Predicting the Suitability of Biogas Optimization from the Co-digestion of Plantain Peels and Poultry Waste Using Scheffe’s Second Degree Polynomials

Aniekan Udemea, Samuel Assamb, Nnamnso Nnanae, Ubong Ukpekpe
department of civil engineering, University of uyo, Nigeria

Abstract: The optimization of biogas from poultry waste and plantain peels for biogas production was embarked on in this research work. The aim of this research is to determine the sustainability of poultry waste and plantain peels for biogas production. For the production, five batch digesters labeled A to E were designed and operated at room temperature for 35 days to study the biogas yield. Digester E was observed to commence production within 24 hours after loading while digester A, C, and D commences production after 96 hours and 24 hours respectively, while digester B did not yield any gas. The cumulative yield of A, C, D and E were observed to be 184.9ml, 129ml, 287.41ml and 336.1ml respectively while digester B produce 0ml.

Keywords: Anaerobic Process, Digestion, Biogas, Water, Optimization, Plantain Peel’s, Poultry Waste, Retention Time, Digester and Scheffe’s Second Degree Polynomials.

I. Introduction

Anaerobic digestion is the breakdown of organic material by a microbial population that lives in an oxygen free environment. Anaerobic literally means "without oxygen". When organic matter is decomposed in an anaerobic environment the bacteria produce a mixture of methane and carbon dioxide gas and other inert gases like hydrogen sulfide and ammonia. Anaerobic digestion treats waste by converting putrid organic materials to carbon dioxide and methane gas. This gas is referred to as biogas. The biogas can be used to produce both electrical power and heat. The conversion of solids to biogas results in a much smaller quantity of solids that can be used as soil conditioner in crop improvement. During the anaerobic treatment process, organic nitrogen compounds are converted to ammonia, sulfur compounds are converted to hydrogen sulfide, phosphorus to orthophosphates, and calcium, magnesium, and sodium are converted to a variety of salts. Through proper operation, the inorganic constituents can be converted to a variety of beneficial products: The end products of anaerobic digestion are natural gas (methane) for energy production, heat produced) from energy production, nutrient rich organic slurry, and other marketable inorganic products. Anaerobic digestion has been used for over 100 years to stabilize municipal sewage and a wide variety of industrial wastes. Most municipal waste water treatment plant use anaerobic digestion to convert waste solids to gas. The anaerobic process removes a vast majority of the odorous compounds (Lusk et al., 1995). It also significantly reduces pathogens present in the slurry. Over the years, anaerobic digestion processes have been developed and applied to a wide array of industrial and agricultural wasted (Speece, 1996). It is the preferred waste treatment process, since it produces rather than consumes energy and can be carried out in a relatively small, enclosed tank or digester. The product of anaerobic digestion has value and can be sold to offset treatment cost. Biogas is normally produced by using the excreta of animals as the source material. In most of the countries where biogas is produced, the excreta of cattle and other farm animals are used. Under normal circumstances the microbial content of the biogas is maintained by the addition of 2% of the expended slurry of fresh dung. At times, waste of kitchens and excrement of human bodies is used in these processes. The ideal temperature for producing/biogas is within 29 to 32 degree Celsius. If the temperature is lower than that then the production of biogas may go down as well. This is precisely the reason as to why thermal insulation is necessary to produce biogas.

Biogas is a non-conventional 'energy, which is actually a mixture of methane (CH4), carbon dioxide (CO2) and depending on the feedstock or garbage used, traces of gases such as nitrogen, ammonia (NH3), sulphur dioxide (SO2) hydrogen sulphate (H2S) and hydrogen. Biogas is produced

- The homoacetogenic bacteria which can convert very wide spectrum or multi or monocarbon compounds to acetic acids.
- The methanogenic bacteria which convert H2/CO2, rnonocarbon compounds (i.e. methanol, CO, Methylamine) and acetate into methane or can form methane from decarboxylation of acetate.

These transformations and experiments were devised to help prove or disprove the multiple-organism theory.
II. Biogas as a Source of Energy

Hundreds of millions of cubic feet of methane some-times called swamp or biogas are generated every year by the decomposition of organic materials. It's a near-twin of the natural gas that big utility companies pump out of the ground and which so many or use for heating our homes and for cooking. Instead of been harnessed like natural gas however, methane has traditionally been considered as merely a dangerous nuisance that should be gotten rid of as fast as possible. Only recently have a few thoughtful men begun to regard methane as a potentially revolutionary source of controllable energy. In China, more than five million digesters now supply gas for cooking lightning and powering agricultural equipment "each digester is an air-light chamber in which the fermentation of a mixture of animal dung, human excrement and crop residue such as straw yields a clean-burning gas that is one-half to three-fourth methane' reports scientific American magazine. A standard digester yields as much as two cubic meters (7CU-ft.)

