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Abstract: In this study, it is proposed to extend analytical solutions of the discrete one-dimensional elements 

for solution of rectangular thin plate problems. The derivations of the governing differential equations used to 

obtain exact shape functions and stiffness terms of one dimensional beam elements can be useful tools for 

solution of complex plate problems. Finite grid method is a numerical method and provides advantages in the 

sense of variable plate geometry and local changeable thickness, local changeable boundary conditions and 

loading. The maximum displacement of plate under distributed or concentrated load on the middle are 

calculated and compared the finite grid method and some other methods for variable boundary condition cases. 

The results verified that the ease in arriving at results of engineering accuracy by this method outweighs small 

errors.  
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I. Introduction 
Introducing the finite element method in 1960s and the developments in computers have a great 

importance for the developments in applied mechanics. A broad range of the engineering problems has been 

solved by computer-based methods such as finite element and boundary element methods. A broad range of the 

beam or plates as engineering problems has been solved by computer-based numerical methods such as finite 

element and boundary element methods [1-6]. However closed form solutions for plates have been published for 

a limited number of cases. Owing to its convenience in solution of plate problems as a numerical method the 

finite strip method have attracted much attention from many authors as [7-8]. In order to simplify the problem it 

is possible to use a grid of beam elements to model plates. After all, within limitations of simplified formulation 

as Wilson [9] indicated, plate bending is an extension of one dimensional beam theory. Some numerical and 

approximate methods, such as finite element, finite difference, boundary element and framework methods have 

been developed to overcome such complex plate problems. The governing equation for transverse displacement 

w(x,y) of plates subjected to lateral loads by using two-dimensional Laplacian operator given in Eqn 1. as 

follows: 

        (1) 

where D is the flexural rigidity, E is modulus of elasticity,  is passion ratio and h is thickness of the plate 

element and q is lateral loads 

The closed form solutions have been published for a limited number of cases. In this study gridwork 

model of plates for general applications suggested solving a wide range of plate problems. A differential part of 

a plate is represented by two parallel sets of beam elements for rectangular plates [10-13]. The formulations 

based on interpolation (shape) functions have been used in solution by finite element method. The exact 

stiffness matrices of a beam element is used to solve general plate bending problems. 

 

II. Formulation of plate elements 
Hermitian polynomials into strain energy functions that has been derived to converge better solution, 

the beam needs to be divided into smaller segments. In this form, plates are idealized as a grillage of beams of a 

given geometry satisfying given boundary conditions as shown in Fig. 1.  
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a    b    c 

Fig 1. The idealized discrete system a) the elements are connected at finite nodal points of a rectangular thin 

plate in flexure, b) Parallel sets of one-dimensional elements replaced by the continuous surface c) Typical node 

displacements and  forces in a grid plane as a beam in local coordinates. 

 

The framework method that replaces a continuous surface by an idealized discrete system can represent 

a two-dimensional plate. The plate through the lattice analogy at which the discrete elements are connected at 

finite nodal points can be represented by one dimensional elements have 3 degree of freedom (two rotations and 

one translation) at each node as shown in Fig.2. 

 

 
Fig. 2. The idealized discrete finite element of with 3 DOF’s at each node (a) generalized displacements, (b) 

loads applied to nodes 

 

Derivation of exact shape functions for a beam element related Fig.2 the homogeneous form of Eq. (1) 

is obtained by using q(x)=0. The generalized displacement vector which forms boundary conditions shown in 

Fig. 2 is obtained with x= 0 and x= L. From the figure: 
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Then the arbitrary constant elements of the vector C can be related to the end displacements in matrix form as 

follows; 

     CHd   or      dHC 
1

  (3) 

where [H] is a 6x6 ,Substitute Eq. (3) into Eq. (1) then the closed form solution of the differential equation can 

be written in matrix form as: 

       dHBw
1T



  (4) 

Eq. (4) can be redefined by introducing vector N that includes six shape functions. Then the closed form of the 

solution in terms of shape functions and the generalized displacements defined in Fig. 2 can be defined as: 
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The non-dimensional forms of the shape functions as Hermitian polynomials for 
L

x
  can be formed  
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The element stiffness matrix of a beam element, which relates the nodal forces to the nodal displacements by the 

exact shape functions for the prismatic beam element shown in Fig. 2. can be obtained from the minimization of 

strain energy as follows, 
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where N is, a 6x1 matrix of the exact shape functions. This equation aggregates the stiffness terms as follow; 
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The element stiffness terms of the one dimensional beam element obtained with procedures by  Karasin et 

al.[13], which relates the nodal forces to the nodal displacements, the conventional stiffness terms are verified as 

expected.  

