Investigation of Strength and Durability Parameters for Metakaolin and GGBS Based Geoplolymer Concrete

M.V.Ramesh¹, E.V.Chandra Sekhar²

¹M.Tech Student, Department of Civil Engineering, Krishna chaitanya institute of technology and sciences, Markapur, A. P, INDIA ²Assosiate. Professor, Department of Civil Engineering, Krishna chaitanya institute of technology and sciences,

Markapur, A. P, INDIA

Abstract: The increasing emphasis on energy conservation and environmental protection has led to investigation of alternatives to customary building material. Effort are urgently underway all over the world to develop environment friendly construction materials which makes minimum utility of natural resources and helps to reduce green house gas emission Geopolymer concrete (GPC) is one of the most recently developed structural concretes, where industrial wastes like fly ash, rice husk, ground granulated blast furnace slag (GGBS) are utilized for complete replacement of ordinary Portland cement in concrete. A major contribution to structural concrete in the form of Geopolymer concrete was developed by many investigators with lesser grade of concrete. The contribution of green house gas emission due to ordinary Portland cement production worldwide is approximately 7%. For each ton of Portland cement manufactures, it is estimated that one ton of CO_2 is released into the environment. In this connection, Geopolymer are showing great potential and does not need the presence of Portland cement as binder. Geopolymer concrete is prepared by using alkaline solution of suitable chemical composition. The ratio of mixture is 2.5 and the concentration of sodium hydroxide is 10M. The geo polymer concrete specimens are casted and tested for different types of strengths for 3, 7, and 28 days and cured at ambient temperature.

Keywords: Geo-polymer, Metakaolin, Ground Granulated Blast Furnace Slag, Alkali Activator.

I. Introduction

Geopolymer Concrete (GPC) is an efficient binder in the manufacturing of concrete technology. The source materials such as Metakaolin are treated with alkaline liquid to obtain the binder/adhesive agent. Geopolymer concrete will be introduced as an alternative concrete which did not use any cement in its mixture and used GGBS and Metakaolin as alternative cement. NaOH and Na₂SiO₃ were used as activator solution. Geopolymer cement is a state of art novelity and tend to create a platform for substitution with conventional manufacturing materials for architectural and construction industry. The concrete technology should tune on the lines of sustainability where the materials utilized in construction sector should be eco-friendly as well as facilitate the process of reuse if necessary. The integrated ecological based waste utilization finds its application ranging from small scale industries to large Power plants, etc. As a part of this novel idea, materials such as slag can be transformed in to geoploymer concrete or nowadays called as green concrete. Concrete is predominantly used material in architectural and construction industry¹ The overall global production of cement is 2.8 billion tones according.² A recent report to the United Nations Industrial Development Organization highlighted that as of 2005, 60% of China's cement production was from Vertical Shaft Kilns (VSKs); characterized by low production efficiency³. The VSKs generally produced low quality cement unsuitable for large structures, infrastructure, or export. The emission of CO₂ in the production of cement is due to clinker production, combustion of fuels in the cement kilns, and the use of energy for grinding raw material and clinker⁴⁻¹³. Abundant research has been conducted on newer concrete technologies and their use is seen in many construction solutions as they provide viable means of reducing the carbon footprint of concrete.⁵ the use of greener concrete is increasing day by day. A recent post-tensioned structure had concrete with 50% replacement of cement by slag for the slabs, columns, and walls; and 70% replacement in the mat foundation, resulting in an estimated reduction on carbon dioxide emissions for the project of 4500 tones (4400 tons). The latest research into the green concrete properties and it is extensive. Researchers have examined the durability and mechanical properties of concrete with fully replacement of cement by pozzolanic material.^{7,8} High volume substitutions for cement replacement results high strength and high durability concrete.⁹⁻¹⁸ the covalent bond between the oligomers tends to form a network and this process of combination results in what is known as geopolymerization. Refer Figure 1 shows the mixture of new product.