III. Benefits of Biogas Production

Processing organic waste anaerobically to create biogas is a sustainable. Renewable waste to energy solution. The process offers numerous advantages over conventional technologies and if waste materials are used in the process, it can reduce greenhouse gas emission in four ways:

• Preventing the uncontrolled emission of CH₄ from landfills.
• The biogas fertilizer produced can displace mineral fertilizer. Nutrients are conserved with more than 90% nutrients entering anaerobic digesters conserved through the digestion process. By conserving nitrogen during digestion; the nitrogen potassium ratio of the treated manure is more favorable for plant growth.
• Reduce the transport or waste
• Renewable electricity and heat can be produced reducing greenhouse gas emissions. Since anaerobic digestion operates in a closed system, substantial reductions in greenhouse gas emissions are achieved. Other benefits of the process are odour-levels are greatly reduced during manure processing creating a relative lice odour-free product (closed vessel processing confined odourous compounds which are converted to other chemicals). Improve in slurry characteristics such as fluidity, crop compatibility, homogeneity and reduction of weed germs. Finally, anaerobic digestion greatly reduces pathogen levels.

IV. Steps for Biogas Production

Digestion refers to various reactions and interactions that take place among the methanogens, non-methanogens and substrates fed into the digester as slurry. The material to be processed can be shredded to increase the surface area available to microbes in the digesters and hence increase the speed of digestion. The anaerobic digestion process takes place in an air tight container, known as a digester. The first stage of anaerobic digestion is a chemical reaction called:

• Hydrolysis, where complex organic molecules are broken into simple sugars amino acids, and fatty acids with the addition of hydroxyl groups. This is followed by three biological processes.
• Acidogenesis: further breakdown by acidogenic bacteria into simpler molecules, hydrogen sulfide as by products.
Fig. 2. The Four Stages of Anaerobic Processes

The pH level should be kept between 5.5 to 8.5 and the temperature between 30-60°C in order to maximize digestion rate.

\[
\begin{align*}
\text{CH}_3\text{COOH} & \Rightarrow \text{CH}_4 + \text{CO}_2 \\
2\text{CH}_3\text{CH}_2\text{OH} + \text{CO}_2 & \Rightarrow \text{CH}_4 + 2\text{CH}_3\text{COOH} \\
\text{CO}_2 + 4\text{H}_2 & \Rightarrow \text{CH}_4 + 2\text{H}_2\text{O}
\end{align*}
\]

The above equations show that many by-products and intermediate products are produced in the process of digestion in an anaerobic condition before methane is produced.

V. Factor Affecting the Production of Biogas

Nutrients

Anaerobic decomposition of organic process will produce methane, carbon dioxide, some hydrogen and other gases in traces, very little heat and a final product with high nitrogen content. Anaerobic decomposition is a two-stage process as specific bacteria feed on certain organic materials. In the first stage, acidic bacteria dismantle the complex organic molecules into peptides, glycerol, alcohol and the simple sugars. When these compounds have been produced in sufficient quantities, a second type of bacteria starts to convert this simpler compound into methane. These methane producing bacteria are particularly influenced by the ambient conditions which can slow or halt the process completely if they do not lie within fairly narrow band.

Acidity

Anaerobic digestion will occur best within a pH range of 6.8 - 8.0. More acidity or basic mixtures will ferment at a lower speed. The introduction of raw material will often lower the pH (Making the mixture more acidic). Digestion will stop or slow dramatically until the bacteria have absorbed the acids. A high pH will encourage the production of acidic carbon.

Carbon-Nitrogen Ratio

The bacteria responsible for the anaerobic process requires both elements, as do all living organisms but they consume carbon roughly 30 times faster than nitrogen. Assuming all other conditions are favourable for biogas production, a carbon-nitrogen ratio of about 25:1 is ideal for the raw material fed into a biogas digester. A higher ratio will leave carbon still available after the nitrogen has been consumed, starving some of the bacteria of this element. These will in turn die, returning nitrogen to the mixture, but showing the process. Too much nitrogen will cause this to be left over at the end of digestion (which stops when the carbon has been consumed) and reduce the quality of the fertilizer produced by the biogas plant. The correct ratio of carbon to nitrogen will prevent loss of either fertilizer quality or methane content.

