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Abstract: The variation of sintered aluminium iron composites with respect to parameters of load, density 

ratio, aspect ratio and percentage of iron are analyzed. The material properties analyzed are axial stress, axial 

strain, hoop stress, hoop strain, Poisson’s ratio and hydrostatic stress. Symbolic regression equations were 

generated to accurately predict the effect of parameters on the material properties. The limitations of 

conventional parametric equation fitting were overcome with the use of symbolic multivariate regression fitting. 

To achieve this objective, the novel approach of Genetic Programming has been used. The data sets have been 

taken from the Hydraulic Testing Machine using the sintered component. Data for aspect ratios of 0.25, 0.5, 

0.75, 1.00; density ratios from 0.8-0.96 and % of iron from 0-8 have been included to find the effect of each 

parameter on the material properties. The predicted values using Genetic Programming coincided well with the 

experimental results. The results indicate the efficacy of GP to predict the effect of multiple input parameters on 

material properties. Further GP can be extended to predict the effect of variation of input parameters on the 
properties of any composite. The computational model developed will be used to predict the material properties 

for various iron composition by simple substitution without conducting experiments.  
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I.  Introduction 

               Metal powders are used in a variety of applications which include dietary supplements in food 

processing, additives in paints and other coatings. Powder Metallurgy is a highly evolved method of 

manufacturing reliable net shaped components by blending elemental or pre-alloyed powders together, 

compacting this blend in a die, and sintering or heating the pressed part in a controlled atmosphere furnace to 

bond the particles metallurgically.  
                  The P/M process is a unique part fabrication method that is highly cost effective in producing simple 

or complex parts at, or close to, final dimensions. Physical and mechanical properties of components can be 

tailored through close control of starting materials and process parameters [1]. Particular properties can be 

improved through secondary processing operations such as heat treating and cold/hot forming. Production of 

complex shapes to very close dimensional tolerances, with minimum scrap loss and fewer secondary machining 

operations. Increased demand for light weight components, primarily driven by the need to reduce energy 

consumption in a variety of societal and structural components, has led to increased use of aluminium.  

                 Additionally, the cost of fabrication coupled with a need to improve part recovery has led to 

significant growth in the net-shaped component manufacturing processes. Aluminium Powder Metallurgy (P/M) 

offers components with exceptional mechanical and fatigue properties, low density, corrosion resistance, high 

thermal and electrical conductivity, excellent machinability, good response to a variety of finishing processes, 
and which are competitive on a cost per unit volume basis [2]. In addition, aluminium P/M parts can be further 

processed to eliminate porosity and improve bonding yielding properties that compare favourably to those of 

conventional wrought aluminium products. 

 

II.  Experimental procedure 
Separately aluminium and iron powders were purchased and their individual properties were identified. 

Atomized aluminium and iron powder was mixed thoroughly. The green compacts of different height to 

diameter ratios (aspect ratio) namely 0.25, 0.50, 0.75 and 1.00 were prepared [3] from the aforesaid powder on a 

hydraulic testing machine of 1.8 MN capacity at a different pressure range in order to obtain the proper initial 
green compaction densities. The densities and the initial aspect ratios were maintained by precisely controlling 

the powder mass and accurately monitoring the compacting pressures. Different lubricants were used to 

lubricate the punch, die and the bottom insert while preparing the compacts. Sintering of these compacts was 

carried out in an electric muffle furnace at 525-540◦C for a holding period of one hour in a dry fine silica sand 

pack container. Immediately after the completion of sintering schedule, the sintered compacts were allowed to 

cool to room temperature. Once the sintered compacts attained room temperature, the residual ceramic coatings 

was removed by using the various grades of emery paper. Immediately after cleaning the sintered performs, the 
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initial heights, the diameters and the fractional densities were measured. During the axial compression tests, the 

die set was well lubricated by MoS2 lubricant, in order to create a situation for almost ideal deformation. In 

general, each compact was subjected to compressive loading in steps of 0.03 MN until fine cracks appeared on 

its free surface. Immediately after the completion of each step of loading, the height, the contact diameters, the 

bulged diameter and the density were measured for each of the deformed compacts. 

 

III.  Genetic Programming 
GP is better than a random search process. The symbolic regression function may be just too 

complicated to have been figured out by human trial and error functions. We might as well consider using 

Microsoft Excel 2003 with its data analysis Add-In. The problem is that such software and other specialised 

software merely fit in the co-efficient for a pre-determined polynomial or transcendental function. Symbolic 

regression is the process of discovering both the functional form of a target function and all of its necessary 

coefficient, or at least an approximation to these. This is distinct from other forms of regression such as 

polynomial regression in which you are merely trying to find the coefficients of a polynomial of a pre specified 

order. GP is one of the most useful, general purpose problem solving techniques available to developers. It has 
been used to solve a wide range of problems, such as symbolic regression, data mining, optimization, and 

emergent behaviour in biological communities. GP is one instance of the class of techniques called evolutionary 

algorithms, which are based on insights from the study of natural selection and evolution [4]. Living things are 

extraordinarily complex; far more so than even the most advanced systems designed by humans. Evolutionary 

algorithms solve problems not by explicit design and analysis, but by a process akin to natural selection. An 

evolutionary algorithm solves a problem by first generating a large number of random problem solvers 

(programs). Each problem solver is executed and rated according to a fitness metric defined by the developer. In 

the same way that evolution in nature results from natural selection, an evolutionary algorithm selects the best 

problem solvers in each generation and breeds them [5,6]. 

