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Abstract: If for any reason it is not possible to use an automated fire control system, then especially in combat 

conditions it is necessary to use an alternative method of calculating the mean point of impact position. To do 

this, tabular firing tables (TFT) are used together with the corresponding type of artillery meteorological 

message. If TFTs created according to STANAG 4119 are used, only the met message METB3Q must be used for 

surface-to-surface fire. The calculation of corrections for deviations in virtual temperature is very problematic. 

We have been dealing with the problem since 2013. In this article, we propose a solution that increases the 

accuracy of calculations and is applicable in combat conditions. However, the main advantage of the proposed 

method is the fact that met data can be obtained from any available met message (METB3Q, Meteo - 11 (meteo - 

average), METCMQ, METGM and GRIB). 
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I. Introduction 
1.1 Motivation 

We have been studying the same theme since 2013 during which our motivation has not change: It 

follows from the analysis of artillery fire errors, e.g. [1], that approximately two-thirds of the inaccuracy of 

indirect artillery fire is caused by inaccuracies in the determination of meteo parameters included in the error 

budget model. Consequently, it is always important to pay close attention to the problems of including the actual 

meteo parameters in ballistic calculations. The following meteo parameters μ are primarily utilized: Wind vector 

w, air virtual temperature Tv, air pressure p, air density ρ and speed of sound a.  

This paper only deals with problems relating to unguided projectiles (including Base Burn projectiles) 

without propulsion system for the sake of clarity of the solved problems. We analyze the problem of only one 

meteorological parameter, namely the virtual air temperature Tv.. 
 

1.2 References 
We have gradually published a summary of the necessary theory in materials [2 - 13], using all the 

available literature. 

In the article we focus on the issue, which is defined by definitions and requirements for creating 

tabular firing tables - TFTs according to STANAG 4119 [14]. The basis of this STANAG are procedures for 

creating US TFTs. This type of TFTs was introduced in the United States in the 1930s.  

The procedure for obtaining experimental inputs for the creation of these TFTs is specified primarily in 

STANAG 4144 [15]. The required procedure for calculating projectile trajectories is defined in STANAG 4355 

[16]. Only [17] the ICAO Standard Atmosphere [18, 19] must be used in the calculations. 

The measured met data must be sent and used only in the form of a meteorological (met) message 

METBKQ [20] for “surface-to-surface“ fire (K = 3). 

In this article we are still working with other met messages: METCMQ [21] and METGM [22]. In 
2019, STANAGs [17, 20 - 22] were canceled and their original content was embodied in the new edition 5 of 

STANAG 6015 [23]. We also refer to the met message of the World Meteorological Organization GRIB [24].  

Met message Meteo - 11 (meteo - average) [25, 26] was introduced in the former Soviet Union in 1956. 

It was and continues to be used in the countries of the former Soviet bloc and in countries to which artillery 

weapons from the Soviet bloc were supplied, especially China, India, Vietnam and many other Asian, American 

and African countries. The use of this met message is therefore still important and current.  

In Europe, another type of TFTs (Old European TFTs) was used, which was gradually replaced by 

TFTs according to STANAG 4119 [14]. In the countries of the former Soviet bloc, Soviet TFTs were and are 
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used. They are modified Old European TFTs [25, 26] and since 1956 they have been supplemented by the 

reference height of trajectory YR [2, 7, 25, 26]. The values of reference height of trajectory (RHT) are required 

to read met data from the Meteo -11 met message. 

 

1.3. The main objectives of the contribution 
Three basic groups of methods are used to determine the artillery fire-control solution (Quadrant 

elevation, bearing (azimuth) and fuze setting):  
- basic procedures,  

- spare (alternative, substitute) procedures and  

- emergency procedures. 

Basic procedures (methods) have been based on the direct numerical integration of differential 

equations that describe the trajectory of a projectile since the 1960s. Calculations are also performed in field 

conditions on a digital ballistic computer, which forms the core of the automated Fire Control System - FCS. 

Met data for calculation are supplied in the form of suitable met messages, for example METCMQ [21, 23], 

METGM [22, 23] and Meteo-11 [25, 26].  

If the ballistic computer is not available, which is typical of underdeveloped countries, or is damaged, 

which is common in combat conditions, it is necessary to use spare (alternative) procedures. It is therefore clear 

that the use of these methods is very common even today. 
The basis of these methods is the use of TFTs together with the corresponding met message. Currently, 

there are the two most common combinations:  

- TFTs defined using STANAG 4119 together with the METB3Q met message, 

- Soviet format of TFTs together with met message Meteo - 11 (meteo - average). 

