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Abstract: The present paper investigate the dynamic analysis for the flexural vibration of Euler-Bernoulli (EB) 

axially preloaded beams subjected to various harmonic forces. The governing flexural vibration equation and 

related boundary conditions for the beams are derived using Hamilton’s variational principle. The exact closed 

form solution is consequently used to develop a family of exact shape functions which exactly satisfy the 

homogeneous solution of the governing field equation. A super-convergent two-noded finite beam element based 

on exact shape functions is then formulated. The proposed beam element developed involves no special 

discretization errors normally encountered in conventional finite element formulations and provide results in 

excellent agreement with a minimal number of degrees of freedom. The present finite element solution is shown 

to successfully capture the static and steady state dynamic responses of EB beams. It is also able to predict the 

natural flexural bending frequencies and the corresponding mode shapes as well as the critical buckling loads. 

The validity and the accuracy of the present finite beam element solution is achieved throughout the numerical 

examples presented and compared with well-established ABAQUS finite beam solution.  

Key Words: Static axial force, preloaded beam, steady state response, harmonic excitations, exact shape 

functions, super-convergent finite beam element. 
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I. Introductionand Objective 
 The problem of dynamic flexural vibration of axially preloaded beams are of considerable practical 

interest, and have wide applications in civil, mechanical and aircraft industry. The structural beam elements are 

in a state of preload due to the application of axial constant loads. For instance, the helicopter rotor blades and 

structural elements attached through semi-rigid connections, and the centrifugal forces acting on the blades are 

modelled as axial static forces. The study of the influence of a constant axial compressive loads on flexural 

vibrational characteristics (natural frequencies and mode shapes) of beams with different boundary conditions 

has been well established. Among them, Banerjee and Williams [1] formulated the exact analytical expressions 

for dynamic stiffness matrix to study the coupled flexural-torsional vibration of an axially loaded Timoshenko 

beam element. Hashemi and Richard [2] developed a dynamic finite element formulation for coupled bending-

torsional vibration of axially loaded members with asymmetric cross-sections based on the Bernoulli-Euler and 

St. Venant beam theories. Banerjee [3] derived the exact expressions for the frequency equation and mode 

shapes for coupled bending and torsion vibrations of uniform Timoshenko beams with cantilever end conditions. 

The effect of axial force together with the effect of shear deformation and rotary inertia was taken into account 

in the formulation. Li et al. [4] investigated the dynamic flexure-torsion coupled vibrations of axially loaded 

mono-symmetric thin-walled beams. The influence of axial static force and warping deformation on the coupled 

bending-torsional frequencies and mode shapes are studied. Al-Raheimy [5] presented the theoretical 

investigation of the free transverse vibrations of simply-supported beams subjected to axial static forces. Using 

the principle of virtual displacements, Prokic and Lukic [6] using the dynamic finite element method to 

investigate the flexural-torsion coupled vibrations of axially loaded thin-walled beams. Based on the Euler-

Bernoulli bending and St. Venant torsion beam theories, Kashani et al. [7, 8 and 9] developed the dynamic finite 

element formulation to study the flexural-torsional coupled vibration of beams subjected to static axial load and 

end moment.  

A literature survey on the subject shows that the publications exist studied only the effect of axial 

static forces on the free vibration characteristics (i.e., natural frequencies and mode shapes) of beams with no 

research publication appears to have taken into account the axial static force on the dynamic response of beams 

subjected to harmonic bending excitations. In addition, most publications based on finite element formulation 

use approximate shape functions while in this study the finite element formulation based on the exact shape 

functions which exactly satisfied the exact solution of the dynamic field equation. The present work attempts to 
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fill this gap. A particular objective of the present study is to develop a finite element formulation for 

investigating the dynamic analysis of axially preloaded EB beams under harmonic bending excitations.  