Temperature

The anaerobic bacteria consortia function under three temperature ranges. Psychrophilic temperatures of less than 68 degrees Fahrenheit produce the least amount of bacterial action. Mesophilic digestion occurs between 68 degrees and 105 degrees Fahrenheit. Thermophilic digestion occurs between 110 degrees Fahrenheit and 160 degrees Fahrenheit. The optimum mesophilic temperature is between 95 and 98 degrees Fahrenheit. The optimum thermophilic temperature is between 140 and 145 degrees Fahrenheit. The rate of bacterial growth and waste degradation is faster under thermophilic conditions. On the other hand, thermophilic digestion
produces an odorous effluent when compared to mesophilic digestion. Thermophilic digestion substantially increases the heat energy required for the process. In most cases, sufficient heat is not available to operate in the thermophilic range. Seasonal and diurnal temperature fluctuations significantly affect anaerobic digestion and the quantities of gas produced. Bacterial storage and operational controls must be incorporated in the process design to maintain process stability under a variety of temperature conditions.

Anaerobic breakdown of waste occurs at temperature lying between 0°C and 69°C, but the action of the digesting bacteria will decrease sharply between 16°C. Production of gas is most rapid between 20°C and 41°C or between 49°C and 60°C. This is due to the fact that two different bacteria are much more sensitive to ambient influences. A temperature between 320°C and 350°C has proven most efficient for stable and continuous production of methane. Biogas produced outside this range will have higher percentage of carbon dioxide and other gases within the range.

Percentage of Solids

Anaerobic digestion of organics will proceed best if the input material consists of roughly 8% solids. In the case of fresh cow manure, this is the equivalent of dilution with roughly an equal quantity of water.

Retention Time

This is the average period that a given quantity of input remains in the digester to be acted upon by the methanogens. In the digesting plant, the retention time is calculated by dividing the total volume of the digester by the volume of inputs added daily. The climatic condition of the environment has an effect on the retention time. At night, a longer retention time is needed so that the pathogens present in human faeces are destroyed. The retention time is also dependent on the temperature of up to 35°C, the higher the temperature, the lower the retention time.

Toxicity

Mineral ions, heavy metals and detergents are some of the toxic minerals that inhibit the normal growth of pathogens in the digester. Small quantity of mineral ions (e.g sodium, potassium, calcium, magnesium ammonium and sulphur) also stimulated the growth of bacteria, while very heavy concentration of these ions will have toxic effect. For example, the presence of methane from 50 to 200mg/l stimulated the growth of microbes, where as its concentration above 1,500mg/l produces toxicity. Similarly, heavy metals such as copper, nicked, chromium, zinc, lead etc in small quantities are essential for the growth of bacteria but their higher concentration has toxic effects. Likewise, detergents including soap, antibiotics, organic solvents etc inhibit the activities of methane producing bacteria and addition of these substances in the digestion should be avoided. Although there is a long list of substances that produce toxicity on bacteria growth, the inhibiting levels of some of the major ones are given in table 2.1.

<table>
<thead>
<tr>
<th>Inhibitors</th>
<th>Inhibiting concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphate (SO₄²⁻)</td>
<td>5,000 ppm</td>
</tr>
<tr>
<td>Sodium chloride or common salt (Na⁺)</td>
<td>40,000 ppm</td>
</tr>
<tr>
<td>Nitrate (calculated as N)</td>
<td>0.05 mg/l</td>
</tr>
<tr>
<td>Copper (Cu²⁺)</td>
<td>100 mg/l</td>
</tr>
<tr>
<td>Chromium (Cr³⁺)</td>
<td>200 mg/l</td>
</tr>
<tr>
<td>Nickel (Ni²⁺)</td>
<td>200-500 mg/l</td>
</tr>
<tr>
<td>Sodium (Na⁺)</td>
<td>3,500-4,500 mg/l</td>
</tr>
<tr>
<td>Potassium (K⁺)</td>
<td>2,500-4,500 mg/l</td>
</tr>
<tr>
<td>Calcium (Ca²⁺)</td>
<td>2,500-4,500 mg/l</td>
</tr>
<tr>
<td>Magnesium (Mg²⁺)</td>
<td>1,000-1,500 mg/l</td>
</tr>
<tr>
<td>Manganese (Mn²⁺)</td>
<td>Above 1,500 mg/l</td>
</tr>
</tbody>
</table>

Source: The biogas technology in China, BRTC China 1989
VI. Methodology

Sample Collection

The poultry waste was collected from a poultry farm located at Alakaiah community in Rivers State while the plantain peels were gotten from Sonaz Restaurant, in Aluu Community of Rivers State. The poultry waste and the plantain peels were allowed to dry for twelve and twenty-one days respectively after which the poultry waste and the plantain peel were crushed mechanically using a plastic mortar and pestle to ensure homogeneity and to get a better surface area.