2.1 Met kaolin

II. Materials Used

Metakaolin is one of the Pozzolanic materials used in concrete as a binder replaced by cement. It is suggested that firing kaolinite at lower temperatures (< 500 $^{\circ}$ C) does not give sufficient energy to break the crystalline structure of kaolinite. Refer Figure 2, 3, 4 and Table 1, 2

Table-1: Properties of Metakaolin			
Property Value			
Specific Surface	9-16 m²/g		
Physical Form	Powder		
Specific Gravity	2.50		
Color	Baby Pink		

Oxide	%
Al ₂ O ₃	42-44%
SiO ₂	51-53%
TiO ₂	<3.01%
Fe ₂ O ₃	<2.21%
SO ₄	<0.51%
CaO	<0.22%
MgO	<0.11%
K ₂ O	<0.43%
L.O.I	<0.51%
Na ₂ O	<0.053%

Table-2: Chemical Composition of metakaolin

Figure 4: Metakaolin

2.2 Ground Granulated Blast Funrace Slag:

Ground Granulated Blast Furnace Slag (GGBS) is synthesized through the process of quenching. It is amorphous in nature and formed as a result of slag quenching from blast furnace. It can be seen as auxillary product during production of steel which can aid in concrete technology. Refer Figure 5, 6 and Table 3, 4

Property	Value
Relative density	2.85-2.95
Bulk density (loose)	1.0-1.1 tonnes/m ³
Surface area	400-600 m ² /kg Blaine
Bulk density (vibrated)	1.2–1.3 tonnes/m ³
Colour	Off-white powder

Table-4: Chemical Composition of Ground Granulated Blast Furnace Slag

Oxide	%
CaO	36.77
SiO ₂	30.97
Al2O ₃	17.41
MgO	9.01
SO_3	1.82
Fe ₂ O ₃	1.03
Na ₂ O	0.69
K ₂ O	0.46

Investigation of Strength and Durability Parameters For Metakaolin and GGBS Based Geoplolymer Concrete

Figure 6: Ground Granulated Blast Furnace Slag

2.3 Coarse Aggregate:

Coarse aggregates of sizes 10mm and 20mm are taken. Refer Figure 7 and Table 5.

	20 mm		10mm	
IS Sieve No (mm)	Requirement as per IS: 383-1970	Percentage passing	Requirement as per IS: 383- 1970	Percentage passing
80	-	-	-	-
40	100 %	100 %	-	-
20	95-100 %	96.52 %	95-100%	95.6%
16	-	-	100 %	100 %
10	0-20 %	13.72 %	0-45 %	41.52 %
Water absorption (%)	0.35 %		0.41 %	
Specific gravity	2.80		2.80	
Bulk Density (kg/m ³)	1680 7.32		1513	
Fineness modulus			7.32	

Table-5: I.S. Sieve specifications of Coarse Aggregate

Figure 7: Coarse Aggregate

2.4 Fine Aggregate:

Fine Aggregate is generally sand whose properties are given in Refer Figure 8 and Table 6.

Sieve Size (mm)	Cumulative Passing (%)	IS: 383-1970 – Zone II	
	F.A.		
10	100	100	
4.75	98.5	90-100	
2.36	95.3	75-100	
1.18	70.8	55-90	
600 (µm)	46.5	35-59	
300 (µm)	17.6	8-30	
150 (µm)	3.21	0-10	
Fineness modulus	3.12		
Specific Gravity	2.78		
Bulk Density	1375 Kg/m³		

Figure 8: Fine Aggregate

2.5 Sodium Hydroxide:

Sodium Hydroxide is the alkaline activator used in the process of geopolymerisation whose chemical properties are given in Refer Figure 9, 10 and Table 7.

Property	Value		
Appearance	White		
Boiling point	1,389°C		
Chemical formula	NaOH		
Solubility in water	419 g/L (0°C)		
	1111 g/L (20°C)		
	3371 g/L (100°C)		
Molar mass	40 g mol^{-1}		
Odor	Odorless		
Melting point	318°C		
Density	2.14 g/cm^3		

 Table 7: Properties of Sodium Hydroxide

Figure 9: Sodium Hydroxide Flakes

Figure 10: Sodium Hydroxide Solution

2.6 SODIUM SILICATE (Na₂Sio₃):

Sodium Silicate is the common name for compounds with the formula $Na_2(SiO_2)_nO$. Refer Figure 11, 12, 13 and Table 8.

