Determination of Drag Coefficient for Hyundai Model Using the Strain Gauge Method

Abdessamed Kacem, Ali Najim Abdullah

1 Ministry Of Higher Education/ Baghdad University
2 Ministry Of Higher Education/ Al-Rafidain University College
Corresponding Author: Abdessamed Kacem

Abstract: The flow field around an automobile is very complex, characterized by a high degree of three dimensionality, flow separation, reattachment and vortex formation. Flow visualization as well as flow simulation are helpful tools during the aerodynamic design of vehicles. The research undertaken deals with an experimental estimation of C_D (drag coefficient) for Hyundai car, (scale 1/30) using the strain gauge method ([FLA-6-11 type, 120Ω, 2.12 gauge factor, half-bridge connection]), which was proved to be practical and reasonably accurate. Experiments were run within a subsonic aspiration wind tunnel, covering an air speed up to 33 m/s (i.e., Reynolds number 6.6×10^6). Results for drag coefficient were obtained in the range of 0.96 to 0.39. It was noted that the magnitude of C_D decreased from 0.96 at 21.17 m/s to 0.39 at 33.00 m/s (i.e., decrease of drag coefficient by about 60%). Comparison of our results with those given by other authors is satisfactory.

Keywords: Strain gauge, Drag coefficient, Wind tunnel, Aerodynamics of automobile, Static loading, Dynamic loading, Half bridge connection.

I. Introduction

Recently the incentive to reduce the aerodynamic drag of road vehicles has increased again. Different methods to estimate drag coefficient of cars have been utilized in the past [1,2]. In the present paper, we use strain gauges with bending moment diagram in order to estimate drag coefficient, the matter that proved to be practical, accurate, and easy.

It is known that loads acting transversely to the plane of a large dimension cause a member to bend. A bar member subjected to this load is called a beam. In order to resist these loads, a beam must be supported at one or positions along its length. If a beam has one end built-in, it is called a cantilever [3]. We used this idea in order to fix a model of a vehicle at a free end of a cantilever, and estimate the drag coefficient from bending moment diagram of the beam.

II. The Experimental Equipment And Instrumentation

A subsonic wind tunnel, aspiration type, with a maximum speed of 33 m/s, was used. Its cross section and active length are respectively: 230x230 mm2 and 500mm [4]. Four strain gauges, FLA-6-11, 120Ω, 2.12 ±1% gauge factor, wire gauge type were used, with adhesive P-2, and coefficient of thermal expansion=$11.8x10^{-6}/C$. The temperature coefficient of gauge factor is +0.1±0.05%/10$^\circ$C [5]. The sting made of hot rolled, medium carbon steel (0.45%C), damped effect, E= 203.4x103N/m2, and $I_T=1.4426x10^{-10}$ m4.

A model reproducing a Hyundai, made from wood, scale 1/30, and blockage ratio of 2.5% was tested. The extensometer bridge which was used, was provided with internal impedance of 120Ω to 500Ω, the range of ±20000 points, maximum resolution: 1μΩ/Ω, and Amplificatory linearity is 0.002%. The gauge factor regulator is 1 to 5 for 4 digits, and the excitation stability is 0.01%. The branching type is a half-bridge and full-bridge with analogical exit of 0-2V for 0-20000 μΩ/Ω. The minimum charge is 2000Ω, and passer band of analogical exit is 0 to 10 KHz [6].

III. The Experimental Procedure

Dimensions of the sting were chosen so as to reproduce minimum strain that we can read it via strain gauges. The model was fixed at the reference point of the sting as shown schematically in (fig.1a). From the bending moment diagram, (fig.1b), we can write $M_x=X_x\cdot C_0+X_Y\cdot C_1$. The value of ($X_x\cdot C_0$) approaches to zero [3]. We need two equations in order to find the two unknowns F_x and M_0, and these two equations could be obtained via the sting in its vertical position. Experimental procedure for Hyundai model is shown in fig.(2).
1-3-1 Drag force and fluid velocity calculation

The model and four strain gauges were fixed as shown before in (fig.1a) at reference point (O), (B), and (A) respectively. Lα is the distance of strain gauge (A) from the reference point (O). Lβ is the distance of strain gauge (B) from the reference point (O). From the bending moment diagram, (fig.1b), we have:

\[M_\alpha = M_0 + F_X L_\alpha \]
\[M_\beta = M_0 + F_X L_\beta \]

(1)
(2)

\(M_\alpha, M_\beta \) have direct relationship with readings of strain gauges \(\varepsilon_\alpha, \varepsilon_\beta \) respectively as shown in subsequent equations:

\[\varepsilon_\alpha = \sigma_\alpha / E = M_\alpha / (2 I_1 E) \Rightarrow M_\alpha = 2 I_1 E \varepsilon_\alpha / h \]
\[\varepsilon_\beta = \sigma_\beta / E = M_\beta / (2 I_1 E) \Rightarrow M_\beta = 2 I_1 E \varepsilon_\beta / h \]

(3)
(4)

