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Abstract: In this research, we presented Differential Quadrature Method for solving groundwater flow and 

advection-dispersion equations in two layered porous media which the layers are separated diagonally. This 

method was applied to five cases and the results are compared with  Modflow and Mt3d solutions. Also, The 

effect of various parameters on transport process are discussed in all cases. The DQM results show a good 

agreement with Modflow and Mt3d results regarding selecting fewer grid points. In applying the DQM, the 

needed mesh size is much smaller than the traditional approaches which reduces computational time and 

needed less computer storage capacity. 
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I. Introduction 
Knowledge of solute transport through composite or layered porous media is of importance to better 

manage and describe the movement of solutes in natural and artificial media. Interest in porous media transport 

is increasingly motivated by concerns over the presence of a wide variety of contaminant substances and wastes 

in the subsurface environment. Porous media are seldom homogeneous and the transport properties of these 

media will vary spatially and sometimes also temporally. In some cases artificial barriers are used to prevent or 

slow down the progress of certain pollutants. Mathematical models are necessary to describe the fate and 

movement of such solutes. 

 The general framework of the problem can be modeled by a pair of partial differential equations, the 

first of which is for the groundwater flow subject to two constant heads and the second is ADE for contaminant 

transport. The Advection–diffusion equation describes the solute transport due to the combined effect of  

diffusion and convection in a medium. It is a partial differential equation of parabolic type, derived on the 

principle of conservation of mass using Fick’s law. 

In the past, several investigations have been done to predict the location and movement of the 

contaminant. All of them accompanied with some simplicity Assumptions. Analytical solutions for ADE 

through semi-infinite or finite porous media have been presented by several researchers (Shamir and Harleman 

[1]; Alniami and Rushton [2]). Further researches were done with less simplification. Leij et al. [3] investigated 

the solute transfer in layered soil. They utilized two different approaches for solving ADE. Leij and van 

Genuchten [4] in their supplementary investigations presented an approximate analytical solution for solute 

transport in two-layer porous media with more focus on the interface condition. Recently Li and Cleall [5] 

presented analytical solutions for advective and dispersive solute transport in double layered finite porous media 

in one-dimension which almost cover all the solutions mentioned by other researchers. In all above researches a 

constant flow have been assumed. So, the groundwater flow is not considered in those studies. Also, those 

researches have been conducted in one-dimension which cannot perfectly show the solute path and fate in 

porous media. 

Nowadays, there widely use models for groundwater flow and solute transport, such as MODFLOW 

and SUTRA and finding the simplest and optimum techniques to solve the partial differential equation has 

attracted a great importance. The frequently used numerical techniques for solving such equations are the 

standard finite difference method (FDM), finite element method (FEM) and boundary element method (BEM). 

Usually, the FDM requires a large number of points in order to produce a moderately accurate solution while the 

rest of the above-mentioned methods are quite sophisticated and involve complex computer programming 

algorithms. But there exist a number of alternative methods such as Differential Quadrature Method which can 

provide relatively accurate results with inexpensive computation. The DQM has been applied successfully to 

solve a wide range of problems, with a diversity of boundary conditions easily and precisely.  

DQM first developed by Bellman and Casti [6] and has made a noticeable success over the last four 

decades. The main idea of this method is on the basis of the integral quadrature. Further developments achieved 

by Shu et al. [7] based on Polynomial-based differential quadrature, (PDQ) (Shu and Richards [8]; Shu et al. [9] 

), Fourier expansion-based differential quadrature (FDQ) ( Shu and Xue [10]; Shu and Chew [11]) and RBF-DQ 
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based on Radial Basis Function, (Shu et al. [12], [13]). Now DQM has been applied successfully in many fields 

such as fluid dynamics (Shu et al. [14],[15]; Tsai et al. [16]), solid mechanics (Wang et al. [17]), chemical 

engineering (Civan, [18]; Li and Mulay [19]), vibration and buckling (Mahmoud et al. [20]; Danesh et al. [21]), 

Geotechnics (Chen et al. [22]), mass transfer (Char et al. [23]). In groundwater fields, Kaya and Arisoy [24] 

used DQM to solve three one-dimensional aquifer flow equation problems including a confined aquifer flow 

with time dependent boundary conditions, a composite confined aquifer and an unconfined aquifer with 

seepage. 