II. Formulation of the Problem 

An axially preloaded beam of length   subjected to transverse dynamic forces is considered as shown 

in Figure (1-a). A Cartesian reference system  , ,X Y Z  is employed in the present formulation, in which X is 

the beam axis, ,Y Z are assumed to be the principal axes of the cross-section. In the present formulation, it is 

assumed that:  

1. The beam is prismatic and made of an isotropic homogenous linear elastic material, 

2. The cross-section of the beam is doubly symmetric, 

3. The displacements and slopes are assumed sufficiently small,  

4. The beam is based on Euler-Bernoulli hypothesis in which the cross-sections are plane and perpendicular to 

the longitudinal axis remain plane and perpendicular to the axis of bending. As a result, the effects of 

transverse shear deformation and rotatory inertia are not taken into account.   

5. The damping of the beam is negligible.  

 

The positive directions of the displacements, forces and moments are coincided with the positive coordinates as 

shown in Figure (1-a). 

 
Figure (1): An axially loaded EB beam subjected to transverse dynamic force 

 

2.1 Strain-Stress Functions 

Based on the Euler-Bernoulli assumptions, the displacements shown in Figure (1-b) are given as: 

( ,z, ) ( , )u x t z w x t  ,  ( ,z, ) 0v x t   and       (1) 

( , , ) ( , )w x z t w x t                   

(2) 

where ( , , )u x z t is the longitudinal displacement, ( ,z, )v x t and ( , , )w x z t are the lateral and transverse 

displacements, respectively, and ( , )w x t denotes the derivative of transverse displacement ( , )w x t with respect to 

coordinate x . 

 

2.2 Potential Energy Expression  

The strain energy stored in the Euler-Bernoulli beam element due to bending is simply obtained as: 

 
2

0

1 1
( , )

2 2
b xx xxV

U dV EI w x t dx    


               

(3) 

where E is the modulus of elasticity, the axial strain is ( , )x du dx w x t   and 
2

A
I z dA  is the moment 

of inertia of the beam cross-section. 

 

The beam is under axial static compressive force oP applied at the centroid of the cross-section, and 

transverse dynamic forces and moments, distributed force ( , ) ( ) i tq x t q x e  , concentrated forces 

( , ) ( ) i t
z zF x t F x e  and bending moments ( , ) ( ) i t

y yM x t M x e  applied at the beam ends, i.e., 0,x  , 

as shown in Figure (2).  

The potential energy of the axial constant compressive force oP is given by: 
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The potential energy of the external dynamic forces and moments is given by:  

            
00 0

, , , , , ,q z yU q x t w x t dx F x t w x t M x t w x t       
 

    (5) 

The total potential energy functional of the Euler-Bernoulli beam is: 

           
2 2

0 0
0

1
( , ) ( , ) , , , , ( , )

2

b P q

o z y

U U U

EI w x t P w x t q x t w dx F x t w x t M x t w x t

   

               


    (6) 

 

Figure (2): An axially loaded EB beam under various harmonic forces and moments 

 

2.3 Kinetic Energy of Beam 

The kinetic energy of the beam element is given by: 

  
2

0

1
( , )

2
T A w x t dx 



         (7) 

Based on the Euler-Bernoulli hypothesis, the rotary inertia of the beam is neglected since the beam is slender, 

 is the mass density of the beam, A is the cross-sectional area of the beam, and ( , )w x t denotes the derivative of 

flexural displacement ( , )w x t with respect to time t .  

 

2.4 Derivation Of Dynamic Bending Equation 

The governing dynamic equation of flexural vibration and the associated boundary conditions for 

Euler-Bernoulli beam can be derived conveniently using the Hamilton’s variational principle, which can be 

stated in the following form for an undamped free vibration analysis: 

     
2

1

1 20, 0

t

t

T dt for w t w t              (8) 

Substituting equations (6) and (7) into equation (8), the governing dynamic flexural vibration of axially loaded 

Euler-Bernoulli beam subjected to dynamic force is obtained as:  

( , ) ( , ) ( , ) ( , )iv
oAw x t EIw x t P w x t q x t        (9) 

The essential and natural boundary conditions are given as: 

 0( , ) 0w x t 


, and  
0

( , ) 0w x t  


        (10) 