VII. Materials Collected

The materials collected include the following:

i. 12 Buckner flasks (5 one liter and five 250 ml sizes)
ii. Five conical flask (100 ml)
iii. 2 measuring cylinders (0.2 - 10 ml and 10 - .100 ml)
iv. 10 corks
v. Glass connecting pipes
vi. Mortar and pestle
vii. Connecting hose
viii. Thermometer
ix. IX. Sieve
x. X. Weighing Balance
xi. XI. Dust proctor cotton
xii. XII. Hand Gloves
xiii. The materials were washed properly with detergent, rinsed and allowed to
xiv. dry by standing overnight in the laboratory. The chemical used include
xv. concentrated nitric acid (HNO₃) and sodium chloride (NaCl). Tap water was
xvi. used for all dilution.

VIII. Design and Analysis of the Experiment

Choice of Design

The design available in the study of biogas production from waste include either varying the retention time, keeping the total concentration constant, or varying the total solid concentration and keeping the retention time constant. Low solid anaerobic digestion process is a biological process in which organic waste are fermented at solid concentration equal to or less than 4% to 8%. It involves the addition of considerable amount of waste to bring solid content to the required range of 4 - 8%.
Preparation of Digester

A set of five Buckner flasks was used as digesters each containing varying ratio of poultry waste and plantain peels at solid concentration equal to 5.26%. The digesters were labeled A, B, C, D, and E, respectively. The composition by weight of poultry waste and plantain peels is shown below.

Results of Total Solids Determined Results of the total solid determination of the digester's content before and after experiment presented in Table 3.1

<table>
<thead>
<tr>
<th>DIGESTER</th>
<th>Plantain peels (g)</th>
<th>Poultry waste (g)</th>
<th>Total solids (g)</th>
<th>Total solid (%)</th>
<th>Total solid (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10.52</td>
<td>0</td>
<td>10.52</td>
<td>4.038</td>
<td>7.64</td>
</tr>
<tr>
<td>B</td>
<td>2.63</td>
<td>7.89</td>
<td>10.52</td>
<td>4.038</td>
<td>7.80</td>
</tr>
<tr>
<td>C</td>
<td>5.26</td>
<td>5.26</td>
<td>10.52</td>
<td>4.038</td>
<td>6.76</td>
</tr>
<tr>
<td>D</td>
<td>7.89</td>
<td>2.63</td>
<td>10.52</td>
<td>4.038</td>
<td>8.98</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>10.52</td>
<td>10.52</td>
<td>4.038</td>
<td>7.16</td>
</tr>
</tbody>
</table>

Table 3.1 Total solids of Digester's content before and after experiment

The digesters was allowed to run for 35 days and was agitated once daily between the hours of 10am to 12am. The daily reading is as shown plotted in Fig. 4

Preparation of Brine Solution

1000ml of water was diluted with sodium chloride until the solution became supersaturated. This forms the stock solution from which portion arc filled into the six Buckner flasks as shown in Fig. 3

Biogas production moves from the digester into the Buckner flask obtaining brine where pressure is exerted that causes water to rise in the connecting pipe into the conical flask. The amount or water displaced is measured intermittently using a measuring cylinder which is proportional to the biogas production. And it is known as water displacement method.

Model derivation

The mixture models are most times referred to as Scheffe’s Models. The Scheffe’s Model for 2nd degree polynomial is as follows: Assuming our mixture models are possesses curvature in the system then a polynomial of higher degree such as given below must be used.

\[E(y) = \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \sum_{i<j}^{p} \beta_{ij} x_i x_j + \cdots + \epsilon \]

I.e Equation of independent variable for 2nd degree polynomial
Predicting the Suitability of Biogas Optimization from the Co-digestion of Plantain Peels and Poultry Waste

Where,
E(y) = F(x, y) (Plantain Peels, Poultry waste and Water),
Let lateritic soil variable be x1, cement variable be x2, Termite Clay Powder variable be x3, Number of component of the mixture, p=3.

