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Abstract:   
This article aims to expose the contributions of Carl Friedrich Gauss to the area of numerical analysis. While 

Gauss is recognized for his extensive contributions to various branches of mathematics, in this case we will focus 

on his impact on the development of numerical methods, particularly Gauss's method. Bernhard Riemann, in 

addition to his contributions in geometry, made fundamental contributions to the theory of functions of a complex 

variable, mathematical physics and number theory. He clarified the notion of integral, defining what is known 

today as the Riemann integral, allowing the calculation of integrals from their definition as a limit of sums. 

Although the definition of the Riemann integral is not directly attributed to Gauss, his previous work laid the 

foundation for the development of this fundamental concept. Gauss's investigations into polynomial interpolation 

and approximation errors provided essential tools for the numerical calculation of integrals. 

Background: Gauss-Legendre Quadrature and the Riemann Integral: A Journey Through Time, describes Carl 

Friedrich Gauss, as a titan of mathematics, who gave life to the Gauss-Legendre quadrature in 1814. His 

mathematical genius led him to employ a method based on continuous fractions, obtaining nodes and weights 

with a precision of 16 digits for a seventh degree polynomial. 

Materials and Methods: In the field of mathematics, definite integrals represent a fundamental concept for 

calculating areas under curves and solving physical problems. However, there are cases in which finding the 

primitive of a definite integral is a complex or even impossible task. This is where numerical analysis, as a branch 

of mathematics dedicated to the development of computational methods to approximate solutions to mathematical 

problems. Numerical analysis offers a wide range of tools to approximate the value of definite integrals, even 

those with no known primitive. Among the most common methods are the trapezoid rule, Simpson's rule and the 

Gauss quadrature method. These methods allow numerical results to be obtained with a high degree of precision, 

making them valuable tools for a wide variety of applications. In this analysis, the results obtained through 

analytical integration are compared with those obtained using the Gauss method with different configurations of 

nodes and weights. 

Results: In the field of calculus, the resolution of definite integrals using analytical methods can sometimes 

present a complex and tedious process to obtain the exact solution. In this article, the use of numerical methods 

is proposed as an alternative to address this type of problems. A specific numerical method will be used for three 

different applications. In each case, it was observed that by increasing the number of nodes and abscissa, the 

approximation to the area of the real solution became more precise. The results obtained in this study demonstrate 

the usefulness of numerical methods as complementary tools for solving definite integrals, particularly in those 

cases where the application of analytical methods is complex or impractical. 

Conclusion: Although the Gauss-Legendre technique has proven to be an effective method for solving definite 

integrals in various applications, it is important to recognize that there are certain limitations that must be 

considered when implementing it. In the specialized literature, cases have been reported where up to one hundred 

values of the nodes and weights necessary for the application of the method have been found. However, for 

applications 1, 2 and 3 described in the article, this strategy is not viable, since the same instability problem 
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would arise. In general, it is recommended to be cautious when applying the Gauss-Legendre technique with 

trigonometric functions that have a long period, as well as with combinations of these functions together with 

powers raised to a considerably large number. In such scenarios, the approximation to the integral can be 

significantly affected. 
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I. Introduction 
Gauss-Legendre Quadrature and the Riemann Integral: A Journey Through Time, describes Carl 

Friedrich Gauss, as a titan of mathematics, who gave life to the Gauss-Legendre quadrature in 1814. His 

mathematical genius led him to employ a method based on continuous fractions, obtaining nodes and weights 

with a precision of 16 digits for a seventh degree polynomial. 

Later, Carl Gustav Jacobi discovered a deep connection between this technique and the orthogonal set 

of Legendre polynomials. However, for almost a century, these values remained the only ones available. 

In parallel, Georg Friedrich Bernhard Riemann introduced a fundamental concept in integral calculus: 

the Riemann integral. This tool, of great relevance in engineering, science and even social sciences, allows 

evaluating the definite integral of a continuous function 𝑓 on an interval [𝑎, 𝑏]. 
The Riemann integral is based on the concept of addition. The interval is divided into subintervals and 

the lower and upper sums of 𝑓 in each subinterval are calculated. The value of the integral approaches the limit 

of these sums as the number of subintervals increases and their size decreases. 