In the case of both groups of procedures mentioned above, the corresponding met messages are 

required not to be too outdated, so, their staleness is acceptable.  

If the staleness of met messages is unacceptable, one of the methods of the third group of procedures 

(emergency procedures) must be used. These methods are always based on experimental firing designed to 

obtain replacement met data. 

In the article we will deal with one method of the second group, namely the combination of TFTs 

according to STANAG 4119 and the METB3Q met message. 

Based on analyzes performed in previous years, we found that the method of data preparation for the 
METB3Q assembly is very inappropriate.  

We first published [2 – 4] an analysis of the problem for calculating the range and cross ballistic winds. 

We have shown that it is far more advantageous to use a procedure based on the use of a reference height of 

trajectory (RHT) together with a met message Meteo-11 or METCMQ [2, 3, 7, 8]. 

Further analysis showed that a similar situation applies to the calculation of ballistic air density B, 

more precisely its relative deviation B from the standard course of air density STD. 
However, the most problematic is the calculation of the ballistic virtual temperature Tv,B, more 

precisely its relative deviation Tv,B from the standard course of the virtual temperature Tv,STD. The problem is 
further complicated by the common occurrence of the so-called "norm effect". The norm effect has been known 

for about 100 years [27]. The proposal for its compensation published so far [28] has not been applied in 

practice. 

In order to successfully solve the problem, we had to create the necessary theoretical foundations. 

Gradually, we published an improved theory of the generalized meteo-ballistic weighting factor functions [5, 6, 

9, 10] and an improved theory of the projectile trajectory reference height YCR [7 - 10]. 

In this paper, we use our improved theories to design a way  

- to suppress the effects of the norm effect on the mean point of impact (MPI) correction accuracy and  
- to replace data from a completely inappropriate met message METB3Q by data from any other met 

message. In particular, the data reported in METCMQ and Meteo-11, as well as data from METGM and GRIB, 

are suitable. 

The results of the analysis are formulated into two alternative proposals for the content of annexes for 

current TFTs according to STANAG 4119. The second proposal is more advantageous in terms of its practical 

use. 

The proposed modifications of TFTs can be easily modified not only for Rocket Assisted Projectiles 

and, unguided rockets but also for illuminating and cargo projectiles and for the passive section of projectile 

trajectory with terminal guidance. 

 
1.4 Overview of basic formulae 

The area of mathematical theory we use is based on a combination of perturbation theory [29] and 

Green's functions theory [30].  
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This area of mathematical theory is commonly used in automatic control [31 - 33] and in many of its 

applications. An application in the theory of aerospace vehicle control is important to us [34]. In addition, in the 

theory of automatic control, this theory is combined with differential sensitivity analyses [35], for example [31, 

32]. The following names are most often used for this theory: differential sensitivity analysis of the control 

system or sensitivity of a system to parameter variations. 

In exterior ballistics, this theory began to be used during the second half of the First World War, i.e. 

from about 1916. However, the results were only published after the end of the war, for example [36]. This 
theory is traditionally referred to as the theory of trajectory (differential) corrections.  

The theory was commonly used until about the first half of the 1960s [28, 37 - 40]. With the advent of 

digital computers, it was completely illogically abandoned, unlike most technical fields, in particular the theory 

of flight control of aircraft and missiles. At present, it is a completely forgotten theory for most exterior 

ballisticians. Exceptions are those who also deal with the theory of missile flight control. A more detailed 

analysis of the causes of the situation is given in [5]. 

Gradually, other terminology was introduced in mathematics, automatic control and exterior ballistics. 

Table 1 compares the names for the most important terms. 

 

Table 1 

generally Tv ballistics automatic control mathematics 

Qp X effect function (EF) 
step response function 

(SRF) 
no name 

G G 
no name or 

GsF 

impulse response 

function (IRF) 
Green’s function (GsF) 

r r 
weighting factor function 

(WFF) 
normed SRF no name 

g g 

no name or 

NGsF 

 

normed IRF 
normed GsF 

(NGsF) 

 

We will clarify the used procedures and formulae using a specific numerical example in order to 

achieve the greatest possible clarity. 