 Robati and Barani [25] considered water surface profile in an underground canal using DQM model. 

They concluded that DQM has the ability to simulate the water surface profile and the results are very close to 

the real water surface profile. They compared the DQM results to the results of an analytical and Explicit/ 

Implicit FDM solutions and obtained a good agreement. In hydraulic and free surface water flow fields, the 

work done by Kaya and Arisoy [26] to solve the Saint-Venant equations for linear long wave propagation in 

open channels, Kaya et al. [27] to solve a flood propagation problem in open channel can be pointed out. Bert 

and Malik [28] have reviewed various papers related to DQM and recited a complete description about 

researcher's work at different times. But the application of this method in contaminant transport in porous media 

especially in two layered porous media has not been investigated previously. 

Due to the inherently complex boundary conditions and intricate physical geometries in any practical 

problem, an analytical solution is not possible. This paper presents a DQ method (DQM) for modeling 

contaminant transport  into two layered aquifer systems. The DQM is used to solve the groundwater flow and 

transport equations in a layered confined aquifer The DQM results are verified against Modflow and Mt3d 

results.  

 

II. Mathematical Formulation of the Problem Heading s 
A confined aquifer was assumed which layers are separated diagonally. Each layer has its own specific 

characteristics in terms of soil and transport properties. The left and right of the aquifer exposed to a constant 

head (
1 2 H and H ). Therefore, a steady water flow will be established. Contaminant source is released at the left 

boundary of the aquifer system (Fig. 1). 

 
Fig. 1. Problem description of contaminant transport in layered confined aquifer. 

 
As mentioned earlier, the contaminant problem can be described with two equations. The first is a 

groundwater flow equation. A two-dimensional equation describing groundwater flow in an confined The 

aquifer is given by: 

  +   =0                                   xx zz

h h
K K

x x z z

      
         

                  (1) 

Where "h" is the hydraulic head (L),  ,xx zzK K are the permeability ( 1LT  ) of aquifer materials in x 

and z coordinates, and sS is the specific storage coefficient ( 1L ). 

The second equation is the advective–dispersive transport equation (Zheng, 1992) for a reactive solute 

in a saturated flow regime showing retardation and decay, such as any loss from irreversible sorption (Baek et 

al., 2003) and/or volatilization, can be written as: 

( ) .ij i

i j i

C C
D C C

t x x x
 

    
   

     

                                                       (2)         

 Where ix  is the sportial coordinate (x, z), R is the retardation factor, C is the solute concentration, ijD is the 

hydrodynamic dispersion coefficient tensor (
2 1L T 

), i is the average linear flow velocity (
1LT 
) and   is the 
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first-order decay rate coefficient ( 1T  ) representing any losses such as volatilization and/or irreversible sorption. 

Assuming that molecular diffusion is negligible, the dispersion tensor, may be expressed as: 
2 2

*x z
xx L TD D

 
 

 
                                                                 (3) 

2 2
*z x

zz L TD D
 

 
 

                                                                  (4) 

( ) x z
xz zx L HD D

 
 


                                                                   (5) 

Where , *D is  constant effective diffusion coefficient ( 2 1L T  ), 
L and 

T are the longitudinal and 

transverse dispersivities (L), respectively, ,x z   are the components of the velocity vector, and 

2 2 1/2( ) .x z     

To obtain a unique solution to (1) and (2), initial and boundary conditions must be specified. In the 

flow equation, the initial condition may be expressed as 

 
0( , : 0) ( , ) in Rh x z h x z                                                                   (6) 

The boundary conditions may be stated as follows. 

0
i

h

n





 At the upper and lower boundary                                                 (7)  

                                 1( , ; ) ( , ; )b bh x z t h x z t At the left boundary                                                   (8) 

                              2( , ; ) ( , ; )b bh x z t h x z t At the right boundary                                                 (9) 

Where  
in  is the outward unit vector normal to the boundary, ( , )b bx z  is the spatial coordinate on 

the Boundary and 
1 2,  h h are constant head values. 