The Gauss-Legendre quadrature and the Riemann integral are two pillars of numerical analysis. The 

former offers an accurate and efficient way to approximate integrals, while the latter provides a fundamental 

theoretical framework for understanding integration. 

Together, these tools allow scientists and engineers to address a wide range of problems in diverse fields, 

from physics and chemistry to economics and social sciences. 

The works of Gauss, Jacobi and Riemann have left an indelible mark on the world of mathematics. His 

ideas remain essential to solve complex problems and advance various fields of knowledge. 

 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚
𝑛→∞

𝑓(𝑎 + 𝑖∆𝑥)∆𝑥
𝑏

𝑎
                                                      (1) 

 

In the parabolas shown as Figures 1 and 2, the lower and upper sums of Riemann Georg Friedrich 

Bernhard are observed. Another geometric representation of the Riemann sum for a positive function is found in 

Jean-Paul Truc, (2019)[1]. 

 

 
Figure 1: Show Riemann sums with upper height 
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Figure 2: Shows Riemann sums with lower height 

 

In his work "The fundamental theorem of calculus and its history" David M. Bressoud (2011) [2], 

provides a fascinating historical overview of the fundamental theorem of integral calculus, from its sketches in 

the 17th century to its definitive formalization in the 19th century. XIX and its subsequent incorporation into 

textbooks of the 20th century. 

 
𝑑

𝑑𝑥
∫ 𝑓(𝑡)𝑑𝑡 = 𝑓(𝑥)

𝑥

𝑎
  for  𝑎 < 𝑥 < 𝑏                                        (2) 

 

And, if  𝐹(𝑥) for all 𝑥 ∈  [𝑎, 𝑏], then 

 

∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
                                                        (3) 

Equation (1) is known as the primitive or antiderivative of the fundamental theorem of integral calculus, 

because it shows how to use the definite integral to construct an antiderivative. Equation (3) is known as the 

evaluation part of the fundamental theorem of integral calculus, it shows how to use the antiderivative to evaluate 

the definite integral. 

In 1815 Carl Friedrich Gauss published Methodus nova integralium values per approximationem 

inveniendi (New method of finding the values of integrals by approximation), in which he introduced the 

quadrature rules that today bear his name. For a further explanation, J. M. Sanz-Serna (2019) and (2018) [3-4] 

expand. Gaussian quadrature comes from the use of mathematics to approximate the area of a function using 

small quadrilaterals of irregular shape. Nowadays, talking about quadrature is synonymous with integration. 

 

Carl Friedrich Gauss showed that the integral given a polynomial function of degree 2n-1 is expressed 

as a sum of n terms, see article Ruohong Li eat[5] To derive the rule of Quadrature uses a set of orthogonal 

functions that forms a basis for the entire set of algebraic polynomials given by equation (1), if the functions 𝑃𝑖(𝑥) 

and 𝑃𝑗(𝑥) are orthogonal in [𝑎, 𝑏] with respect to the function weight 𝑤(𝑥)if the product 𝑃𝑖(𝑥) 𝑃𝑗(𝑥) 𝑤(𝑥) is 

integrable in [𝑎, 𝑏], satisfies, if  𝑃𝑖(𝑥) 𝑃𝑗(𝑥) are algebraic polynomials satisfies that 

 

∫  𝑃𝑖(𝑥)𝑃𝑗(𝑥)𝜔(𝑥)𝑑𝑥 = {
𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 𝑖𝑓 𝑖 ≠ 𝑗

0  𝑖𝑓  𝑖 = 𝑗

𝑏

𝑎

 

 

𝑓(𝑥) ∈ {1, 𝑥, 𝑥2, … , 𝑥𝑛}                                                                 (4) 

 

Gauss-Legendre, and did so by a calculation with continuous fractions in 1814 the orthogonal set of the 

Legendre polynomials given by the following recurrence function, we have that the Gaussian Quadrature is a 
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linear combination of the function 𝑓(𝑥) evaluated in the roots of the nth Legendre of the polynomial given by 

Equation (2). 