 

IV.  Methodology of GP 
Data sets from the experiments were taken for the analysis. Material properties for the variation of iron 

composition from 0-8%, density ratio from 0.82-0.96 and aspect ratio of 0.25, 0.50, 0.75 and 1.00 were taken. 

The data samples were randomized manually using Microsoft Excel software. The randomized data sets were 

fed into the software by initially splitting them into three sets viz., training, validation and applied testing [7]. 

DISCIPULUSTM self configures itself to accept the last column always as the expected output. Trial runs to find 

out the best parameters that generated optimal solution in the minimum possible time. Initially the runs were 

performed with the default settings. One by one the parameters such as population size, crossover rate, DSS sub 

set size, and FPU registers used were varied to find optimum values [7]. The trials showed the following results. 

Population size of 800 was optimum rather than the default setting of 500. A higher crossover rate {75% non-

homologous and 25% homologous} was found to be optimum. A smaller DSS subset size {60} was more 
optimal than the default 100. The above factors favourably affected result generation.  

 

IV.1.1. Regression  

                  Regression analysis is any statistical method where the mean of one or more random variables is 

predicted based on other measured random variables. Symbolic regression is the process of discovering both the 

functional form of a target function and all of its necessary coefficients, or at least an approximation to these. 

 

IV.1.2. Fitness Measurement 

Fitness is nothing but how far the data value predicted by the GP coincides with the experimental value 

 

IV.1.3. Correlation Coefficient, r/R 
The quantity r, called the linear correlation coefficient, measures the strength and the direction of a 

linear relationship between two variables. The mathematical formula for computing r is 

 

                               r =   
𝑛  𝑥𝑦−( 𝑥)( 𝑦 )

 𝑛( 𝑥2)−( 𝑥)2 𝑛( 𝑦2)−( 𝑦)2
                                                      (1) 

 
    Where n is the number of pairs of data. 

          The value of r is such that -1 < r < +1. The + and – signs are used for positive linear correlations and 

negative linear correlations, respectively. If x and y have a strong positive linear correlation, r is close to +1. An 

r value of exactly +1 indicates a perfect positive fit. Positive values indicate a relationship between x and y such 

that as values for x increase, values for y also increase. . If x and y have a strong positive linear correlation, r is 

close to -1. An r value of exactly -1 indicates a perfect negative fit. Negative values indicate a relationship 

between x and y such that as values for x increase, values for y also decrease. If there is no linear correlation or 
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a weak linear correlation, r is close to 0. A value near zero means that there is a random, nonlinear relationship 

between the two variables.   The square of the correlation coefficient gives the coefficient of determination. The 

coefficient of determination, r2, is useful because it gives the proportion of the variance (fluctuation) of one 

variable that is predictable from the other variable. It is a measure that allows us to determine how certain one  

can be in making predictions from a certain model/graph. The coefficient of determination is the ratio of the 

explained variation to the total variation [8, 9]. The coefficient of determination is such that 0< r2 < 1, and 
denotes the strength of the linear association between x and y. The coefficient of determination represents the 

percent of the data that is the closest to the line of best fit. If r =0.922, then r2 =0.850, which means that 85% of 

the total variation in y can be explained by the linear relationship between x and y. the other 15% of the 

variation in y remains unexplained. 

   

IV.1.4. Parameters in GP 

Table 1: Various parameters used in GP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V.  Results and Discussion 

In Genetic programming modelling, it is necessary to select suitable terminal from set F and available 

terminal genes from set f (0) [10,11]. From these, the evolutionary process will try to build as fit an organism 

(i.e. mathematical model) as possible for material characteristics prediction. The organisms consist of both 

terminal and function genes, having the nature of computer programs which differ in form and size [12, 13]. 