For the transport equation, the initial condition may be expressed as 

0( , : 0) ( , ) at Rb bC x z C x z                                                             (10) 

The boundary conditions may be stated as follows. 

 

0n

C
V

n


 


  At the upper and lower boundary                                          (11) 

1 1 1( , ; ) ( , ; )C x z t C x z t  At the left (influent) boundary                            (12) 

      0
C

z





 At the right (effluent) boundary                                                    (13) 

Where 
nV is Neumann flux and 

1C  denotes constant concentration. 

 

III. Differential Quadrature Method (DQM) 
DQM is a numerical method to solve the nonlinear partial differential equations. This method was first 

proposed by Bellman and Casti [6]. It was extended  by Shu [29]. Also, many researchers have made important 

improvements to this method and its applications. For example, to simplify the computational efforts to evaluate 

weighting coefficients for high order derivatives in DQM, Mingle [30] suggested a linear transformation. Civan 

et. al [31] developed this method to multi-dimensional problems. 

In the Differential Quadrature Method, a partial derivative of a function with respect to a space variable 

at a discrete point is approximated as a weighted linear sum of the function values at all discrete points along the 

corresponding coordinate axes. Its weighting coefficients do not depend to any particular condition and only 

depends on the grid spacing. Thus, any partial differential equation can be easily reduced to a set of algebraic 

equations using these coefficients. In this way the n th-order derivative of the function ( )f x  at point ix  is 

calculated by Equation (14). 

,

1

( ) . ( ) 1,2,...,
N

n n

i i j j

j

f x w f x for i n


                                                      (14) 

Where: 

 n

jiw , weighting coefficients, ( )if x =value of the function at point 
ix , ( )n

if x = the n th-order 

derivative value at point ix . 
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Calculating the weighting coefficients is the crucial part of the problem. It influences the accuracy of 

the results seriously. The weighting coefficients ( ,

n

i jw ) can be approximated by a high-order polynomial or by 

the Fourier series expansion or by the harmonic functions as its test functions. In this work Lagrange 

interpolation basis function (Quan and Chang [32]; Shu et al. [33]; Bert et al. [34]; Chen and Yongxi [35]) are 

used as the test functions to determine the weighting coefficients: 

 

   

(1)

, (1)
,                      

i

i j

i j j

M x
a for j i

x x M x
 


                                 (15) 

, ,

1,

            
N

i i i j

j j i

a a
 

                                                                 (16)

 

, , ,

1
2 ,i j i j i i

i j

b a a for j i
x x

 
    

  

                                            (17) 

, ,

1,

N

i i i j

j j i

b b
 

                                                                              (18) 

Where: 

   (1)

1,

N

i i k

k k i

M x x x
 

   , ,ij iia a and , iij ib b are weighted coefficients of the first and second 

order derivatives , respectively. 

 

IV. Problem Solution 
In this section, the application of DQM in discretization and the formulation of the governing equations 

for three chosen to study problems is presented. In the developed model in this study, all spatial derivatives are 

discretized by DQM while temporal derivatives will be discretized by first order forward FD scheme. Since the 

cited equations are steady and transient they can be solved by each of the explicit, implicit and semi implicit 

Crank-Nicholson schemes. 

In the explicit scheme the value of any parameter at time 
1nt 

 or 1n  -th time step is calculated 

directly from discretized equations knowing their value in the previous time step n -th or 
nt . This method only 

uses information in time step n  for computing parameters in time step 1n  , so we have to select the small 

time step t  ( 1n nt t t   ) to have convergence. In implicit scheme the value of parameters at time step 

1n 

 

has been used for discreting spatial derivatives. Therefore, discretized equations represent a set of 

algebraic equations that must be solved simultaneously to evaluate new values of the parameters in time step 

1n  . Semi implicit Crank-Nicholson scheme is similar to an implicit scheme except that in this way, for 

solving the problem, the value of parameters in both time step n and 1n   is used for discreting spatial 

derivatives.  