{𝑃𝑛+1(𝑥) =
1

2𝑛+1 (𝑛+1)!

𝑑𝑛+1

𝑑𝑥𝑛+1
(𝑥2 − 1)𝑛+1}                                                                 (5) 

 

Figure 3, represents the Legende polynomials. 

 

 
Figure 3: Legendre polynomials 

(http://www.sc.ehu.es/sbweb/fisica3/especial/legendre/legendre.html) 

 

These are defined in the interval [−1,1]. To calculate the nodes and weights, the polynomials are 

integrated in this interval. Carl Gustav Jacob Jacobi discovered a connection between the quadrature rule and the 

orthogonal family of polynomials of Legendre Equation (5). As there is no closed form formula for quadrature 

weights and nodes, for many decades people could only use them by hand for small n, to use it they made reference 

to a table containing the weight and values of the nodes. In 1942, these values were only known up to n = 16, 

Sanz [2]. The more constant uses of computers have had progress for the algorithms used for problems that have 

not been able to be solved analytically, Gauss quadrature is given by Equation (6). 

 

𝐺𝑛(𝑓) = ∑ 𝑤𝑖
(𝑛)𝑛

𝑖=1 𝑓(𝑥𝑖
(𝑛)

) ≈ ∫ 𝑓(𝑥)𝑑𝑥
1

−1
                                                               (6) 

 

The truncation error for the Gauss numerical integration method can be found in his work by R. Zafar 

Iqbal, M. O. Ahmad, (2016) [6], for two nodes it is given by: 

 

𝐸2(𝑓) =
𝑓4(𝑐)

135
 , 𝑐 ∈ [−1,1]                                                                                (7) 

 

This is only for the calculation of an area with two weights and two nodes. Performing a variable change 

from the interval [−1,1] to [𝑎, 𝑏] given by Equation (8). 

 

𝑥 =
𝑏−𝑎

2
𝑡 +

𝑏+𝑎

2
                                                                       (8) 

 

So, the integral of Equation (6) becomes 

 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 = ∫ (
𝑏−𝑎

2
𝑡 +

𝑏+𝑎

2
)

1

−1

𝑏

𝑎

𝑏−𝑎

2
𝑑𝑡                                                         (9) 

 

The approximate area of Equation (9) is given by equation (10) 

𝐴1 = ∑ 𝑓 (
(𝑏−𝑎)𝑥𝑖+(𝑏+𝑎)

2
)𝑛

𝑖=1 𝑤𝑖                                                            (10) 

 

Where 𝑛 is the number of points that will be used, 𝑤𝑖  are the weights, 𝑥𝑖 are the nodes that are calculated 

from the respective polynomials. 

 

When using the variable change, the error in this case is affected by 
𝑏−𝑎

2
. 
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𝐼(𝑗) − 𝐺𝑛(𝑓) =
(𝑏−𝑎)2𝑛+1(𝑛!)4

(2𝑛+1)[(2𝑛)!]
𝑓(2𝑛)(𝜂𝑐) 𝑎 < 𝜂𝑐 < 𝑏                                                   (11) 

 

The approximate truncation error can be written as follows. 

 

𝐸 =
(𝑏−𝑎)2𝑛+1(𝑛!)4𝑓(2𝑛)(𝜉𝑛)

(2𝑛+1)[(2𝑛)!]3    𝑎 < 𝜉𝑛 < 𝑏                                                              (12) 

 

The nodes and weights Carl H. Love. obtains abscissa and weights of order N=2 to 100, and 

N=125,150,125,200, (1966)[7]. 

 

Table Num. 1: Shows the nodes and weights 2,3,4,5 and 8. 