Three independent data sets were obtained on the basis of measurement: training, validation, applied data sets. 
Load, Density ratio, Aspect ratio and the percentage of iron were used as independent input variables and the 

hoop strain as dependent output variable. On the basis of training data set, different models for hoop strain were 

developed by the genetic programming [14, 15, and 16]. Using GP simulation, the best mathematical model for 

hoop strain is given by, 

                   

                          Hoop strain = V0 [(B0 V1
2+0.02857)*(0.0377*V0)]

2                     (2) 

Where,    

         B0 = [(A0+0.02857)*(-0.0133* V0)] + 0.02857;   A0= - 0.8732 V2 (0.053113 - 0.003649 V3)
2
 

And,                 V0= Load (in KN);   V1= Density Ratio;   V2= Aspect Ratio;    V3= %Fe 

 

Table 1: Comparison between experimental and predicted values of hoop strain 

Terminal Set          T={X, Random-Constants} 

Functional 

Set 

  F={+,-,*,%,sqrt} 

Note:                                                                                                                                                                                 

The protected division function % returns a value of 1 when division by 0 is 

attempted 

Fitness 
The square root of the sum of the square of absolute value of the differences 

(errors), between the program’s output and the observed data. 

Termination 

An individual emerges whose sum of absolute errors is less than specified 

Required number of runs are completed 

Required Correlation Coefficient is obtained  

Parameters 

Population Size 

Homologous Crossover Rate 
Mutation Rate 

DSS Subset Size 

Load(V0) 

(in KN)    

Density 

Ratio(V1) 

Aspect 

Ratio(V2) 

% 

Fe(V3) 

Hoopstrain 

(Exp. Output) 

Hoopstrain 

(GP Output) 

Error 

% 

70 0.9 1 8 0.47 0.45 0.05 

60 0.9 0.5 6 0.34 0.33 0.03 

60 0.97 0.75 0 0.39 0.38 0.02 

45 0.9 1 4 0.2 0.21 -0.03 

10 0.91 0.5 0 0 0.00 0.00 

40 0.95 0.5 0 0.15 0.16 -0.07 

61 0.91 1 4 0.38 0.38 0.01 

40 0.95 0.75 0 0.17 0.17 0.01 

45 0.95 0.5 2 0.19 0.20 -0.06 
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15 0.91 1 2 0.01 0.01 0.16 

80 0.93 0.5 4 0.51 0.54 -0.07 

85 0.98 0.75 0 0.66 0.64 0.04 

60 0.97 0.75 0 0.37 0.38 -0.03 

20.5 0.87 1 8 0.02 0.02 0.08 

75 0.98 0.75 0 0.56 0.54 0.03 

70 0.97 0.5 0 0.45 0.47 -0.05 

50 0.89 0.5 8 0.21 0.22 -0.06 

20 0.85 0.5 6 0.02 0.02 0.23 

20 0.85 0.75 8 0.01 0.01 -0.50 

60 0.97 1 0 0.4 0.39 0.02 

20 0.87 1 4 0.02 0.02 -0.13 

70 0.99 0.75 0 0.48 0.49 -0.02 

70 0.92 1 4 0.47 0.47 -0.01 

40 0.9 0.75 4 0.13 0.15 -0.17 

40 0.95 0.75 0 0.17 0.17 0.01 

45 0.9 1 4 0.22 0.21 0.07 

70 0.92 0.5 4 0.45 0.44 0.01 

45 0.92 0.5 2 0.19 0.20 -0.05 

85 0.97 0.75 0 0.66 0.63 0.04 

40 0.9 0.5 4 0.14 0.14 -0.03 

80 0.98 0.5 0 0.55 0.57 -0.04 

40 0.94 0.75 0 0.18 0.17 0.06 

60 0.97 0.75 0 0.39 0.38 0.02 

40 0.88 1 4 0.15 0.16 -0.04 

25.5 0.85 1 6 0.04 0.04 -0.11 

90 0.9 0.5 6 0.61 0.62 -0.01 

45 0.91 0.75 4 0.19 0.20 -0.05 

10 0.89 0.75 4 0 0.00 0.00 

50 0.93 0.5 2 0.26 0.25 0.03 

50 0.9 1 8 0.23 0.24 -0.05 

110 0.88 0.5 8 0.72 0.72 0.00 
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VI.  Conclusion 
Using the above computational model we will predict the material properties for various iron 

composition by simple substitution without conducting any experiments.Genetic programming (GP) has proved 
to be a highly versatile and useful tool for identifying relationships in data for which a more precise theoretical 

construct is unavailable [17,18]. The experimental data in this research were in fact the environment to which 

the population of models had to be adapted as much as possible. The models presented are a result of the self-

organization and stochastic processes taking place during simulated evolution. The accuracies of solutions 

obtained by GP depend on applied evolutionary parameters and also on the number of measurements and the 

accuracy of measurement. In general, more measurements supply more information to evolution which 

improves the structures of models. In the proposed concept the mathematical models for verifying the 

experimental results of mechanical characteristics are subject to adaptation. Its reliability is about 99.26%. In the 

testing phase, the genetically produced model gives the same result as actually found out during the experiment, 

thereby with the reliability of cent percent. It is inferred from our research findings that the genetic 

programming approach could be well used for the prediction of mechanical characteristics of sintered 
aluminium iron composites without conducting the experiments. This helps to establish efficient planning and 

optimizing of process for the quality production of composite materials depending upon the functional 

requirements.  
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