E(y) ⇒ F(x1, x2, x3)

Expanding Equation 3.1, we have the general equation as:
F(x) = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + β11x2x3 + β22x22 + β33x33. 1.1

The constrain of Scheffe’s equation for mixture is that x1 + x2 + ... xp = 1
⇒ x1 + x2 + x3 = 1

Thus, let β0=β0 . 1 = β0(x1+x2+x3)
Also, it can be seen that, x2 = x1x1 but, x4 = 1 - x2 - x3
⇒ x2 = x1 . (1 - x2 - x3) = x1 - x1x2 - x1x3

Similarly,
x2 = x2 - x1x2 - x2x3
x2 = x3 - x1x3 - x2x3

Putting these expression into the general response expression,
F(x) = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + β11x2x3 + (x1-x1x2-x1x3)
+ β22(x2-x1x2) + β33(x3-x1x3 - x2x3)
= (β0 + β1 + β11)x1 + (β0 + β2 + β22)x2 + (β0 + β3 + β33)x3 + (β12 - β11 - β22)x1x2 + (β13 - β11 - β23)x1x3 + β23 - β22 - β33)x2x3

Let
(β0 + β1 + β11) = μ1; (β0 + β2 + β22) = μ2; (β0 + β3 + β33) = μ3; (β12 - β11 - β22) = μ12; (β12 - β22 - β33) = μ13; (β23 - β22 - β33) = μ23;
F(x) = μ1x1 + μ2x2 + μ3x3 + μ12x1x2 + μ13x1x3 + μ23x2x3

This can be put in compact form as:
F(x) = ∑i,j Pij μij xixj 1.2

Equation 3.4 is the same as equation 3.5. They are called 2nd Scheffe’s for three variable – j

Least Squares Estimation of the Model Parameters

This procedure is referred to as model fitting. The method of least square chooses the coefficients μi and μij in Equation 3.5 so that the sum of the squares of the errors between the experimental expected response (Fxi and Fxij) and predicted expected response (F(xi and Fxij) is minimized.

The least square function is expressed as:
L = [F(x) - ∑i,j Pij μij xixj] 1.3
The function L is to be minimized with respect to μi (i = 1 - 3) and μij (1 ≤ i ≤ j)

The least square estimator must satisfy
\[\frac{dL}{dx_{ij}} = -2 \sum_{i=1}^{n} \left[F_{x} - \sum_{i,j}^{P} \mu_{ij} x_{i} x_{j} \right] = 0 \] 1.5
And
\[\frac{dL}{dx_{ij}} = -2 \sum_{i=1}^{n} \left[F_{x} - \sum_{i,j}^{P} \mu_{ij} x_{i} x_{j} \right] x_{i} x_{j} = 0 \] 1.6

Equation 1.5 and 1.6 would result to a system of homogenous equations, which solved would give the values of the unknowns: μi and μij of equation 1.3. This procedure is very adaptable to a degree of polynomials.

IX. Procedure for Optimization using Scheffe’s Models

A set of five batch reactors were used as digesters. Each Digester contained fixed amount of water and increasing ratio of plantain peels and poultry waste. These digesters were labeled A, B, C, D, and E, respectively.
This digester acted as the control. The compositions of batch reactor digester arc as follows.
- Digester - A, consisted of 1.052g of plantain peels, 0g of poultry waste and 100mi of water.
- Digester- B consisted of 2.63g of plantain peels, 7.89g of poultry waste and 100mi of water.
- Digester- C consisted of 5.26g or plantain peels, 5.26 or poultry waste and 100ml of water (i.e equal amount of waste content).
- Digester - D consisted of 7.89g of plantain peels, 2.63g of poultry waste and 100mi of water.

DOI: 10.9790/1684-1304052032 www.iosrjournals.org 26 | Page
Predicting the Suitability of Biogas Optimization from the Co-digestion of Plantain Peels and..

- Digester - E consisted of Og or plantain peels, 1 0.52g of poultry waste and 100mi of water the vice visa of digester A. The waste used is poultry waste and plantain peels gotten from farm for the purpose a [this experiment”

X. pH Determination

A digital pH meter with glass reference electrode was used for all pH measurement. The meter was set with distilled water and adjusted at room temperature before measurement was taken.

Volatile Organic Matter and Ash Content Analysis

A portion of poultry waste and plantain Peels previously dried was grained and weighed. The samples were sent to the lab to determine the volatile organic matter. 1 he dry sample was transferred into a muffle furnace and ignited at 550 degree Celsius for two hours. The loss in weight was calculated and is as shown in Table C1- C3.

XI. Results and Discussion

The result for the cumulative biogas production and optimum mix ratio corresponding to maximum biogas yield are discussed below.

![Cumulative Volume of Biogas Against Time](image)

Fig. 4: Cumulative Volume of Biogas Against Time

The cumulative biogas produced for digester A, B, C; D and E were observed to be 148.9ml, 0ml, 129ml, 287.4ml and 336.1ml respectively. In- addition, digester E which has a ratio or 0: 1 produced 336.111 which is the maximum yield with retention time or 35 days; this is due to the presence or bacteria population from the poultry waste. Digester D, A and C was the next to produce a maximum yield of 287.4ml, 148.9ml and 129ml respectively. This can be attributed to the C: N ratio, he fact that the poultry waste has undergone initial digestion in the animals stomach.