Number Node Weight 

1 -0.577350269 1 

2 0.577350269 1 

Number Node Weight 

1 -0.774596669 0.555555556 

2 0 0.888888889 

3 0.774596669 0.555555556 

Number Node Weight 

1 -0.861136312 0.347854845 

2 -0.339981044 0.652145155 

3 0.339981044 0.652145155 

4 0.861136312 0.347854845 

Number Node Weight 

1 -0.906179846 0.236926885 

2 -0.53846931 0.47862867 

3 0 0.568888889 

4 0.53846931 0.47862867 

5 0.906179846 0.236926885 

Number Node Weight 

1 -0.960289856 0.101228536 

2 -0.796666477 0.222381034 

3 -0.52553241 0.313706646 

4 -0.183434642 0.362683783 

5 0.183434642 0.362683783 

6 0.52553241 0.313706646 

7 0.796666477 0.222381034 

8 0.960289856 0.101228536 

 

Table Num. 2: Shows the nodes and weight 16. 
Number Node Weight 

1 -0.989400935 0.027152459 
2 -0.944575023 0.062253524 
3 -0.865631202 0.095158512 
4 -0.755404408 0.124628971 
5 -0.617876244 0.149595989 
6 -0.458016778 0.169156519 
7 -0.281603551 0.182603415 
8 -0.09501251 0.18945061 
9 0.09501251 0.18945061 

10 0.281603551 0.182603415 
11 0.458016778 0.169156519 
12 0.617876244 0.149595989 
13 0.755404408 0.124628971 
14 0.865631202 0.095158512 
15 0.944575023 0.062253524 
16 0.989400935 0.027152459 
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II. Methodology 
In the field of mathematics, definite integrals represent a fundamental concept for calculating areas under 

curves and solving physical problems. However, there are cases in which finding the primitive of a definite 

integral is a complex or even impossible task. This is where numerical analysis, as a branch of mathematics 

dedicated to the development of computational methods to approximate solutions to mathematical problems. 

Numerical analysis offers a wide range of tools to approximate the value of definite integrals, even those 

with no known primitive. Among the most common methods are the trapezoid rule, Simpson's rule and the Gauss 

quadrature method. These methods allow numerical results to be obtained with a high degree of precision, making 

them valuable tools for a wide variety of applications. 

However, it is important to highlight that numerical analysis, despite its usefulness, is not without 

limitations. One of the main disadvantages is that numerical methods do not always provide information about 

the analytical behavior of the integral. In other words, while they can provide an accurate numerical 

approximation, it is not always possible to understand the exact form of the integral function from the numerical 

results. 

Additionally, numerical methods can be computationally expensive, especially when high precision is 

required or when dealing with integrals with complex functions. In these cases, the use of numerical methods may 

require considerable computational resources, which may limit their applicability in practical contexts. 

It is crucial to keep these limitations in mind when using numerical analysis to approximate primitive-

free definite integrals. Although numerical methods offer a powerful tool to obtain numerical results, it is 

important to complement these results with a qualitative analysis of the integral in question, using tools of 

traditional calculus and mathematical intuition. 

Numerical analysis provides a valuable contribution to the calculation of definite integrals, especially 

those with no known primitive. However, it is important to be aware of the limitations of these methods and use 

them in conjunction with qualitative analysis to gain a complete understanding. 

 

III. Development 
In this analysis, the results obtained through analytical integration are compared with those obtained 

using the Gauss method with different configurations of nodes and weights. The goal is to evaluate the accuracy 

of the Gaussian method compared to the exact solution provided by analytical integration. 

1. ∫ 𝑠𝑖𝑛(𝑥)𝑑𝑥 = 2
𝜋

0
 

2. ∫ 𝑠𝑖𝑛(20𝑥)𝑑𝑥 = 0.1
𝜋

0
 

3. ∫ 𝑥10000𝑑𝑥 =
1

10001

1

0
= 9.999000099990001𝑒 − 5 

 

Application 1. 

Figure 4, shows the graph of the function in the interval [𝑎, 𝑏] in this case the area of 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) in 

the interval [0, 𝜋]. 
 