Figure 11: Solution of Sodium Silicate

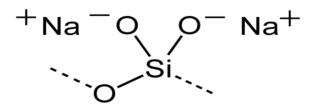


Figure 12: Sodium Silicate Structure

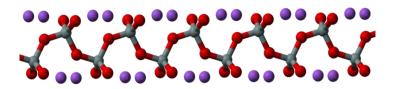


Figure 13: 3-D Structure of sodium silicate

Table-8: Properties of Sodium Silicate
--

Property	Value
Solubility in water	22.2 g/100 ml (25°C)
	160.6 g/100 ml (80°C)
Refractive index $(n_{\rm D})$	1.52
Appearance	White to greenish
Chemical formula	Na ₂ SiO ₃
Density	2.62 g cm^{-3}
Melting point	1,089 °C
Solubility	insoluble in alcohol

2.7 Sodium Sulfate (Na₂So₄):

Sodium sulfate is the inorganic compound with formula Na_2SO_4 is used in the process of green concrete technology. Refer Figure 13, 14 and Table 9.

Figure 14: Sodium sulfate

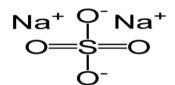


Figure 15: Sodium Sulphate structure

Table-9:	Durability	Parameters
----------	------------	------------

S. no	Parameters to study	Volume of Specimen in	Chemical for	No of	
		mm	curing	specimens	
1	Chang in compressive strength	150X150X150	Sodium Sulphate	9	
2	Change in mass	150X150X150	Sodium Sulphate	9	

III. Methodology

3.1 Geopolymer Concrete MIX:

Initially dry mix, fine as well as coarse aggregate, alkaline solution and Pozzolanic material (Metakaolin + GGBS) are combined. About 6 to 8 minutes spent for mixing of concrete to achieve proper bonding of materials. Later, mixing Cubes, beams, cylinders with sizes 150mm X 150mm X 150mm, 500mm X 100mm X 100mm, and 150mm dia 300mm height are casted and compacted properly. In this project ambient curing is chosen for curing of geo-polymer concrete. For ambient curing, cubes are un-moulded after 24 hours of casting and they are placed in the direct sunlight for 72 hours. Refer Table 10, 11, 12.

Ingredients in		Different mixes						
(kg	/m ³)	C ₁	C_2	C3	C4	C5	C ₆	
Pozzolani	Pozzolanic Material		414	414	414	414	414	
Meta	kaolin	207	248	290	331	373	414	
Ground Gra	Ground Granulated Blast		166	124	83	41	0	
Furna	ce Slag							
Coarse	10 mm	467	467	467	467	467	466	
Aggregate	20 mm	699	699	699	699	699	699	
Fine Ag	ggregate	660	660	660	660	660	660	
Sodium Hydr	oxide Solution	53	53	53	53	53	53	
Sodium Sili	cate Solution	133	133	133	133	133	133	

Table 10: Mixing Proportion of Geopolymer concrete

STRENGTH:

The experimental investigation processed by taking six pozzolanic Proportions pictured in above table in the aspects of Compressive, Split Tensile, and Flexural strengths where proportions starts from 50% Metakaolin + 50% GGBS to 100% Metakaolin.

Table-11: Mix	Table-11 : Mix ID of Pozzolanic Material Proportions for Strength properties						
Mix ID	Metakaolin (%)	Ground Granulated Blast Furnace Slag (%)					
C_1	50	50					
C_2	60	40					
C ₃	70	30					
C_4	80	20					
C ₅	90	10					
C_6	100	0					

 Table-11: Mix ID of Pozzolanic Material Proportions for Strength properties

Durability:

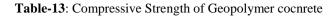
The experimental investigation Processed by taking 3 Pozzolanic Proportions C1, C3, C6 pictured in above table in the aspects of Durability

Table-12 . Why ID of 1 of 2201ame Whateman 1 toportions for Durability 1 toporties					
Mix ID	Metakaolin (%)	Ground Granulated Blast Furnace Slag (%)			
C_1	50	50			
C ₃	70	30			
C_6	100	0			

 Table-12:
 Mix ID of Pozzolanic Material Proportions for Durability Properties

IV. Results & Discussions

The cubes, beams, cylinder specimens have undergone the process of testing using standard equipment to determine compressive, flexural and split tensile strengths at the age of 3, 7, and 28 days. The figures 5, 6 and 7 are showing the graphical and table 13, 15, 16 shows tabular representation of various strengths with 10 Molarity alkali activator for the specimens which were cured in sunlight.