XII. Designing At Maximum Conversion Efficiency

Table 4.2 shows the design parameter assumption for an anaerobic digester. The geometrical dimension of a cylindrical shaped biogas digester is shown in the Appendix.
Table 4.2 Design parameter Assumption

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected of materials</td>
<td>Calculated as the material unit to indicate the biogas producing rate of the material. Most favorable total solid value desired is 4.04%</td>
</tr>
<tr>
<td>Total solid content</td>
<td>Most favorable total solid value desired is 4.04%</td>
</tr>
<tr>
<td>Temperature: Mesophilic: 20°C - 35°C</td>
<td>Temperature: Mesophilic: 20°C - 35°C</td>
</tr>
<tr>
<td>C: N ratio range from 20:1 to 30:1</td>
<td>C: N ratio range from 20:1 to 30:1</td>
</tr>
<tr>
<td>Hydraulic retention time HRT</td>
<td>For mesophilic digestion where temperature varies from 20°C to 35°C and HRT is greater than 35 days.</td>
</tr>
<tr>
<td>Substrate concentration</td>
<td>These figures show that an optimum poultry-waste concentration of 93.7% of the total solid concentration produced maximum conversion efficiency of substrate. These values are equal to 10.52g of poultry waste and 9g of plantain peels in 250ml of water. Thus, the given values can be used as input data and digester dimensions are as 1010ws:</td>
</tr>
<tr>
<td>Working volume of digester = Vgs + Vf = Qx HRT</td>
<td>Working volume of digester = Vgs + Vf = Qx HRT</td>
</tr>
</tbody>
</table>

V₁ = Volume of gas collecting chamber
V₂ = Volume of gas chamber
V₃ = Volume of fermentation area
V₄ = Volume of sludge area
D = Diameter
R₁ = Surface radius (top)
R₂ = Surface radius (bottom)
V = Total volume

Design Parameter

- Selected of materials
- Total solid content contains calculation of organic material is usually used as the material unit to indicate the biogas producing rate of the material. Most favorable total solid value desired is 4.04%
- Favorable temperature: C: N ratio for good fermentation.
 - Temperature: Mesophilic: 20°C - 35°C
 - C: N ratio range from 20:1 to 30:1
 - Hydraulic retention time HRT

For mesophilic digestion where temperature varies from 20°C to 35°C and HRT is greater than 35 days.

In designing the batch digester to operate at maximum conversion efficiency of substrate, the result obtained from figure 4.5.

These figures show that an optimum poultry-waste concentration of 93.7% of the total solid concentration produced maximum conversion efficiency of substrate. These values are equal to 10.52g of poultry waste and 9g of plantain peels in 250ml of water. Thus, the given values can be used as input data and digester dimensions are as 1010ws:

Working volume of digester = Vgs + Vf = Qx HRT

Q = Loading rate = 4.04 TS = 4.04 in 100kg influent
Thus 1kg TS = 1 0014. 04g of Influent
There, 10.52g TS = 1 O. 5214. 04 x 10.521day = 27.40kg/day
Taking HRT as 35 day
Since 1000kg of water 1m³
Vgs + Vf = 0.9
9.58 = 0.9V
V=10.8m^3
Hence, Vgs + Vf=27.40 x 35=958.77
D=1.3078V^{1/3} = 2.89

From geometric assumptions,
V_1=0.3142 D^3 = 3.14 x D^2 x H/4
H=1.16
Also,
R_l=0.725D=2.10m
R_2=1.0625D=3.07m
F_1 = D/5
F_2 = D/8
V_1 = 0.0827D^3 = 2.00m
V_2 = 0.05011D^3
V_3 = 0.3142D^3
V_c = 0.05V=0.54m^3
V=V_c+V_1+V_3=0.54+2.00+1.21+7.58=11.33m^3

Table C1: Mixed proportion of Waste Materials

<table>
<thead>
<tr>
<th>DIGESTER</th>
<th>PANTAIN PEELS</th>
<th>POULTRY WASTE</th>
<th>PP/PW PERCENTAGE</th>
<th>CARBON NITROGEN (C:N) RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10.52</td>
<td>0</td>
<td>100.0</td>
<td>41:1.78</td>
</tr>
<tr>
<td>B</td>
<td>2.63</td>
<td>7.89</td>
<td>20.80</td>
<td>49.5:2.3</td>
</tr>
<tr>
<td>C</td>
<td>5.26</td>
<td>5.26</td>
<td>50.50</td>
<td>49.5:2.21</td>
</tr>
<tr>
<td>D</td>
<td>7.89</td>
<td>2.83</td>
<td>80.20</td>
<td>42.7:2.53</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>10.52</td>
<td>0.100</td>
<td>52.1:2.71</td>
</tr>
</tbody>
</table>