We chose the following parameters of the ballistic system: caliber d = 155 mm, mass of the projectile   

mp = 43.2 kg, ballistic coefficient c = 0.563 m2/kg (Soviet drag model of 1943, Fig. 1), initial (muzzle) velocity 

v0 = 850 m/s. The shape of the projectile is very similar to the shape of the M107 projectile. The altitude of the 

gun muzzle is hG = 0 m. The range X and summit (vertex) height yS versus departure angles 0 is shown in Fig. 
2, 3. 

There are explicit and implicit calculation algorithms [5]. Green's function G(tp, tPI) is calculated 
directly using explicit algorithms [28, 33, 36, 37, 39, 40]. These algorithms are illustrative, but less suitable for 

use on a digital computer [5,6].  

The effect function Qp(tp, tPI) is calculated directly using implicit algorithms [38]. These algorithms are 

very convenient for use on a digital computer, so we use them. A detailed analysis of this issue is given in [5, 6]. 

All functions Qp(tp, tPI), G(tp, tPI), r(tp, tPI), and g(tp, tPI) (Table 1) have two independent variables tPI and 

tp [5, 6, 25, 28, 36 - 40].  

Time tPI is the flight time to the point of impact PI for a non-perturbed (standard) trajectory. For 

surface-to-surface fire, PI is the same as the point of fall (yF = 0). Therefore, tPI = tF. The value of tF is given in 

TFTs. 

The time tp 0, tPI is the moment of the beginning of the perturbation of the projectile trajectory. In 

the time interval t  0, tp the trajectory is non-perturbed (standard) and in the time interval t   tp, tPI the 
trajectory is perturbed. The vertical coordinate of the trajectory y = 0 only occurs for the perturbed trajectory at 

time t = tend [5, 9].  

In our case, the perturbation parameter is the relative deviation of the virtual temperature Tv. We 

chose Tv,P = + 0.1 = const (10%) for the calculations.  
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Fig. 1 Soviet drag model of 1943 and its fully normed sensitivity coefficient nD0 [26] 

 

 
Fig. 2 Range X versus angle of departure 0. 
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Fig. 3 Summit (vertex) height yS versus angle of departure 0. 

 

The effect function Qp is the perturbation of the range X(tp, tPI)  in this case, where  
 

                                               X(tp, tPI)  = X(tp, tPI)  - XSTD,   
 

- XSTD is the range for the non-perturbed (standard) trajectory – Fig. 2 and  

- X(tp, tPI)  for the perturbed trajectory.  

The Green's function G(tp, tPI) is obtained by numerical derivation of the corresponding effect function 

Qp(tp, tPI) [5, 9, 31 - 33] 

 

                 
           

  
  

           

  
 .     (1) 

 

Examples of calculated effect functions X(tp, tPI)  = X are shown in Fig. 4 (time t – domain). 
 

 
Fig. 4 Examples of effect functions X(tp, tPI)  = X for 7 values angle of departure 0 and Tv,P = 0.1 

(t – domain) 
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Fig. 5 Two branched effect functions (y – domain) 

 

 
Fig. 6 Effect functions in y – domain (Bliss’ notation) 

 

In practice, we work with effect functions X, which are expressed as the vertical coordinate of 
trajectory y functions (y - coordinate domain). To calculate them, it is first necessary to calculate two branched 

effect functions [4, 25, 28, 37, 38, 40] - Fig. 5. 

Effect functions in the y - domain can be calculated in two ways, which we call Garnier's notation [4, 

38] and Bliss' notation [1 – 13, 25 – 28, 36, 37, 40]. In practice, the use of Bliss' notation prevails - Fig. 6. In this 

case, a formula similar to formula (1) applies, but with a +1 sign [5, 9]. 
Normalized function curves are used for calculations: r - weighting factor functions - WFFs and                    

g - normed Green's functions. 

We use relative time  

             
  

   
       (2) 

 

and relative vertical coordinates 

 

                                              
      

         
  

      

         
  ,      (3) 

where 

h = hG + y - instantaneous altitude of the projectile [m] 
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hG  - altitude of the muzzle of the gun barrel (beginning of the ballistic coordinate system,  

        x = 0, y = 0, z = 0) 

y    - instantaneous height of the projectile trajectory 

hmin = min(h) - the minimum altitude of the projectile between the beginning of the trajectory  

           and the point of impact/burst (hPI) 

hmax = max(h) - the maximum altitude of the projectile between the beginning of the trajectory  

           and the point of impact/burst (hPI) 
In the following, we will assume that the point of impact PI is the same as the point of fall (yF = 0 m), 

then it holds that 

          
 

  
 ,           (4) 

 

yS = YS - vertical coordinate of the summit (vertex) of the trajectory. 