Where \(I_1 \) represents the second moment of area for the sting around Z-axis as shown schematically in (fig.3). By solving equations (1) and (2), we can find the unknowns \(F_X \) and \(M_0 \). Drag coefficient could be estimated by the relationship:

\[C_D = F_X / 0.5 \rho V_\infty^2 A \]

(5)

And fluid velocity (air-speed) could be estimated by:

\[V_\infty = \sqrt{2 g (\rho_\infty / \rho_\omega) \Delta h} \]

(6)

1-3-2 Deviation analysis for measurements

From equation (6):

\[V = \text{constant} \times \sqrt{H} \]

\[\ln V = \ln \text{constant} + \ln H^{1/2} \]

(7)

By differentiating the equation logarithmically

\[dV / V = 0.5 \times dH / H \]

Where \(dH \) represents the absolute error ratio in total pressure head that could be estimated:

\[dH = \sqrt{(H - H_0)^2 + (\partial H)^2} \]

Where \(H \) represents the total head. Deviation analysis for drag force measurements could be estimated from:

\[dF_X / F_X = \pm \sqrt{(d\varepsilon_\alpha / \varepsilon_\alpha)^2 + (d\varepsilon_\beta / \varepsilon_\beta)^2} \]

(8)

Deviation analysis for drag coefficient could be estimated from:

\[dC_D / C_D = \pm \sqrt{(dF_X / F_X)^2 + (2dV/V)^2} \]

(9)

IV. Results And Discussion

Experiments were run at an air speed from 21.17 m/s to 33.00 m/s (i.e., Reynolds number from 1.97 \(10^5 \) to 3.07 \(10^5 \) as shown in figure (4). Results for drag coefficient were obtained in the range of 0.96 to 0.39 as shown in figure (5). It was noted that the value of CD decreased from 0.96 at 21.18 m/s to 0.39 at 33.00 m/s (i.e., decrease of drag coefficient by about 59\% within the range of an air speed of 12 m/s).

Such low drag coefficient value of 0.39 is due to the effects of backlight, which are eliminated on the axial force reduction that resulted from its existence. Figures (6) and (7) show that the flow around the model generates a wake vortex system. There are four distinct vortices in this system. Air coming off the top or rear deck, curves downward to curl back toward the back panel to generate the standing vortex A. Analogously a similar vortex B is formed by air coming upward from underneath the car. Usually the core of the upper vortex A will be downstream from that of B. Similarly, horizontal vortices C are formed at the junction of the sides and back of the body. These are attached to the body and travel with it. These results agree with those of reference [7] (it is believed that all sedan type automobile generate an aerodynamic lift effect which creates the trailing vortices that spiral downstream from the body).

Figure (8) shows variation of strain with an air-speed for passenger car model (Hyundai), while figure (9) shows that dV/V ratio varies from ± 3.57 \% to ± 1.47 \% (i.e., decreases by 59\%), while \(dF_X / F_X \) varies from ± 20.83\% to ± 8.36 \% (i.e., decreases by 60\%), and \(dC_D / C_D \) ratio varies from ± 22.00 \% to ± 8.86 \% (i.e., decreases by 59\%), at the working range of an air speed.

V. Conclusion

The re-circulating bubble or spiral vortices determine the drag and stability. From the flow visualization that consolidated with the strain gauge method results, it can be seen that as the size of vortices are small, the drag coefficients are low.
Determination of Drag Coefficient For Hyundai Model Using The Strain Gauge Method

Notations
F_X: Total drag force (N).
F_Y: Lift force (N).
M_A: moment at A (N.m).
M_B: moment at B (N.m).
M_O: Pitching moment (N.m).
ε_A: Strain at strain gauge A (µ strain).
ε_B: Strain at strain gauge B (µ strain).
E: Young modulus of elasticity (N/m²).
(X_C, Y_C): Centroid co-ordinates of the sting.
I_z: Second moment of area (m⁴).
σ_A: Stress at A (N/m²).
σ_B: Stress at B (N/m²).
b: Width of beam (m).
h: Thickness of beam (m).
ρ_a: Air density (kg/m³).
ρ_w: Water density (kg/m³).
V_∞: Undisturbed air flow (m/s).
g: Gravitational acceleration (m/s²).
Δh: Head difference (m H₂O).
C_D: Drag coefficient.
A: The model frontal area (m²).
L_a: The distance of strain gauge A from the reference point (O).
L_b: The distance of strain gauge B from the reference point (O).
Subscript (O): Reference point (model fixing position on the sting at the back of the model).

References

![Figure (1): (a) The vertical position of the sting (schematically) (b) The bending moment diagram for the sting](image-url)
Figure (2): Experimental procedure for Hyundai model

Figure (3): The second moment of area for the sting

Figure (4): Velocity distribution within the test section. From calibration of the wind tunnel
Determination of Drag Coefficient For Hyundai Model Using The Strain Gauge Method

Figure (5): Drag coefficient versus air speed

Figure (6): Scheme for the trailing vortices at the rear part of the vehicle

Figure (7): Flow visualization around Hyundai model
Figure (8): Variation of strain with an air-speed for three-box form Passenger car model (Hyundai)

Figure (9): Variation of errors deviation with an air-speed for Hyundai model