Table C2: Percentage (%) of Volatile matter

<table>
<thead>
<tr>
<th>No. of digester</th>
<th>Empty wt of crucible</th>
<th>Crucible wt of VOM +1g</th>
<th>After Ashing</th>
<th>Percentage (%) VOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>23.745</td>
<td>24.745</td>
<td>24.007</td>
<td>73.80</td>
</tr>
<tr>
<td>B</td>
<td>26.561</td>
<td>26.561</td>
<td>26.662</td>
<td>89.90</td>
</tr>
<tr>
<td>C</td>
<td>25.304</td>
<td>26.304</td>
<td>25.413</td>
<td>89.10</td>
</tr>
<tr>
<td>D</td>
<td>25.564</td>
<td>26.564</td>
<td>25.795</td>
<td>76.90</td>
</tr>
<tr>
<td>E</td>
<td>24.758</td>
<td>25.758</td>
<td>24.821</td>
<td>93.70</td>
</tr>
</tbody>
</table>

Table C3: Percentage (%) of Volatile matter

<table>
<thead>
<tr>
<th>No. of digester</th>
<th>Empty wt of crucible</th>
<th>Crucible wt of VOM +1g</th>
<th>After Ashing</th>
<th>Percentage (%) Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14.945</td>
<td>15.945</td>
<td>14.007</td>
<td>26.20</td>
</tr>
<tr>
<td>B</td>
<td>29.561</td>
<td>30.561</td>
<td>29.662</td>
<td>10.10</td>
</tr>
<tr>
<td>C</td>
<td>35.907</td>
<td>36.907</td>
<td>35.513</td>
<td>10.90</td>
</tr>
<tr>
<td>D</td>
<td>27.164</td>
<td>28.164</td>
<td>27.395</td>
<td>23.10</td>
</tr>
<tr>
<td>E</td>
<td>35.858</td>
<td>36.858</td>
<td>35.921</td>
<td>6.30</td>
</tr>
</tbody>
</table>
Predicting the Suitability of Biogas Optimization from the Co-digestion of Plantain Peels and...

Table C4: Selected variables for Digester A

<table>
<thead>
<tr>
<th>SN</th>
<th>x_1</th>
<th>x_2</th>
<th>x_{1x_2}</th>
<th>x_1^2</th>
<th>x_2^2</th>
<th>$x_1^2x_2$</th>
<th>$x_1x_2^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>4.00</td>
<td>1.40</td>
<td>5.60</td>
<td>16.00</td>
<td>1.96</td>
<td>22.40</td>
<td>7.84</td>
</tr>
<tr>
<td>3</td>
<td>6.00</td>
<td>33.40</td>
<td>200.40</td>
<td>5685.16</td>
<td>7540.00</td>
<td>56851.60</td>
<td>568516.00</td>
</tr>
<tr>
<td>4</td>
<td>10.00</td>
<td>75.40</td>
<td>1754.00</td>
<td>100.00</td>
<td>5685.16</td>
<td>56851.60</td>
<td>568516.00</td>
</tr>
<tr>
<td>5</td>
<td>14.00</td>
<td>87.60</td>
<td>1223.40</td>
<td>196.00</td>
<td>7673.76</td>
<td>17169.60</td>
<td>107472.64</td>
</tr>
<tr>
<td>6</td>
<td>18.00</td>
<td>103.50</td>
<td>1863.00</td>
<td>324.00</td>
<td>1115.56</td>
<td>22419.60</td>
<td>3470769.00</td>
</tr>
<tr>
<td>7</td>
<td>22.00</td>
<td>107.10</td>
<td>2356.20</td>
<td>484.00</td>
<td>1115.56</td>
<td>6693.36</td>
<td>3470769.00</td>
</tr>
<tr>
<td>8</td>
<td>26.00</td>
<td>123.50</td>
<td>3211.00</td>
<td>754.00</td>
<td>5685.16</td>
<td>56851.60</td>
<td>568516.00</td>
</tr>
<tr>
<td>9</td>
<td>30.00</td>
<td>135.10</td>
<td>4053.00</td>
<td>900.00</td>
<td>1115.56</td>
<td>6693.36</td>
<td>5551678.40</td>
</tr>
<tr>
<td>10</td>
<td>34.00</td>
<td>144.90</td>
<td>4926.60</td>
<td>1156.00</td>
<td>1115.56</td>
<td>6693.36</td>
<td>24271388.00</td>
</tr>
<tr>
<td>\sum</td>
<td>166.00</td>
<td>811.90</td>
<td>18596.20</td>
<td>3892.00</td>
<td>91159.37</td>
<td>483885.20</td>
<td>2274138.10</td>
</tr>
</tbody>
</table>