We use the following relationships to calculate WFFs (s = τ or η) 
 

                
     

      
 

     

     
  ,                     (5) 

and normed Green's functions 

              
    

      
 

    

     
 ,                        (6) 

where 

Qp,N,s= XN,s = N,sNs  - generalized norm (standardization value, scale value) 

N,s = +/- 1 - a sign chosen to hold r(τ)  0 for τ = 0 (r(0)  0)  or r(η)  0 for η = 1 (r(1)  0). In the case of the 
exact norm effect, ie if r(τ) = 0 for τ = 0 or r(η) = 0 for η = 1 applies, then the choice of the sign is a contractual 

matter [5, 9]. 

Ns – norm defined according to mathematical rules (Ns  0) [5, 7, 9] 
 

                                                           .                  

(7) 

 

A (unit) correction factor is published in TFTs (r(1) = r(η) for η = 1) [5, 7, 9, 14 ] 

 

                     
     

     
      ,        (8) 

where 

Tv,p  - the value Tv with which XN,η was calculated. In our example  Tv,p  = 0.1. 

Tv,N  - the value Tv  defined in the TFTs [14]. In our case Tv,N  = 0.01 (1 %). 

The correction for the virtual temperature Tv is calculated from the relationship [2, 5, 28, 37] 
 

                  
     

     
   ,       (9)  

where 

Tv,B - is the ballistic value of the relative deviation of the virtual temperature Tv [2, 5, 7, 9, 25, 26, 28, 37, 38, 
40] 

 

                             
 

 
                 

 

 
.    (10) 

 

This Duhamel's convolutional integral has three possible interpretations: 

- in a purely mathematical sense, it is a solution of a given differential equation at a given time t = tPI, 

- it is usually interpreted as a formula for calculating the weighted average. To calculate the arithmetic average,   

g = 1 is chosen. 

- formula describing the operation of a Low-pass digital Finite Impulse Response (FIR) filter [11]. It is therefore 

an application of signal processing procedures in exterior ballistics. This interpretation makes it possible to 

correctly understand the true nature of the so-called ballistic values of individual met parameters . These are 

therefore the values at the output of the assigned digital FIR filter. Green's function is then referred to as the 
impulse response function of the FIR filter. 

In fact, we work with discretized functions [2, 5, 25, 37, 38] 

 

                        
 
   ,       (11) 
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where 

qj(n) = rj – rj-1 = r(ηj) – r(ηj-1), j = 1, 2, …, n, r0 = 0, rn = r(1)  0, 1  - weighting factors -WFs 

Tv,j - the average value on the interval η  ηj-1, ηj, η0 = 0, ηn = 1. 
 

 
Fig. 7 Weighting factor functions - WFF for t - domain 

 

 
Fig. 8 Normed Green’s functions for t - domain 

 

For example, the values of weighting factors qj(n) are tabulated in STANAG 4061 [20] and 6015 [23]. 

The values of Tv,B are given in METBKQ for K = 2, 3 
The courses of WFFs and normed Green's functions are shown in Figs. 7 – 10. 

From the analysis of normed Green's functions courses in the time domain Fig. 8 it is clear that they are 

strongly influenced by the course of the fully normed sensitivity coefficient nD0 Fig. 1. This conclusion is 

confirmed by a theoretical analysis [40].  
It follows that not only the zero - drag coefficient cD0 but also nD0 must be accurately approximated, 

otherwise the Green's function estimates will be very inaccurate. In general, this applies to approximations of all 

aerodynamic coefficients cj(M) and their derivatives. Most published approximations of the relevant data do not 

meet this requirement at all. This is one of the obstacles to using models with 4 or more degrees of freedom. 