0
( , ) ( , ) 0yEI w x t M x t    


, and   

0
( , ) ( , ) , 0o zEI w x t P w x t F x t      


                       

(11) 

 

2.5 Harmonic Functions 

For undamped system, the beam is assumed to be subjected to distributed harmonic forces ( , )q x t  

along the beam and end harmonic forces ( , )zF x t  and moments ( , )yM x t applied at the beam ends 0,x  , i.e., 

           
0 0

, , , , , , , i t
z y z yq x t F x t M x t q x F x M x e  

   


    (12) 

where is the circular exciting frequency of the applied harmonic forces, and 1i   is the imaginary 

constant. Under the given applied harmonic forces and moments, the displacement corresponding to the steady 

state component of the flexural bending response is assumed to take the following form: 
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( , ) ( ) i tw x t W x e          (13) 

in which ( )W x is the beam displacement amplitude. Since the present formulation is proposed to capture only 

the steady state bending response of the Euler-Bernoulli beams, the transverse displacement field postulated in 

equation (13) disregard the transient bending response of the beam.   

 

By substituting equations (12) and (13) into equation (9), one obtains:  

2( ) ( ) ( ) ( )iv
oEIW x P W x A W x q x       (14) 

Equation (14) governs the flexural bending vibration of axially pre-loaded EB beam subjected to transverse 

dynamic forces and moments.  

 

2.6 Exact Solution of Bending Equation 

The exact homogeneous solution of the governing field equation (14) is obtained by setting the right-hand side 

of the equation to zero, i.e. ( ) 0q x  . It is assumed that the homogeneous solution of the flexural displacement 

to take the following exponential form: 

  ix
iW x C e


         (15) 

Substituting equation (15) into equation (14), yielding a quartic equation have the following four distinct roots: 
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Therefore, the general solution for the flexural bending displacement ( )W x is then obtained as: 

  31 2 4
1 2 3 4

xx x x
W x C e C e C e C e

  
                                                         

(16) 

where ( 1, 2,3, 4)iC i are unknown integration constants which can be obtained from the problem boundary 

conditions in order to determine the exact closed-form solution.  

 

III. Finite Element Formulation 
In this study, a new two noded finite beam element is developed for forced vibration analysis of axially 

loaded Euler-Bernoulli beams subjected to various transverse harmonic forces and moments. Figure (3) 

illustrates the proposed two-noded finite EB beam element with four degrees of freedom per element. A family 

of shape functions which exactly satisfy the exact homogeneous solution of the governing filed equation 

presented in equation (16) is employed to derive the exact stiffness and mass matrices as well as the load 

potential vector for the beam element. 

 

Figure (3): Two-noded Euler-Bernoulli beam element 

 

3.1 Formulating Exact Shape Functions 

The exact homogeneous solution related to steady state flexural bending response presented in equation (16) can 

be written in matrix form as: 
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terms of the nodal transverse displacements and slopes 1 1 2 2 1 41 4nW W W 


 by enforcing the 

following conditions   10W W ,   10W   ,   2W W  and   2W   , yielding:  
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.  

From equation (18), by substituting into equation (16), one obtains: 

           
1

4 4 1 11 4 1 4n nW x E x S W H x W


   
       (19) 

where      
1

4 41 4 1 4
H x E x S



 
 is the matrix of exact shape functions for the flexural bending response 

of Euler Bernoulli beams. It is noted that the shape functions presented in equation (19) exactly satisfy the 

homogeneous solution of the flexural bending equation (14). 