4.1 Compressive Strength:

The compressive strength of concrete with different proportions are casted of age 3, 7 and 28 days and a graph is plotted between pozzolanic material proportion(x-axis) Vs compressive strength (y-axis). From the figure we can say, as the age of concrete increases compressive strength increases. 100% Metakaolin gives compressive strength of 60.03 N/mm² which is the maximum strength obtained than other proportions. The strength variation between one proportion to other and one age to other is in slight manner. Refer Figure 16, 17 and Table 13

Figure 16: Compression test of Geopolymer concrete

	Tuble 10. Compressive Strength of Geoporymer coefficie									
Mix ID	POZZOLANIC MATERIA	COMPRESSIVE STRENGTH (N/mm ²)								
	Metakaolin	Metakaolin GGBS		7 DAYS	28 DAYS					
	(%)	(%)								
C1	50	50	31.23	34.12	35.23					
C2	60	40	34.20	35.72	39.29					
C3	70	30	42.14	44.32	48.13					
C4	80	20	44.91	46.94	50.28					
C5	90	10	51.3	53.91	56.71					
C6	100	0	53.62	54.64	61.03					

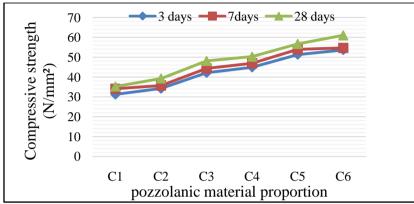


Figure 17: Graph between Compressive Strength and Pozzolanic Material Proportions

4.2 Split Tensile Strength:

The Split Tensile Strength of GPC with different proportions are obtained of age 3, 7 and 28 and a graph is plotted between pozzolanic material proportion (x-axis) vs split tensile strength (y-axis). From the figure we can say, as the age of concrete increases tensile strength increases. 100% Metakaolin gives strength of 6.73 N/mm² which is the maximum strength obtained than other proportions. The strength variation between one proportion to other and one age to other is in slight manner. Refer Figure 18, 19 and Table 14

Table-14. Split Tensile Strength of Geoporymer Coherete								
Proportion	POZZOLANIC MATE	SPLIT TENSILE STRENGTH (N/mm ²)						
	Metakaolin GGBS		3 DAYS	7 DAYS	28 DAYS			
	(%)	(%)						
C1	50	50	3.12	3.72	3.9			
C2	60	40	3.70	3.81	4.14			
C3	70	30	3.92	3.98	4.23			
C4	80	20	4.21	4.65	4.71			
C5	90	10	5.26	5.87	5.81			
C6	100	0	6.22	6.53	6.73			

 Table-14: Split Tensile Strength of Geopolymer Concrete

Figure 18: Split Tensile Test of Geopolymer concrete

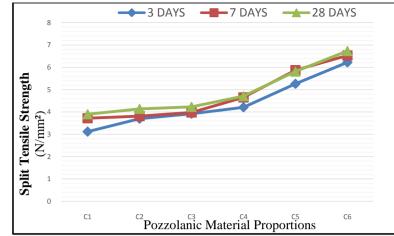


Figure 19: Graph between Split tensile Strength and Pozzolanic Material Proportions

4.3 Flexural Strength:

The Flexural strength of concrete with different proportions are evaluated of age 3, 7 and 28 days and a graph is plotted between pozzolanic material proportion (x-axis) vsFlexural strength (y-axis). A two point load is applied on the beams of size 50mm in length, 10mm in width and 10mm in depth. From the figure we can say, as the age of concrete increases Flexural strength increases. 100% Metakaolin gives Flexural strength of 3.54 N/mm² which is the maximum strength obtained than other proportions. The strength variation of C1, C2, C3 and C4 are slight but C5, C6 has vast variation. Refer Figure 20 and Table 15