After spatial discretization by DQ, equation (1) can be reduced to 

, , , ,

1 1

0

N M
x
i k k j j k i k

k k

zA F A F

 

                                                         (19) 

Where  

, , , ,

1

N

x
k j k j k jF Kx A h



   



                                                             (20) 

, , , ,

1

M

z
i k i k k iF Kz A h



   



                                                               (21) 

 i=1, 2,..., N; j=1, 2,..., M and ,z xA A  are weighting coefficients of the first-order derivatives in z and 

x directions. The number of grid points in x and z directions are N and M respectively.  

 Substituting  equations (20) and (21) in (19) yields 

, , , , , , , ,

1 11 1

0

N MN M
x x
i k k j k j j k i k k i

k k

z zA Kx A h A Kz A h

  


   
   
   
   

     

 

                      (22) 

By some simplification equation (23) will get 



Solute Transport In Two Layered Porous Media (Separated Diagonally) Using Suitable DQM .. 

DOI: 10.9790/1684-1305054152                                            www.iosrjournals.org                                  45 | Page 

   , , , , , ,, ,

1 11 1

2,3,..., 1, 2,3

0

,..., 1

N MN M
yx x

k j i k k j i k ij k k

k k

yKx A A h Kz A A h

fo i N jr M

  

  





    

 
                       (23) 

Similar to the discretization of governing equations, the derivatives in the boundary conditions can also 

be discretized by DQM. Using DQM to discretize equations with different type of boundary conditions, a set of 

linear equations is created to determine the boundary values of solute concentration in time step 1n  . These 

equations for inlet and outlet boundaries are:  

1, 1 1, 1,2,...,jh H for i j M                                                      (24) 

, 2 , 1,2,...,N jh H for i N j M                                                 (25) 

And in impenetrable upper and lower boundaries are: 

1, ,

1,1

1,0 0 1,2,...,z

M

k i k

ki

h
for i NA h

y
j



 
    

 
                                   (26) 

1,

, ,0 0 1,2, ,...,z

i

M

M k i

kM

k

h
foA h j Mr i N

y


 
    

 
                             (27) 

Using equation (23) for each grid, a set of nonlinear equations will be assembled regard to boundary 

conditions that must be solved simultaneously for each layer. Solving equation (23) the hydraulic heads will be 

obtained. After acquiring the hydraulic heads, the velocity component in x and z direction will be determined 

correspondingly 

,

,

1

, , 
N

x

i k k j

k

i j

i j

Kx
V Ax h

 


                                                             (28) 

,

,

,,

1

 
M

j k i k

k

i j z

i j

Kz
z A hV

 


                                                             (29) 

This paper concerns groundwater flow and contaminant transport. So, the discretization of the 

advection-dispersion equation parts (elements) can be stated as follows 

(30)                                                                      
  1

, , ,

n n

i j i j i j
C C C

t t

 


 
 

 , ,

1

1

,

, 1

1

,  = . .
N N

x x

i k k

k

n

n

k j j

i j

A A
C

Dxx Dxx
x x

C





 

  
   

 


                                             (31) 

 
1

1

, ,

1,

, ,

1

 . .

n

z n

k j k

i j

N M
x

i k j

k

C
Dxz A ADxz C

x z



 

  
   
  



                                            (32) 

 , , , ,

1

1

1

, 1

 

n M N
x

i k j k i k

z n

i j k

C
Dzx Dzx

z
A C

x
A 

 


  

   
  



                                             (33) 

 , , , ,

1

1

1

, 1

 . . .
M M

i k j k

n

z z

i j

i

k

n

k

C
Dzz Dz A

z
Az C

x  



  
   
  



                                            (34) 

     
1 1 1

,, ,, , ,

1 1

. . .
N N

xn n n

k ji j k

x

i k i k k j

k k
j

Vx C Vx C A CA Vx
x

  

 


 


                                     (35) 

     
1 1 1

,, ,, , ,

1 1

. . .
n nz z n

i ki j i k

M M

j k j k i k

k k

Vz C Vz C A CA Vz
z

  

 


 


                                     (36) 

 

Assembling the above parts will result equation (37): 
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   

   
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, , 1 1

, , , , ,

1 1 1 1

, , , , , , , ,

, ,

1 1 1 1

, , , ,

1

1

1

,

1

,

1

. . .