 

3.2 Energy Expressions in Terms of Nodal Displacements and Rotations 

The first variation of the total kinetic energy T for Euler-Bernoulli beam is given in terms of nodal 

degrees of freedom by substituting equation (19) into equation (7), yields: 

      2
4 11 4 4 1 1 4
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i t
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(20) 

By substituting equations (19) into equation (6), the first variation of the total potential energy for Euler-

Bernoulli beam in terms of nodal degrees of freedom is given by: 
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(21) 

 

3.3 Finite Element Matrix Formulation 

By substituting equations (20) and (21) into Hamilton’s principle equation (8), one obtains:  

         2
1 1e o g e n eP

   
     K K M W F                                                    

(22) 

in which the elastic stiffness matrix for beam element  e 
K is: 

        
4 4 4 1 1 40e EI H x H x dx
  

  


K
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The geometric stiffness matrix for beam element g 
 
 K is given as: 
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The beam element mass matrix  
4e 

M is obtained as: 

        
4 4 4 1 1 40e A H x H x dx
  

 


M  

while, the load vector for beam element  
1e 

F is given as: 

                1 1 1 10 0 0
e z yq x H x dx F x H x M x H x
   

     
   

 
F  

The expressions for element elastic and geometric stiffness, mass matrices and load vector developed for one-

dimensional two-noded Euler-Bernoulli axially loaded beam element with four degrees of freedom per node for 

flexural vibration response are evaluated by using the exact shape functions developed in this formulation.  

 

IV. Numerical Examples and Validation 
In this section, several examples are presented in order to show the validity, accuracy and applicability 

of the new exact finite two-noded beam element developed in the present study. The new beam element can (a) 

capturing the steady state dynamic response of the beam under given harmonic forces, and (b) predicting the 

flexural natural frequencies and associated mode shapes of the Euler-Bernoulli beam from the steady state 

dynamic response. The present finite element formulation is based on the shape functions which exactly satisfy 

the exact solution of the bending field equation. This treatment eliminates mesh discretization errors arising in 

conventional interpolation schemes used in the finite element solutions and thus converge to the solution using a 

minimal number of degrees of freedom. As a result, it is observed that, the present results obtained based on a 

new finite beam element using a single two-noded beam element per span yielded the corresponding results 

which exactly matched with those based on the exact solutions. These results based on the present finite beam 

element (with two degrees of freedom per node) are compared with exact solutions available in the literature and 

Abaqus finite beam B13 element (with six degrees of freedom per node, i.e., three translation and three 

rotations). The effects of static axial compressive forces on the natural bending frequency and mode shape and 

steady state bending responses are also investigated. 

 

4.1 Example (1) - Verification 

A 3000mm cantilever beam of rectangular cross-section subjected to uniformly distributed transverse 

harmonic force ( , ) 400 /i tq x t e N m  along the beam axis is shown in Figure (4). The beam made of steel 

material with the mechanical properties used for the analysis are: modulus of elasticity 200E GPa , shear 

modulus 80G GPa and material density
37800 /kg m  . The purpose of this example is to evaluate the 

validity and accuracy of the results obtained from the present finite element formulation.  

 
Figure (4): A cantilever beam under distributed transverse harmonic force 

 

 

It is required to investigate the following:  

(1) extracting the natural flexural frequencies and related mode shapes of the beam from steady state dynamic 

response analyses, 

(2) conducting the quasi-static analysis of the cantilever beam under the given harmonic forces by adopting an 

exciting frequency 10.01   , and  

(3) computing the dynamic response of the cantilever beam at exciting frequency 11.50 , where 1 is the 

first natural flexural frequency of the cantilever beam. 

 

The cantilever is modelled in Abaqus finite element by using 100 beam B31 element along the 

longitudinal axis of the cantilever beam. In other words, the model has 606 degrees of freedom in order to attain 

40mm

80mm
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the required accuracy in this example. In constraint, the results obtained from the present finite beam element 

formulation use only one two-noded beam element with four degree of freedom to achieve the exact solution 

results.   