Proportion	POZZOLANIC		FLEXURAL STRENGTH				
	MATERIAL		(N/mm²)				
	Metakaolin	GGBS	3 DAYS	7	28		
	(%)	(%)		DAYS	DAYS		
C1	50	50	0.75	0.822	0.87		
C2	60	40	0.85	0.9	1.2		
C3	70	30	1.11	1.58	1.75		
C4	80	20	1.63	1.67	1.71		
C5	90	10	1.96	2.57	2.81		
C6	100	0	3.2	3.41	3.54		

 Table-15: Flexural Strength of Geopolymer concrete

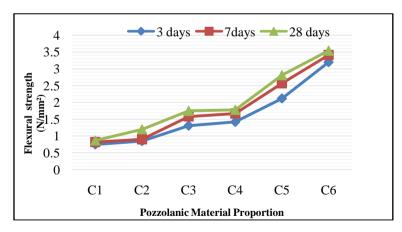


Figure 20: Graph between Flexural Strength and Pozzolanic Material Proportions

Durability:

Durability is a major factor to be considered for the structure to with stand for a long period i.e. the age of the structure should be more durable. So my experimental investigation take me to identify the structural behavior on different environmental like Chloride attack, Acid attack and Sulphate attack. But in this report work is concentrated on sulphate attack. Therefore the results and discussions are processed as follows. Refer Figure 21, 22, 23 and Table 16, 17

- The **initial** compressive strengths are obtained from the proportions C1, C3, C6 which are in ambient curing for 28 days.
- The final compressive strengths are obtained from the proportions C1, C3, C6 which are in chemical curing for 30 days and dried for 15 day

Table-10. Tereentage Reduction in weight								
S.no	Mix	Weight of Specimens		Reduction in	% Reduction	No. of		
	ID	(grams)		weight	in weight	days		
		Initial	Final	(grams)				
1	C1	8193	8133	60	0.73	20		
2	C ₃	8856	8795	61	0.68	20		
3	C ₆	8543	8486	57	0.66	20		

Table-16. Percentage Reduction in weight

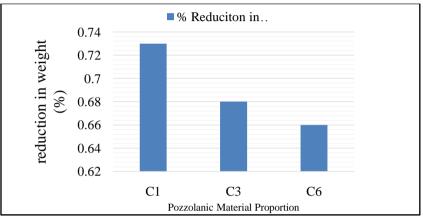


Figure 21: Graph between Pozzolanic Material and % Weight Reduction

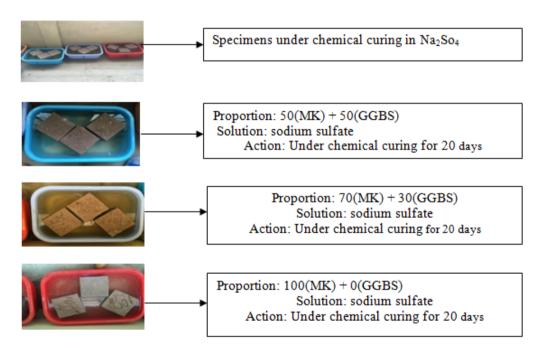


Table-17: Compressive strength of Geopolymer Concrete after exposure to sulfate solution

S.no	MIX ID	Compressive strength		%	No. of days for
		(N/mm^2)		Reduction	chemical curing
		Initial	Final	in C.S	
1	C1	35.23	31.09	11.75	20
2	C ₃	48.13	43.88	8.83	20
3	C_6	61.03	51.70	15.28	20

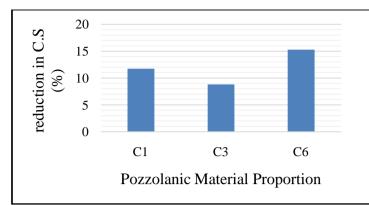


Figure 23: Graph between Pozzolanic proportion and % Reduction in Compressive strength.

V. Conclusion

- From the above results it is apparent that Geopolymer concrete based on GGBS and metakaolin has got more compressive strength than conventional concrete.
- It is observed that the Compressive, Flexural and Split Tensile strengths of Geopolymer Concrete are increased with increase in percentage of Metakaolin quantity i.e GGBS 0%-MK 100% and decreased with increase in GGBS irrespective of curing period.
- The green concrete resists the attack of various chemicals and therefore, it is durable for the given mix proportion.
- Compressive, Flexural and split tensile strengths vary in direct relation to age for a given proportion of a mix.
- Proportion C₁obtained the maximum in percentage reduction of 0.73 in weight for 30 days of chemical curing (Na₂SO₄).
- Proportion C₆ obtained the maximum in percentage reduction of 15.28 in Compressive strength for 30 days of chemical curing (Na₂SO₄).