 

III.  Results and discussion 
In order to check the validity of the solution techniques some plate problems solved by the finite grid 

solution (FGM) evaluated with known analytical [14-16] and other numerical solutions such as SAP2000 and 

ANSYS Workbench [17-19]. As case study rectangular thin plates with various boundry conditions and loading 

types evaluated. The type of rectangular plate and analysis type are shown in Table 1 and 2 respectively.  

 

Table 1. Types of plate examples 
Code Boundary conditions Loading Conditions ratio (b/a) 

SSSS-P-1 All edges are simple supported Concentrated Load at Centre 1 

SSSS-P-2 2 

CCCC-P-1 All edges are fixed Concentrated Load at Centre 1 

CCCC-P-2 2 

SSSS-Q-1 All edges are simple supported Uniform Distributed Load 1 

SSSS-Q-2 2 

CCCC-Q-1 All edges are fixed Uniform Distributed Load 1 

CCCC-Q-2 2 
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Table 2. Types of Analysis 
Analysis code Analysis type 

Ref Analytical Solution (Timoshenko, 1959) 

FEM Sap2000  solution by 8 subdivisions 

ANSYS Ansys Workbench solution by 8 subdivisions 

FGM Finite Grid Solution by 8 subdivisions 
 

The plates for the two loading conditions as concentrated load at the center and uniform distributed 

loading are investigated. In the analysis Modulus of elasticity, E, is  87360 kN/m
2
, poisson ratio, n, is 0,3 and 

plate thickness accepted as 0,05 meters. For b/a=1 and b/a=2 plate dimensions are given as 1x1m and 2x1 m. the 

normalized maximum deflection tabulated in Table 3 and the corresponding error percentages given in Table 4.  
 

Table 3. Normalized max defection (wmax) 
Code Ref FEM ANSYS FGM 

SSSS-P-1 11.601 11.937 12.752 12.474 

SSSS-P-2 16.524 17.087 17.473 17.414 

CCCC-P-1 5.600 5.895 6.416 6.091 

CCCC-P-2 7.220 7.656 8.056 7.784 

SSSS-Q-1 4.062 4.060 4.289 4.329 

SSSS-Q-2 10.129 10.135 10.407 10.575 

CCCC-Q-1 1.260 1.319 1.327 1.372 

CCCC-Q-2 2.540 2.602 2.623 2.748 
 

Table 4. Error Percentage, % 
Code FEM ANSYS FGM 

SSSS-P-1 2.90 9.92 7.53 

SSSS-P-2 3.41 5.74 5.39 

CCCC-P-1 5.27 14.56 8.76 

CCCC-P-2 6.04 11.57 7.81 

SSSS-Q-1 0.06 5.57 6.57 

SSSS-Q-2 0.06 2.75 4.41 

CCCC-Q-1 4.68 5.33 8.92 

CCCC-Q-2 2.44 3.28 8.17 
 

From the table one can see that the plane-grid system as finite grid method with respect to relative error 

for deflections of points located on the axis passing through the centre of the plate reflects a high degree of 

accuracy. 
 

IV.  Conclusion 
A grid work analogy called the Finite Grid Method involving discretized plate properties mapped onto equivalent 

one dimensional elements with adjusted parameters and matrix displacement analysis are used to develop a more general 

simplified numerical approach for plates. For particular plate problems, closed form solutions have been obtained.  It has 

been verified the validity of the solution with applications of plates by comparing the other finite element and ANSYS 

results.  
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