 

Exact Closed-Form Solution for Cantilever Beam 

The exact closed-form solution for cantilever under distributed harmonic force  , /i tq x t q e kN m

is obtained by substituting equation (14) into the boundary conditions: (0) (0) ( ) ( ) 0W W W W       ,as: 
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Extracting Natural Frequencies and Mode Shapes 

For cantilever beam under uniformly distributed transverse harmonic force ( , ) 400 /i tq x t e kN m , 

the natural flexural frequencies are extracted from the steady state dynamic response analyses in which the 

exciting frequency is varied from nearly zero to 500Hz. The peak transverse displacement at the cantilever tip 

as a function of the exciting frequency is shown in Figure (5). For the sake of comparison, two solutions based 

on the present finite beam element developed in this study and Abaqus finite element model are plotted on the 

same diagrams. Peaks on both diagrams indicate resonance and are thus indicators of the natural flexural 

frequencies of the given beam. Thus, the first five flexural natural frequencies extracted from the peaks related 

to the present finite beam element and Abaqus model solutions given in Table (1) are compared with exact 

closed-form solution presented in equation (23).  

 

 
Figure (5): Steady state flexural response for cantilever beam under harmonic loading 

The present finite element model based on a single beam element (2 dof) predicts the flexural natural 

frequencies in excellent agreement with those based on Abaqus beam model using 100 B31 elements (606 dof) 

and exact solution established by equation (23). This is a natural outcome that the finite element developed in 

this study based on the exact shape functions eliminates the mesh discretization errors. 

 

Table (1): Natural flexural frequencies (Hz) for cantilever beam under harmonic transverse loading 

Frequency 

 

Exact solution 

[1] 

Present FE 

[2] 

Abaqus FE 

[3] 

%Difference 

=[1-2]/1 

%Difference 

=[1-3]/1 

1 7.271 7.271 7.267 0.00% 0.06% 

2 45.57 45.57 45.38 0.00% 0.42% 

3 127.6 127.6 126.4 0.00% 0.94% 

4 250.0 250.0 245.8 0.00% 1.68% 
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5 413.3 413.3 402.4 0.00% 2.64% 

 

Steady State Flexural Mode Shapes  

The first five normalized flexural mode shapes for the steady state transverse displacement and bending 

rotation responses of the cantilever beam under the given harmonic transverse loading using five different 

exciting frequencies at the peaks (i.e., 1 2 37.271 , 45.57 , 127.6f Hz f Hz f Hz   , 4 250.0f Hz ,

5 413.3f Hz ) are shown in Figure (6). The normalized steady state flexural displacement and bending rotation 

mode shapes obtained from the present finite beam element (using 6 beam elements for the sake of comparison) 

and Abaqus beam model solution are plotted on the same diagrams exhibit excellent agreement.  

 

  

Figure (6): Steady state flexural displacement and bending rotation modes for cantilever beam 

 

4.2 Example (2) – Axial Static Force Effect  

A simply-supported steel beam (E=200GPa, G=77GPa, ρ=7850kg/m
3
), having a length of 5000mm, 

width of 80mm and depth of 80mm subjected to distributed harmonic force ( , ) 8.0 e /i tq x t kN m  in 

additional to axial static force oP acting through the centroid of the cross section is considered as shown in 

Figure (7).  

 
Figure (7): Simply supported axially preloaded beam under distributed harmonic force 

It is required to (1) predicting the natural flexural frequencies and critical buckling loads for the beam, 

(2) investigating the axial static effect on natural flexural frequencies and steady state flexural dynamic 

response. 

In order to validate the results obtained from the present finite beam element formulation, exact 

solution and Abaqus finite beam element are used for comparison. The present finite element formulation used 

two beam elements with 6 degrees of freedom while Abaqus finite element employed 100 B31 beam elements 

with 606 degrees of freedom to capture the accurate results.  

 

Critical Buckling Loads and Natural Frequencies  

For the given simply supported beam subjected to harmonic force ( , ) 8.0 e /i tq x t kN m , the critical 

buckling loads and natural flexural frequencies related to first four buckling and vibration mode shapes are 

extracted from the steady state flexural dynamic analyses in which the exciting frequency varying from 

nearly zero to 750rad/sec , as illustrated in Figure (8). It is observed that the natural flexural frequencies 

1 2 3 4( , , , )    decrease with the increase of static compressive loads oP , and the decrease become more 

quickly when the compressive forces close to critical buckling loads 1 2 3 4( , , , )cr cr cr crP P P P . This is attributed 
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to the decreasing of beam stiffens. In other words, the critical buckling loads (i.e., 0)criP  are achieved when 

the natural frequencies ( /sec)i rad are nearly equal zero (i.e., 0)i  . This leads to conclude that the simply-

supported beam losses stability when the compressive forces approach to critical buckling loads.  