. . . .

. .

n n

i j i j n z n

k j j k

N N N M
x x x

i k k i k j

k k

M N M M
x

i k j k i k i k j k k i

k k

N M
x

i k k j j k i

k
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z n z z n

n z

k j

k

C C
Dxx Dxz C

t

Dzx Dzz C

Vx

A A C A A

A A C A

C

A

zA VA

   

   





 

 






  



 

 



 

 

 

  
 

   






  1

,k

n

i kC 

            (37) 

 

 

 

 

Equation (37) with some simplification can be written as 

   

   

 

, , , ,

1 1 1 1

, , , , , , , ,

1 1

1 1 1

, , , , ,
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1

,

1

1

. . . .

. .

. .

.

.

. . .

.

n n n

i j k j j k j k

N N N M
x x x y

i k k i k j

k k

M
z n z n

N M M
x y

i k j k i k i k j k k i

k k

N M
x

i k k j

k

n

k j

k

C t Dxx t Dxy C

t D

A A C A A

Azx t DzzA C CA

Vx C t

A

At

  

 



   

   

 

    

   

 



 

 

 

 

  
 

   
 

 , ,

1

, ,. .

2,3,..., 1, 2,3,..., 1

z n n

ij kk i k i jA

for

Vz C C

i N j M

 

   

          (38) 

 

It should be noted that i=1, 2, . . . , N; j=1, 2, . . . , M. 

The boundary condition equations can be rewritten for the solution of DQM as seen in equation (39) 

and equation (40) for left and right boundaries and in equation (41) and equation (42) for upper and lower 

boundaries: 

                          1
1

1, 1, 1,2,...,n
jC C for i j M                                                       (39) 

(40)                              

1

1

,
1

,

,

,0 0 1,2,...,

N
x

n
n
k j

N j

i k

k

C
C forA i N j M

x






 
    

 
      

(41)                                  1,

1

1
1

,

,1

10 0 1,2,, ...,

n
z

M

k

k

n
i k

i

C
foA C jr i N
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Several methods are available to determine the location of the calculated points. It can be selected with 

equal intervals, or non-equal intervals like Chebyshev-Gauss-Lobatto grid points, or with the normalization of 

the roots of Legendre polynomials (Shu, [29]). In the present study, equal intervals and Chebyshev-Gaus-

Lobatto grid points are selected. In the Chebyshev-Gaus-Lobatto approximation, by writing 

 11
1 cos ,  1,2,3,...,

2 1
i

i
x i N

N

 
     

                                              (43) 

 

V. Results and Discussion 
This paper presents a new numerical method for solution of advection-dispersion equation for transport 

problem in a layered porous media . Since there is no analytical solution, numerical solutions for the 

contaminant transport in two layer porous media (the problem we studied), we use Modflow and Mt3d packages 

to verify the above described numerical model.  

First, a base case is considered. Afterward five cases are presented to study the effect of various 

parameters on contaminant transport. In every case all parameters are kept constant except one parameter. So, 

the parameters effect on transfer process would characterize correctly. 

 

5.1 Base Case 

The required parameters for solving the problem are presented in Table 1. Fig. 2 shows the hydraulic 

heat distribution using DQM in steady state for the first case. Head profile in z=2.5m and x=12.5m are shown in 
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Fig. (3) and (4) respectively. It can be observed from these figures that the DQM results are in fine agreement 

with the Modflow results. In this case number of grid points used in DQM is 10 points in x and z directions. 

In Fig. 3 at z=2.5m a Breakage in head diagram is seen. This Breakage is due to changes in hydraulic 

conductivity values which the head will certainly affect. 

