of the shape optimal 

design problem were obtained for this case with four design variables, schematically represented in Figure 5. The analytical 

solution of this problem is an ellipse with a semi-axis ratio equal to the ratio between the applied tractions. Table 1 and Figure 

10 show the ratios between the minor semi-axis of the ellipse a/2, and each design variable bi. It can be seen that the error 

obtained is less than 0.8%. 

 

 
Figure 10:Radius andnormalized design variables (t̄ 1/t̄ 2=0.75) 

 

The evolution of the design boundary during the optimization process is represented in Figure 11. Figure 12 shows 

the evolution of the compliance, normalized by its initial value. The normalized compliance decreases monotonically until a 

minimum value is reached. This behavior is in contrast with the one present in the results reported by Leal et al. [25], obtained 

by a mixed formulation of the finite element method. 
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Figure 11: Evolution of the design boundary(t¯1/t¯2=0.75) 

 

 

Figure 12: Evolution of the compliance (t¯1/t¯2=0.75) 

 

VIII. FinalRemarks 
In this paper, the boundary element method is applied to the shape optimal design of two-dimensional linear elastic 

structures. The design objective is to minimize the structural compliance, subject to an area constraint. To solve this 

optimization problem, an iterative analysis is carried out using the modified method of feasible directions available in the 

program PYOPT. For each iteration of the analysis, in which along the design boundary the state problem is modeled with 

straight quadratic boundary elements and the perturbation field is described with linear elements, the dual boundary element 

method is applied for the evaluation of the objective and constraint functions, as well as their respective gradients. The 

reliability of the whole design strategy lies in the accuracy of the computation of boundary stresses. 

The dual boundary element method incorporates two independent boundary integral equations: one is the stress 

boundary integral equation, used for collocation on the design boundary and the other is the displacement boundary integral 

equation, used for collocation on other boundaries. The use of the stress boundary integral equation, discretized with 

discontinuous quadratic elements to satisfy the necessary conditions for the existence of finite-part integrals, al- lows an 

efficient and accurate computation of stresses on the design boundary. This discretization strategy not only automatically 

satisfies the necessary conditions for the existence of the finite-part integrals, which occur naturally in the stress boundary 

integral equation, but also circumvents the problem of collocation at kinks and corners. This feature constitutes a practical 

advantage of the present formulation of the dual boundary element method over the finite element method and other boundary 

element formulations. 
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Accurate results of shape optimal design were obtained for the problem of an infinite plate with a hole. 

The accuracy and efficiency of the implementation described herein make this formulation very effective for the 

study of shape optimal design of structures. Finally, it is important to highlight that the effectivity was also 

achieved with the use of the PYOPT program, since its object-oriented features has facilitated the 

communication and interaction between the formulations. 

 

Appendix 

Consider a discontinuous quadratic boundary element of general shape Γethat contains the collocation node. The 

local parametric coordinate ξ is defined, as usual, in the range −1 ≤ ξ ≤ +1 and the collocation node ξ’ is mapped onto ξ’ via 

the continuous element shape functions. The displacement components ujare approximated in the local coordinate by means of 

the nodal values
n

ju and the discontinuous element shape functions. The first order finite-part integral of equation 15 can be 

expressed in the local coordinate as, 
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where  n

ijf   is aregular function, given by the product of the fundamental solution, a shape function and the Jacobian of 

the coordinate transformation, multiplied by the term ξ – ξ’.  The integral of the right hand side of equation(21) can be 

transformed with the aid of the first term of a Taylor’s expansion ofthe function 
n

ijf , around the collocation node, to give 
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(22) 

Now, the first integral of the right hand side is regular and the second one can be integrated analytically to give: 
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(23) 

In equation 22, the existence of the finite-part integral requires the Hldercontinuity of
n

ijf at the collocation node. For the 

discontinuous element, this requirement is automatically satisfied because the nodes are internal points of theelement, where 
n

ijf is continuously differentiable. The second order finite-part integral of equation 16 can be expressed in the local parametric 

coordinate as 
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(24) 

where  n

ijkg  isaregularfunctionas 
n

ijf  withtheJacobianmultipliedbytheterm  
2

'  . The integral of the 

right hand side of equation 24 canbe transformed 

withtheaidofthefirstandsecondtermsofaTaylor’sexpansionofthedensity function 
n

ijkg , in the neighborhood of the 

collocation node, to 
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(25) 

where
 1n

ijkg denotes the first derivative of 
n

ijkg . At the collocation node the function 
n

ijkg  is required to have 

continuity of its second derivative or, at least, aHlder-continuous first derivative, for the finite-part integrals to 

exist. This requirementisalsoautomaticallysatisfiedbythediscontinuouselement,since the nodes are internal points 

of the element. Now, in equation 25, the first 

integraloftherighthandsideisregularandthethirdintegralisidenticalwith the one given in equation 23. The second 

integral of the right hand side of equation 25 can be integrated analytically to give: 
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(26) 

 

Equations22and25aretheordinarydouble-sidedfirstandsecondorderfinite-part integrals respectively, as 

defined by Kutt [23]. Inthispaperthenormalperturbationfieldismodeledwithapiece-wiselinear 

approximation,asshowninFigure 3. Consequently,inordertobecompatible with the assumed linear approximation 

of the perturbation field the design boundary is modeled as piece-wise straight, when the elastic field is 

regarded. For piece-wise straight boundaries, all the integrals in equations 22 and 25 are most effectively 

carriedoutbydirectanalyticintegration,whichispresentedin the following. Consider a straight discontinuous 

quadratic boundary element with nodes positioned at points ξ = −2/3, ξ = 0 and ξ = +2/3 as done before. For this 

element, the integral of equation 15 is represented by: 
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(27) 

whereu
n
denotes the nodal displacement components and J(ξ) is the Jacobian of the coordinate transformation. 

Because of the assumed straightness of the element, J = l/2, where l represents the element length and the matrix 

h
n
is given by 
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The first order finite-part integrals are integrated analytically to give: 
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and 
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The integral of equation 16 is represented by 
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where
nh  the matrix is given by: 
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The matrix S' , is given by 
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(34) 

wheren1 and n2 are the components of the unit outward normal to the element. The second-order finite-part 

integrals of equation 33 are integrated analytically to give: 
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and 
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(37) 

Equation 33 shows that the terms of the matrix 
nh are inversely proportional to the element length l. 

This property is computationally advantageous because it can lead to diagonally dominant systems of algebraic 

equations.Higher accuracy will be obtained if the same order of approximation is used both for the perturbation 

field and BEM analysis, on the design boundary. 
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