 

 

 

  

Figure (8): Natural flexural frequencies and critical buckling loads for simply-supported beam 

 

Table (2) provides the first four natural flexural frequencies and critical buckling loads which extracted 

from the steady state flexural dynamic responses are based on three different solutions: the present finite 

element formulation, exact solution and ABAQUS finite element solution. As a general observation, excellent 

agreement is observed between present finite element solution and exact solution, while the corresponding 

results predicted by ABAQUS B31 beam model showed less agreement for the higher natural frequencies as 

well as the critical buckling loads. As can be noted form Table (2), ABAQUS beam model differ from those 

based on the exact solution by 0.02%-0.65% for natural flexural frequencies and by 0.04%-0.86% for the case of 

critical buckling loads. In constraint, the results computed from the present formulation exactly match with 

those obtained from the exact solution. As expected, the present finite beam element solution based on the exact 

shape functions which exactly satisfy the homogeneous form of the governing field equation, which in turn 

eliminates discretization errors induced in the conventional finite element formulations demonstrate excellent 

agreement with other solutions. 

 

Table (2): The critical buckling loads and natural flexural frequencies of simply supported beam 

Mode 

Number 

Critical Buckling Loads crP (kN) 
% Difference 

=[1-2]/1 

%Difference 

=[1-3]/3 
Exact Solution 

Present FE 

(4 dof) 

Abaqus FE 

(606 dof) 

1 269.5 269.5 269.4 0.00% 0.04% 

2 1078 1078 1076 0.00% 0.19% 

3 2426 2426 2414 0.00% 0.49% 
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4 4312 4312 4275 0.00% 0.86% 

Mode 

Number 

Natural Flexural Frequencies   (rad/sec) 
% Difference 

=[1-2]/1 

%Difference 

=[1-3]/3 Exact Solution 
Present FE 

(4 dof) 

Abaqus FE 

(606 dof) 

1 46.02 46.02 46.01 0.00% 0.02% 

2 184.1 184.1 183.8 0.00% 0.16% 

3 414.2 414.2 412.6 0.00% 0.39% 

4 736.3 736.4 731.5 -0.01% 0.65% 

 

Axial Static Force Effect on Natural Flexural Frequencies 

The first three natural flexural frequencies 1 2 3( , , )f f f extracted from the steady state bending dynamic 

response analysis of simply-supported beam are shown in Figure (9) for different values of axial static forces 

varying from compression -200.0kN to tension 200kN. It is noted that the natural flexural bending frequencies 

decrease with the increase of axial static compressive forces, while an increase of axial tensile static force leads 

to increase the natural flexural frequencies. As expected, the axial tensile forces increase the natural flexural 

frequencies of the beam indicating an increase in the beam stiffness while the compressive force decrease the 

natural frequencies indicating reduction in the stiffness of beam. 

 

 

Figure (9): Axial static force effect on the natural flexural frequencies of simply-supported beam  

 

Axial Static Force Effect on Dynamic Response  

Figure (10) presents the steady state dynamic response for flexural displacement ( )W and bending 

rotation ( ) versus the beam coordinate axis at exciting frequencies 11.48 68.11 /secrad   and for 

different values of axial static forces. It is obvious that the amplitudes of the flexural displacement and bending 

rotation decrease as the axial static force changes from tension 1.5oP MN to compression 1.5oP MN . In 

other words, the axial tensile static force is increased, the natural flexural frequencies increase indicating an 

increase in beam stiffness while the axial compressive force has the opposite effect to that of axial tensile force, 

on the natural frequencies and the stiffness of a beam. Therefore, the results showed that the axial static 

compressive forces soften the beam whereas the tensile forces stiffen the beam. 
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Figure (10): Flexural dynamic response of simply-supported beam under axial compressive force 