References

- [1]. Aswathy Kurian, Binu M Issac, Soumya Anand. An Experimental Study on Geopolymer Concrete with the Partial Replacement of Coarse Aggregate with Laterite. Internation Conference on Science, Technology and Management. 2015 september.
- [2]. Ambroise J, Maximilien S, Pera J. Properties of metakaolin blended cements. Advanced Cement Based Materials. 1994 May; 1(4), 161-168.
- [3]. Asbridge A H, Chadbourn G A, Page, C L. Effects of Metakaolin and the Interfacial Transition Zone on the Diffusion of Chloride Ions Through Cement Mortars. Cement and Concrete Research. 2001 November; 31(11), 1567-1572.
- [4]. Bai J, Wild S. Investigation of the Temperature Change and Heat Evolution of Mortar Incorporating PFA and Metakaolin. Cement and Concrete Composites 2002; 24(2), 201-209.
- [5]. Batis G, Pantazopoulou P, Tsivilis S, Badogiannis E, The effect of metakaolin on the corrosion behavior of cement mortars. Cement and Concrete Composites in press 2005 january; 27(1), 125-130.
- [6]. Bensted J, Barnes P in Structure and Performance of Cements. 2nd ed. Taylor and Francis Publication: New York, 2002.
- [7]. Bentz D P, Garboczi C J, Haecker C J, Jensen O M. Effects of cement particle size distribution on performance properties of portland cement-based materials, Cement and Concrete Research. 1999 october; 29(10), 1663-1671.
- [8]. Bérubé M, Duchesne J, Chouinard D, Why the accelerated mortar bar method ASTM C 1260 is reliable for evaluating the effectiveness of supplementary cementing materials in suppressing expansion due to alkali-silica reactivity. Cement, Concrete, and Aggregates, 1995 june; 17(1), 26-34.
- Bhadeshia, H.K.D.H., An Introduction to Thermal Analysis Techniques, http://www.msm.cam.ac.uk/phasetrans/2002/thermal.analysis.html, accessed October 2004.
- [10]. Boddy A, Hooton R D, Gruber K A. Long-term testing of the chloride penetration resistance of concrete containing highreactivity metakaolin. Cement and Concrete Research. 2001 May; 31(5), 759-765.
- [11]. Brinkley G W. Ceramic Fabrication Processes, Technology Press & John Wiley and Sons: Cambridge & New York, 1985.
- [12]. Cabrera J G, Lee R E. A new method for for the measurement of workability of high-pulverised fuel ash concrete. International Ash Utilization Symposium. 1985; 347-360.
- [13]. Caldarone M A, Gruber K A and Burg R G, **High reactivity metakaolin (HRM): a new generation mineral admixture for high performance concrete**. Concrete International. 1994 january; 16(11), 37-40.
- [14]. Courard L, Darimont A, Schouterden M, Ferauche F, Willem X, Degeimbre R, Durability of mortars modified with metakaolin. Cement and Concrete Research. 2003 September; 33(9), 1473-1479.
- [15]. Curcio F, DeAngelis B A, Pagliolico S. Metakaolin as a pozzolanic micro filler for high-performance mortars. Cement and Concrete Research. 1998 june; 28(6), 803-809.
- [16]. Rajini B, Narasimha A V. Mechanical Properties of Geopolymer Concrete with Fly Ash and GGBS as Source Materials. International Journal of Innovative Research in Science, Engineering and Technology. 2014 September; 3(9), 15944-15953
- [17]. DiamondS.Mercuryporosimetry: an inappropriate method for the measure-ment of pore size distributions in cement-based materials. Cement and Concrete Research. 2000 october; 30(10), 1517-1525.
- [18]. Ding J T, Li Z J. Effects of metakaolin and silica fume on properties of concrete. ACI Materials Journal. 2002 August; 99(4), 393-398.