 
Figure 4: Represents the area under the curve 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) 

 

Table 3, shows the area obtained using 2, 3, 4, 5, node and the number of weights 

 

Table Num. 3: Shows the area obtained using 2, 3, 4, 5 node and weights. 
Number of nodes Approximate area Analytical solution Percentage error 

Area with two nodes 2.824107 2 41.20535 

Area with three nodes 2.001389 2 0.06945 

Area with four nodes 2.352066 2 17.6033 

Area with five nodes 2 2 0 
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Application 2. 

Figure 5, shows the graph of the function in the interval [𝑎, 𝑏] in this case the area of 𝑓(𝑥) = 𝑠𝑖𝑛(20𝑥) 

in the interval [0, 𝜋]. 

 
Figure 5: Represents the area under the curve 𝑓(𝑥) = 𝑠𝑖𝑛(20𝑥) 

 

Table 4, shows the area obtained using 2, 3, 4, 5, node and the number of weights 

 

Table Num. 4: Shows the area obtained using 2, 3, 4, 5 node and weights. 

Number of nodes Approximate area Analytical solution Percentage error 

Area with two nodes -0.000004 0.1 5.0002 

Area with three nodes 0.000001 0.1 4.99995 

Area with four nodes -0.006258 0.1 5.3129 

Area with five nodes -0.000001 0.1 5.00005 

 

Application 3. 

Figure 5, shows the graph of the function in the interval [𝑎, 𝑏] in this case the area of 𝑓(𝑥) = 𝑥10000  in 

the interval [0,1]. 
 

 

Figure 6: Represents the area under the curve 𝑓(𝑥) = 𝑥10000 

 

Table 6, shows the area obtained using 2, 3, 4, 5, 8, 16 node and the number of weights 

 

Table Num. 5: Shows the area obtained using 2, 3, 4, 5,8,16 node and weights. 

Number of nodes Approximate area Analytical solution Percentage error 

Area with two nodes 1.#INF00 1.00E-09 #¡VALOR! 

Area with three nodes 1.#INF01 1.00E-09 #¡VALOR! 

Area with four nodes 1.#INF02 1.00E-09 #¡VALOR! 

Area with five nodes 1.#INF03 1.00E-09 #¡VALOR! 

 

IV. Results And Discussion 
In the field of calculus, the resolution of definite integrals using analytical methods can sometimes 

present a complex and tedious process to obtain the exact solution. In this article, the use of numerical methods 

is proposed as an alternative to address this type of problems. 
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A specific numerical method will be used for three different applications. In each case, it was observed 

that by increasing the number of nodes and abscissa, the approximation to the area of the real solution became 

more precise. This precision was evaluated by calculating the percentage of error compared to the value obtained 

by the analytical method. 

In the first application, it was evident that as the nodes and weights increased, the numerical 

approximation became increasingly closer to the analytical result. In the second application, however, the program 

used failed to identify the presence of negative areas, which resulted in undesired values. Finally, in the third 

application, it was not possible to obtain an adequate approximation due to the magnitude of the power involved, 

which caused the values of the weights and nodes to tend to zero. 

The results obtained in this study demonstrate the usefulness of numerical methods as complementary 

tools for solving definite integrals, particularly in those cases where the application of analytical methods is 

complex or impractical. 

 

V. Conclusion 
Although the Gauss-Legendre technique has proven to be an effective method for solving definite 

integrals in various applications, it is important to recognize that there are certain limitations that must be 

considered when implementing it. 

In the specialized literature, cases have been reported where up to one hundred values of the nodes and 

weights necessary for the application of the method have been found. However, for applications 1, 2 and 3 

described in the article, this strategy is not viable, since the same instability problem would arise. 

In general, it is recommended to be cautious when applying the Gauss-Legendre technique with 

trigonometric functions that have a long period, as well as with combinations of these functions together with 

powers raised to a considerably large number. In such scenarios, the approximation to the integral can be 

significantly affected. 

Despite these limitations, the Gauss-Legendre method continues to be a valuable tool for approximating 

definite integrals in a wide range of cases. In general, it offers accurate and efficient results, as long as the 

previously mentioned restrictions are taken into account. 
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