 

Table 1. Parameter Values Used in the Evaluation  
Value Parameter name Value Parameter name 

 

5 
Hydraulic Conductivity in layer 1, 

m/day 
20 Dispersivity in layer 2, m 

15 
Hydraulic Conductivity in layer 2, 

m/day 
10 Dispersivity in layer 1, m 

0.7 Porosity in layer 1 1 
Vertical transverse 

dispersivity, m
 

0.35 Porosity in layer 2 0.9 
Effective dispersion so 

efficient,
 

2( / )m day  

0 Decay Constant, 1 0,( / )C g litr  

25 Aquifer Length, m 1 Retardation Factor( dR ) 

5 Aquifer Thickness, m  
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Fig. 2. Head distribution for steady-state, base case. 

 

 
Fig. 3. Calculated Head profile at x=12.5m.                   Fig. 4. Calculated Head profile at z=2.5m. 

 

Concentration distributing at t=5day are drawn in Fig. 5 for the base case using DQM which shows the 

pattern of concentration changes at t=5day in two layers confined aquifer. In this case DQM results are 

compared with Mt3d results and 20 grid points Being used in DQM. 

. 
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Fig. 5. Concentration distribution at t=5day. 

 

Concentration profile is depicted in the middle of aquifer length (x=12. 5m) of the aquifer in Fig. 6 and 

in Fig. 7 concentration profile in the middle of the aquifer height (z=2. 5m) is drawn. In Fig. 7 decreasing trend 

can be observed during the aquifer length. The concentration value starts with a value of 1gr/lit at the left of the 

aquifer and reaches to 0.329 gr/lit in the right of the aquifer. It is apparent from Fig. 6 and Fig. 7 that the present 

analyses are in good agreement with Mt3d result. 

 

  
Fig. 6. Calculated concentration profile at x=12.5m.         Fig. 7. Calculated concentration profile at z=2.5m. 

 

5.2 Case 2 

The second case is considered to study the effect of different hydraulic conductivity values in layers on 

solute transport process. All parameters except hydraulic conductivity are similar to the base case. Hydraulic 

conductivity in this case for upper layer (layer2) is 5m/day and for lower layer (layer1) is intended 15 m/day.  

Head profile in z=2.5m and x=12.5m are shown in Fig. 8 and Fig. 9 correspondingly by selecting 10 grid points 

in DQM. In Fig. 8 it can be seen that the head in the upper region is relatively larger than the lower region at 

x=12. 5m. It is indisputable that the DQM result are very close to Modflow result. 

 

 
Fig. 8. Calculated concentration profile at x=12.5m.        Fig. 9. Calculated concentration profile at z=2.5m. 

 

Concentration profiles at x=12.5m and z=2.5m are depicted in Fig. 10 and Fig. 11 respectively. DQM 

results are in good agreement with results indicating Mt3d. It can be found that change the hydraulic 

conductivity in layers that is to say the increase in hydraulic conductivity in layer 1 and reduction in the layer 2 

causes an increase the Darcy velocity in layer 1 and decrease the Darcy velocity in layer 2 correspondingly.  

It is noteworthy that in solving the ADE in DQM the 20 grid points were used in x and z directions. 
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The maximum error rates at x=0.5 are drawn in Fig. 12. The maximum error rate as percentage was 

calculated as follows: 

 
3

3

% 100
Mt d DQM

error

Mt d

u u
u

u


                                                                 (44)  

Where 
3Mt du  is Mt3d solution and DQMu is DQM solution 

 
Fig. 10. Calculated concentration profile at x=12.5m.     Fig. 11. Calculated concentration profile at z=2.5m. 

 

 
Fig. 12. Differences between Mt3d Solution and DQM Solution for the case 2 in x=12.5 at t=5day. 

 

5.3 Case 3 

In this case the porosity in layers will change. Other required parameters remain constant similar to the 

base case. The porosity in layer 2 and layer 1 is assumed to be 0.7 and 0.35 respectively. Due to porosity is the 

parameters affecting the ADE and has no effect on the groundwater equation. So, the solution of the 

groundwater flow equation in DQM is equivalent to base case ones. To solve the ADE in DQM the 20 grid 

points were used in horizontal and vertical directions. In Fig. 13 and 14 the effect of porosity change in layers is 

seen. In this case the concentration is lower than the concentration in the base case at x=12. 5m. Outlet 

concentration is relatively lower than the base case in z=2.5m (Fig 14).   