Also note that in the past, instead of nD0, the coefficient n = nD0 + 2 was used, which is referred to as 

"Mayevski n" [28] or "degree of air resistance" [38, 40, 41]. 
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Fig. 9 Weighting factor functions - WFF for y – domain 

 

 
Fig. 10 Normed Green’s functions for y - domain 

 

For the WFF approximation, which was already known in the period before the First World War, the 

following relation applies [2, 5, 25 -28, 37, 38, 40]  

 

                   .               (12) 

 

This WFF approximation is commonly referred to as the Vacuum function (curve) or the Time function 

(curve) in the literature. The course of the derivation of this function (Vacuum Green’s function) is presented for 

comparison in Fig. 10. 
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II. Problem analysis and recommendations  
 In this paragraph, we will use the following identity r(1) = r(η) for η = 1.   

 
2.1 Meteorological message METB3Q  

In the past [2, 4], we have reconstructed the WFFs for the height zones zz = 1, 2, ..., 15, from which the 

weighting factors qj(zz), j = 1, 2, …,zz (formula (12)) used in the calculations of ballistic values Tv,B(zz) were 
calculated and which are then presented in the METB3Q met message [20, 23]. 

Selected WFFs are shown in Fig. 11, where y(zz) is the elevation of the upper edge of the zz zone 

above the Meteorological Datum Plane - MDP, whose altitude is hMDP. The value y(zz) is interpreted as the 

summit (vertex) height yS corresponding to the projectile trajectory. In the following, for simplicity, we assume 

that hMDP = 0 m. The corresponding normed Green's functions are shown in Fig. 12. 

If we compare the WFFs from Fig. 11 with the WFFs of our example Fig. 9 with the aid of Figs. 3, 5, it 

is obvious that they do not resemble each other at all, not even qualitatively. A similar comparison of the normed 

Green's functions shown in Fig. 12 and Fig. 10. 

 

 
Fig. 11 Examples of WFFs from which weighting factors are calculated, which are used to calculate ballistic 

virtual temperature for met message METB3Q 

 

 
Fig. 12 Normed Green's functions, which correspond to the respective WFFs in Fig. 11. 
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Fig. 13 Plane division (155 mm projectile): initial (muzzle) velocity v0 - angle of departure 0  to areas with 

similar course of WFFs and normed Green's functions 

 

Based on the previous conclusions, we extended our example and calculated everything (Fig. 4 -10) for 

the range of initial (muzzle) velocities 200 to 1500 m/s. The basic findings are summarized in the graph of Fig. 

13. The plane: initial (muzzle) velocity v0 - the angle of departure 0 is divided by three curves into nine basic 
areas. Some areas are further divided into sub-areas. In each sub-area, WFFs and normed Green's functions have 

a similar shape.  

We also calculated analogous graphs for 82, 105 and 122 mm calibers. Their shapes are very similar to 

each other, so the following statement can be considered sufficiently general. 

We will now proceed to the analysis of the graph in Fig. 13. The curve marked "NE - Turbulent" is the 
most important. There is an exact norm effect (rτ (0) = rη (1) = 0). In our numerical example (v0 = 850 m/s) the 

exact norm effect occurs twice for 0 = 20.4011° and 0 = 65.1239°. For example, for v0 = 1000 m/s,                          

0 = 26.7598° and 0 = 51.7695°. 
We tried to approximately model the transition of turbulent flow to laminar flow Fig.1. As a result, a 

second exact norm effect curve is created, marked "NE - Laminar" - Fig.13. 

The last division curve is marked "g(ts) = 0". This is the value of the Green's function in the t - domain 

for tp = tS, where tS is the moment at which the projectile is at the summit (vertex) of the trajectory. This curve 

has two properties: 

- In the area above this curve, a typical loop is on the two branched effect curves Fig. 5, which then manifests 

itself in a typical course of WFFs for large values of y and η, Fig. 6, 9. 

- If g(ts) = 0, then g(η) = 0 for η = 1, Fig. 10. In addition, this curve separates the two divergence areas of 

Green's functions. For example, if g(η)   for η  1 holds in the area below the curve, then g(η)  -  for 

η  1 must hold in the area above the curve, and vice versa, Fig. 10. 
The second mentioned property of this curve leads to great numerical difficulties therefore the graph in 

Fig. 10 only counts for η  0.95 – 0.97. A detailed analysis of the problem is given in [9]. 

In the numerical example (v0 = 850 m/s) the point of this third curve has a value 0 = 56.51° and 

therefore lies between the points corresponding to the exact norm effect. If v0 = 1000 m/s,  0 = 60.25° and this 
point lies above both points for the exact norm effect - Fig. 13. 