 

4.3 Example (3)  –  Finite Element Formulation 

This example is presented in order to show the ability and accuracy of the finite two-noded beam 

element developed in this study by comparing the obtained results for quasi-static and dynamic responses with 

those based on the Abaqus beam model results. A clamped-clamped EB beam under three harmonic bending 

forces; distributed force ( , ) 4.0 /i tq x t e kN m , concentrated transverse force ( , ) 3.0 i tF 8m t e kN , and 

concentrated bending moment ( , ) 2.0 i tM 6m t e kNm  is considered as illustrated in Figure (11). The beam 

has a circular cross-section of diameter 120mm, while the mechanical properties of the steel beam are: 

200E GPa , 80G GPa and
38000 /kg m  .   

 

Figure (11): A clamped-clamped beam under various harmonic bending forces 

 

In order to demonstrate the accuracy and capability of the present finite element based Euler-Bernoulli 

beam theory, the nodal degrees of freedom results for quasi-static flexural response and steady state flexural 

dynamic response are obtained and compared against the results based on established Abaqus finite beam 

element model. Under the present finite element solution, only five two-noded beam elements with twelve 

degrees of freedom are used to achieve the convergence while in Abaqus beam model solution, the model is 

consisted of two-hundred beam B31 elements with 1206 degrees of freedom along the beam axis to eliminate 

the discretization errors and attain the required accuracy of the solution. 

 

Quasi-Static and Dynamic Flexural Solutions  
The quasi-static flexural response of the clamped-clamped beam under the given harmonic bending 

forces and moments shown in Figure (11) approached by taking the value of the exciting frequency
significantly lower than the first natural flexural frequency of the given beam, i.e., 

10.01 0.3354 /secrad    (where the first natural flexural frequency of the clamped-clamped beam

1 33.54 /secrad  ) is plotted in Figure (12), while the steady state flexural dynamic response illustrated in 

Figure (13) is established at exciting frequency 50 /rad sec . The results of quasi-static and steady state 

dynamic responses results obtained from the present finite element formulation based on five beam elements 

with 12 dof and Abaqus finite beam model using 200 beam B31 elements with 1206 dof are plotted on the same 

diagrams for comparison. It is observed that the nodal flexural displacements and rotations results obtained from 

both finite element solutions exhibit   excellent agreement. Again, this is a natural outcome of the fact that, the 

present finite beam element formulation based on the exact shape functions which exactly satisfy the 

homogeneous solution of the governing flexural vibration equation. This treatment eliminates the discretization 
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errors occurred in the conventional finite element formulations which based on approximate interpolation shape 

functions. 

 

 

 

Figure (12): Quasi-static analysis for clamped-clamped beam 

 

 

 

 Figure (13): Dynamic analysis for clamped-clamped beam 

 

V. Summary and Conclusion 
From the numerical results conducted throughout this study, the following concluding remarks are 

made:  

 The governing field equation for the flexural bending vibration and related boundary conditions for axially 

loaded beams under harmonic bending excitations is derived through Hamilton variational principle.  

 Exact closed-form solution of steady state flexural bending response of beams derived in this study is 

successfully used to formulate a family of exact shape functions which based on the homogeneous solution 

of the governing bending field equation.  

 The exact shape functions are used to formulate a super-convergent finite beam element for the beams. The 

proposed beam element has a two nodes and four degrees of freedom. 

 The new beam element involves no discretization errors and generally provides excellent results compared 

with Abaqus finite element solution while keeping the number of degrees of freedom a minimum.  

 The present finite element formulation developed in this study are able to efficiently capture the quasi-static 

and steady state dynamic response of beams under harmonic bending loading. It is also capable of extracting 

the eigen-frequencies and eigen-modes as well as critical buckling loads.  

 Results exhibit the axial static compressive load reduces the beam stiffness and result in lower predictions 

for natural flexural frequencies while the axial tensile load increases the natural flexural frequencies of the 

beam, indicating an increase in the stiffness of the beam. 
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