        

   
Fig. 13. Calculated concentration profile at x=12.5m.    Fig. 14. Calculated concentration profile at z=2.5m. 

 

The maximum error rates for the case 3 are shown in Fig. 15. The maximum error occurs at z=0.7m. 

Fig. 15 indicates that DQM solution is close to the Mt3d result and less errors may occur in DQM result. 
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Fig. 15. Differences between Mt3d Solution and DQM solution for the case 3 in x=12.5 at t=5day. 

 

5.4 Case 4 

In this case hydraulic heads on  both sides of the aquifer (left and right sides) are different from the 

base case. In other word, all necessary parameters are considered similar to the base case except hydraulic 

heads. Hydraulic heads on left and right sides will give values of 11m and 5m correspondingly. Groundwater 

flow and advection dispersion equations are solved taking into account 10 and 20 points in the horizontal and 

vertical directions in a parallel manner. Head profile in x=12.5m and z=2.5m are shown in Fig. (16) and Fig. 

(17). 

 
Fig. 16. Calculated head profile at x=12.5m.             Fig. 17. Calculated head profile at z=2.5m. 

 

Similar to the previous cases the ADE was solved and DQM results are depicted at x=12.5m and 

z=2.5m  in Fig. (18) and Fig. (19) correspondingly.  

 

 
 Fig. 18. Calculated concentration profile at x=12.5m.     Fig. 19. Calculated concentration profile at z=2.5m. 

 

In the aquifer's inlet there is a greater difference between DQM and Mt3d results than the other points 

of the aquifer. The maximum difference is 0.049 g/l that led to the creation of approximately 5.5% error rate. 

Away from the entrance of the aquifer the error rates will be reduced. 

 

5.5 Case 5 

Other parameters that affect the transfer process is aquifer length. So, in this case aquifer length will 

change and will be considered 50 m. Rest of parameters are similar to the parameters mentioned in base case. 

Head profile is drawn in Fig. (20) and Fig. (21) at x=12.5m and z=2.5m respectively. Due to the increased 
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aquifer length, head values in comparison with the base case are greater than in the same place. For example, at 

a x=5m head in the base case is 7.38m and in present case is 7.9m. 

 

 
      Fig. 20. Calculated head profile at x=12.5m.                   Fig 21. Calculated head profile at z=2.5m. 

 

Concentration profiles in 5 days in x=12.5m and z=2.5m are shown in Fig. (22) and Fig. (23) 

correspondingly. It is seen that with doubling the aquifer length and using the same grid points, DQM still 

provides acceptable results. 

 

 
Fig. 22. Calculated concentration profile at x=25m.     Fig. 23. Calculated concentration profile at z=2.5m. 

 

Maximum error rates at x=25m (center line) are depicted in Fig. (24). Maximum error rate occurred in 

this case has slaked from the aquifer entrance and finally this error reach to zero in the end of the aquifer.  

 

 
Fig. 24. Differences between Mt3d Solution and DQM solution for the case 3 in x=25m at t=5day. 

 

VI. conclusion 
As a result, the weighting coefficients of the first-order derivative are determined by a simple algebraic 

formulation without any restriction on choice of grid points, and the weighting  coefficients of the second and 

higher-order derivatives are determined by a recurrence relationship. This is a major breakthrough in the 

development and application of the DQ method. Since then, the DQ method has been extensively applied to 

solve the fluid flow problems and the structural and vibration problems. So to cover all fields by DQM, in this 

paper the application of the DQM in solving the contaminant transport in layered confined aquifer was 

discussed. Five cases are considered to study the effect of various parameters in the transfer process. The 10 and 

20 grid points are used in this study for solving the groundwater and transport equation correspondingly. The 
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comparisons show lower error values, less computational time, rapid convergence than the other numerical 

methods while a good agreement with the exact results.    
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