Further curves (0 = 10°, 40°, 60° and 70°) are shown in Figs. 7 - 10 to illustrate courses in areas 2, 3, 
6 and 8 - Fig. 13. 

Finally, three more remarks on Fig. 13: 

- The graph is realistic only up to an angle of departure  0 of approx. 70°. For larger angles of departure, the 
flight of the projectile is usually unstable. 

- We have simplified the graph to make it clear. There is at least one more g(ts) = 0 - curve that has only the 

second of the properties described. 
- Another dividing curve exists for large initial (muzzle) velocities v0 (above about 1200 m/s) and very large 

angles of departures 0. Above this curve, the two branched effect curves have not one, but two superimposed 
loops - Fig. 5. 
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Partial conclusions:  

1. Based on the analysis, it can be stated that the weighting factors qj(zz), i.e. discrete values of digital FIR 

filters, for calculating [20, 23] the ballistic values of the relative deviation of the virtual air temperature Tv,B 
do not even qualitatively coincide with the values calculated by us. Qualitative agreement exists for small 

angles of departure (0  cc. 10°). As a result, the values (Tv, B +1) given in the METB3Q met message can be 
expected to be extremely inaccurate under usual met situations. 

2. Based on the analysis performed in [2], it can be stated that the weighting factors qj(zz), i.e. discrete values of 

digital FIR filters, for calculating [20, 23] the ballistic value of the wind vector are qualitatively identical with 

the values calculated by us, but there are significant quantitative differences. As a result, it can be expected 

that the values of the ballistic wind vector given in the METB3Q met massage may differ significantly from 
the actual values in a usual met situation.  

  
2.2 Consequences of norm effect for practice 

In the case of the exact norm effect, r(1) = 0 always holds, so XT,1 = 0 always holds (formula (8)). As 

a result, the correction for the deviation in virtual temperature XT (formula (9)) is always zero, which is a 
shortcoming of the theory used so far, as this correction is usually non-zero. Based on the analysis of the graph 

in Fig. 13, it is clear that this situation is quite common. 

Now we present formulas [7, 9] without derivation, which allow to solve the given problem. 

We assume that the measured course of the relative deviation of the virtual air temperature Tv(η) is 
approximated by a polynomial 

 

                     
  

              ,     (13) 

where 

aj, j = 0, 1, 2, …,n - empirical approximation coefficients - Fig. 14 

Tv(η) = Tv(η)/Tv,STD(η) -1   [-] 
Tv(η) – measured values of the air virtual temperature [K] 

Tv,STD(η) – standard values of the air virtual temperature [K] [18, 19] 

 Substitute formula (13) into relation (10) and after rearrangement we get [7, 9] 

 

                  
 
                              (14)  

where 

mWFF,j, j = 0, 1, 2, ….  -    new characteristics of digital FIR filter 
 

                                          
 

 
  .     (15) 

Next formulae pay special [7, 9] 

                                                                    (16) 

                 ,                      (17) 

 

                                      
 

 
  .      (18) 

 

After substituting formulae (16) and (17) into formula (14) and adjusting, we obtain an approximate (linearized) 

estimate 

 

                                   ,    (19) 

where 

r(1), S  are new characteristics of the digital FIR filter. 

In the case of exact norm effect (r(1) = 0) will apply  Tv,B  - a1S, Fig. 14. 
Instead of formula (8) we will use the formula 

 

                     
     

     
 .       (20) 

 

Formulae (14) or (19), (20) and (9) make it possible to overcome the consequences of the exact norm 

effect described above. We will demonstrate it with an example that follows the previous example (Tv,p = 0.1): 

- For the first exact norm effect: 0 = 20.4011°, X = 16112 m, yS = 2242 m, XN,η = -111.9 m, and S = 0.6198, 

so XT  - 694a1. If a1 is a random number from the interval -0.1, 0.1, then the correction will be XT          

- 62, + 62 m. Obviously, such a correction cannot generally be neglected. 
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Fig. 14 Scheme to explain the algorithm for estimating the ballistic value of the relative deviation of the virtual 

air temperature Tv,B [-] 
 

- For the second exact norm effect: 0 = 65.1239°, X = 17569 m, yS = 12072 m, XN,η = 175.6 m, and                             

S = - 0.5409, so XT  - 950a1. If a1 is a random number from the interval -0.1, 0.1, then the correction will 

be XT  - 95, + 95 m. Obviously, such a correction cannot generally be neglected. 
Finally, we assess the suitability of using a generalized reference height of trajectory [7, 9]. 