Table C5: Selected variables for Digester A

<table>
<thead>
<tr>
<th>SN</th>
<th>$\Sigma f_i x_1$</th>
<th>$\Sigma f_i x_2$</th>
<th>$\Sigma f_i x_1x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>5.60</td>
<td>1.96</td>
<td>7.84</td>
</tr>
<tr>
<td>3</td>
<td>200.40</td>
<td>1115.56</td>
<td>6693.36</td>
</tr>
<tr>
<td>4</td>
<td>754.00</td>
<td>5685.16</td>
<td>56851.60</td>
</tr>
<tr>
<td>5</td>
<td>9.80</td>
<td>61.32</td>
<td>858.48</td>
</tr>
<tr>
<td>6</td>
<td>300.60</td>
<td>1728.45</td>
<td>31112.10</td>
</tr>
<tr>
<td>7</td>
<td>829.40</td>
<td>4037.67</td>
<td>858.48</td>
</tr>
<tr>
<td>8</td>
<td>452.40</td>
<td>2148.90</td>
<td>55871.40</td>
</tr>
<tr>
<td>9</td>
<td>1632.00</td>
<td>7349.44</td>
<td>220483.20</td>
</tr>
<tr>
<td>10</td>
<td>1849.60</td>
<td>7882.56</td>
<td>268007.04</td>
</tr>
<tr>
<td>\sum</td>
<td>6033.80</td>
<td>30011.02</td>
<td>728713.76</td>
</tr>
</tbody>
</table>

The homogeneous set of equations resulting from equation 1.5 and 1.6 are as follows:

$\mu_1 x_1 + \mu_2 x_1 x_2 + \mu_{12} x_1^2 x_2 = \Sigma f_i x_1$ - 1.7

$\mu_1 x_1 x_2 + \mu_2 x_2 + \mu_{12} x_1 x_2^2 = \Sigma f_i x_2$ - 1.8

$\mu_1 x_1^2 x_2 + \mu_2 x_1 x_2^2 + \mu_{12} x_1^2 x_2^2 = \Sigma f_i x_1 x_2$ - 1.9

\[
\begin{bmatrix}
\mu_1 \\
\mu_2 \\
\mu_{12}
\end{bmatrix} = \begin{bmatrix}
4892.00 \\
18596.20 \\
483885.20
\end{bmatrix} \begin{bmatrix}
18596.20 \\
91159.37 \\
2274138.10
\end{bmatrix}^{-1} \begin{bmatrix}
483885.20 \\
30011.02 \\
62143929.92
\end{bmatrix} = \begin{bmatrix}
15393.44 \\
3223.61 \\
0.0539
\end{bmatrix}
\]

Where $F_i = \mu_1 x_1 + \mu_2 x_2 + \mu_{12} x_1 x_2$

Fig. 5: Digester A
Fig. 6: Digester C

Fig. 7: Digester D

Fig. 8: Digester E
XIII. Modeling of Strength Indices and Model Verification

Scheffe’s predictive mixture models. Scheffe, H. (1958 and 1963) were formulated for Digester A, C, D and E. The correlation between the experimented and the model results were computed for $r = \pm$ and the t-test was used to verify the significance of r at 5% level. This was done to facilitate the application of laboratory results and serve as a guide in predicting relationship between variables and also reduce the rigorous laboratory work by facilitating prediction of results. Figure (5 to 8) shows the plots of the experimental and predicting models from equations (1.7 – 1.9) developed. The models were those for Digester A, C, D, and E. Digester B yield no gas as a result of the mixture content.

Digester A = $-0.5929x_1 + 0.4876x_2 - 0.0015x_1x_2$

Digester C = $2.2869x_1 + 0.0418x_2 - 0.0030x_1x_2$

Digester D = $0.0501x_1 + 0.5560x_2 - 0.0004x_1x_2$

Digester E = $-28.63x_1 + 1.0723x_2 + 0.0803x_1x_2$

XIV. Conclusion

Models developed correspond with experimental result to a reasonable degree of accuracy and could be successfully used to predict the biogas optimization in the absence of experimental data from the co-digestion of plantain peels and poultry waste.

Acknowledgement

The Author acknowledged the Almighty God for wisdom, knowledge and understanding. Also acknowledge Engr. Yusuf Mormoh.

References

[8]. Singh, R.I3. (1974); "Biogas Plant Generating Methane From animal Dung". 14, 123-150.