Generalized reference height of trajectory is given by relation 

 

                  ,                         (21)  
where 

hm = hmax – hmin = ymax - ymin. The next relationship applies to our assumptions hm = yS. 
 

                                       (22) 

 

k = 2  if meteo message Meteo -11 (meteo-average) is used (Soviet methodology [5, 7, 9, 25]) 

k = 1  if meteo message METCMQ [21] is used (newly proposed methodology [7, 9]). 

In the following, we will assume the Soviet methodology, so we will assume that k = 2 – Fig. 14. 

 

                                  
  

  
                     

  

  
       .              

(23) 

 

Using the reference height of the trajectory YCR is equivalent to using relation (19), so YCR must be considered 

as another characteristic of a digital FIR filter. 

If we insist on compliance with the law of causality, ηr  0, 1 must apply - Fig. 14. 
From formula (23), after adjustment, we obtain an equivalent condition  

    

    
  

  
    

  

  
 
   

  
  

  
 
   

 ,      (24) 

where 

               
  

  
 
   

  
  

  
 
   

        and               
  

  
 
   

 
      

      
   . 

   

If r(1)  1 applies, the use of the formula (21) for the generalized reference height of the trajectory YCR places a 

limitation on the size of the empirical coefficients a0, a1, therefore its use is not appropriate and it is more 
appropriate to use the formula (19) directly. 
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2.3 Met data filtering 
The basic filtering of met data already takes place during the measurement and is given by the used 

measuring devices, their adjustment and calibration, and the used measurement methodology.  

If meteorological software is used to predict changes in the measured met data, then the properties of 

the software that affect its output can be interpreted as the properties of a special prediction filter.  

This raw data is usually distributed to users in METGM [22, 23] and GRIB [24] met messages. 

We are interested in how this raw data is further processed. There are currently three methodologies 
[11, 12]: 

- single-stage filtration,  

- two-stage filtration and  

- three-stage filtration. 

 Single-stage filtering is used separately and then its output is data given e.g. in the METCMQ met 

message [21, 23], or it represents the first stage in multi-stage filtering. The aim of this filtering is to reduce the 

volume of transmitted data in the respective met messages. It is basically a lossy data compression.  

The altitude interval hMDP, (hMDP + yz,max), yz,max = 30 km is divided into layers (zones) of different 

heights hj, j = 1, 2, …, n. The total number n of these layers is 31 for METCMQ, 21 for METBKQ and 19 for 
Meteo -11 met message. For each layer, the filtration takes place separately and independently.  

The arithmetic mean of the Cartesian components of the wind vector is calculated (formula (10) or 

(11)). For the other met parameters (air virtual temperature, air pressure, air density), their relative deviations 

from the corresponding standard values are first calculated and then their arithmetic means are calculated. Using 

this average, the filtered value of the met parameters for the altitude of the mid-point of layer (zone) is 
calculated back. This met parameter value represents the given layer (zone) in its entirety. 

In the case of two-stage filtration, the second stage of filtration follows using the appropriate FIR filter, 

which is represented by its coefficients - weighting factors. Formula (11) is used for the calculation. Filtered 

data is distributed, for example, using the METB3Q met message. In the previous part of the article, we showed 

that this procedure is very inaccurate, because we use sets of weighting factors qj(zz) common to all artillery 

systems (projectile caliber, its initial (muzzle) velocity, ballistic coefficient) for one reason only - to reduce the 

number of these weighting factors [2, 4, 5]. This problem has been known for about 100 years. During that time, 

several attempts have been made to solve the problem, but with questionable results – for details [2, 5]. 

Three-stage filtering of met data is a variant of how to overcome the difficulties associated with the 

two-stage variant of filtration, but at the cost of linearization - formula (19) or using the reference height of 

trajectory YCR - formula (21). 

In the second stage of this filtration, only the arithmetic average (arithmetic FIR filter) is calculated 
using formula (11), so that the results apply universally to any artillery system. The goal is to suppress the "high 

frequency" components that contain the output data from the first stage of filtration [7]. The data obtained in this 

way are distributed using the met message Meteo-11 (meteo-average) [2, 7, 25, 26]. Met messages other than 

Meteo-11 can be compiled in the same way, for example from met data contained in METCMQ, or METGM or 

GRIB. 

The third stage of this filtering method consists in reading the ballistic values of the met parameters 

from the Meteo - 11 met message using the reference height of trajectory YCR - in detail [7]. 

The reference height of trajectory YCR can be used to read ballistic values of met parameters directly from met 

messages METCMQ, METGM or GRIB, but at the cost of lower accuracy of read values – for details [7]. 

 

2.4 Recommended variants of annexes to TFTs  
The problems analyzed in this article can be overcome even with the practical use of tabular firing 

tables - TFTs according to STANAG 4119 [14]. To do this, it is necessary to create an annex to TFTs. There are 

two possible variants of the content of the annex to the TFTs. 

All further proposed parameters must be calculated for all ranges X used in TFTs. 

The first variant is seemingly simpler, but the necessary calculations are more demanding and, in 

addition, the use of the annex will be more complicated in practice. 

We already know [2, 11, 12] that in the case of range wind wx, cross wind wz and air density , it 
always applies that r(1) = 1, so the reference height of trajectory (YCR = YR) can be used without any problems. 

Hence, the annex will contain reference heights YR,wx, YR,wz and YR,.  
Alternatively, a simplified parameter [2] 

 

                                     ,     (25) 

or even  

                                                  (26) 
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can be used to reduce the amount of data in the annex. Whereas 

kw, k  0, 1  - weights. You can usually choose kw = 1/2, k = 1/3. 

To calculate corrections for the deviation of virtual air temperature Tv,B it is necessary to add: 

- XT,1             – unit correction factor - formula (20), 
- r(η) for η = 1 – formula (5) and 

- S                    - formula (18). 

This variant only allows a very complicated conversion of met data for basic TFTs to met data for 

Mountain TFTs [12].  

The essence of the second variant of the annex for TFTs lies in the return to the old European TFTs in 

the Soviet variant.  

Wind corrections are the same in both systems. 

In TFTs according to STANAG 4119, corrections are made for the deviation in air density B (ballistic 

value) and the deviation in virtual air temperature Tv,B (ballistic value), which includes only its effect on the 
deviation in the magnitude of the Mach number M (air elasticity).  

In old European TFTs, the correction for the deviation in air pressure p0 for  y = 0  compared to the 

table value p(hFT) and the absolute deviation in the virtual temperature Tv,B (ballistic value) is used, which 
includes both the effect of the deviation in air density and the effect of virtual temperature on deviation of the 
Mach number.   

The advantage is that there is no exact norm effect by WFFs for the absolute deviation of the virtual 

temperature Tv at all, so the traditional normalization can be used where r(1) = 1 and therefore the reference 
height of trajectory YR,T can be used without problems.  

The annex will therefore contain: 

-  Xp0, XT – unit correction factors for p0 and Tv, 
- YR,wx, YR,wz and YR,T or  YR,w and YR,T or YR,AV,2, where 

 

                                           ,     (27) 

 

kT  0, 1  - weight. You can usually choose kT = 1/3.  
According to the Soviet methodology [2, 25], kw = ½ and kT = 1/3 are chosen and the value of YR, AV, 2 is 

rounded to the nearest hundred meters. 

A modified Petrovic algorithm [7] can be used to calculate all reference heights of trajectory YR,... 

The second variant of the annex has three advantages:  

- the necessary parameters can be calculated much faster, and  

- people who are used to using the Soviet modification of the TFTs can handle the use of the annex without 

problems and without much training, therefore very quickly. 
- very simple conversion of met data for basic TFTs to met data for Mountain TFTs [12]. 

 

III. Conclusion 
In the period since 2013, we have managed to theoretically process the issue of corrections of non-

standard trajectories using the appropriate Green's functions or, more precisely, using digital finite impulse 

filters (FIR filters). In this paper, we present a proposal for adjustments of TFTs according to STANAG 4119 

[14], which leads to the refinement of calculated corrections and at the same time allows to use met data from 

all existing met messages (METB3Q, METCMQ, Meteo - 11 as well as METGM and GRIB) for calculations. As 

a result, the whole system becomes very robust, even in combat conditions. 
In the paper, we used an improved theory of the generalized reference height YCR [7, 9], which is based 

on traditional assumptions. We are currently working on its further improvement, which is important for ranges 

over about 30 km. 
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