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Abstract: Numerical investigation of unsteady natural convection flow through a fluid-saturated porous 

medium in a cubic enclosure which is induced by time-periodic variations in the surface temperature of a 
vertical wall was considered. The governing equations were written under the assumption of Darcy-law and 

then solved numerically using finite difference method. The problem is analyzed for different values of 

amplitude a in the range 0.2 ≤ a ≤ 0.8, the Rayleigh number, Ra=200, Period, τ = 0.01, time, 0 ≤ t ≤ 0.024. It 

was found that heat transfer increases with increasing the amplitude. The location of the maximum fluid 

temperature moves with time according to the periodically changing heated wall temperature. Two main cells 

rotating in opposite direction to each other were observed in the cavity for all values of the parameters 

considered. The amplitude of Nusselt number increases with the increase in the oscillating amplitude. All the 

results of the problem were presented in graphical form and discussed.   
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Nomenclature 

A  Amplitude 

a Dimensionless amplitude 

g Acceleration Due to Gravity 

K Permeability 

kf Thermal Conductivity of the Fluid 

km Effective Thermal Conductivity of the Porous Medium 

Lx Length of Box in x-Dir. 

Ly Length of Box in y-Dir. 
Lz Length of Box in z-Dir. 

Nu Nusselt Number 

p Dimensionless Pressure 

p  Pressure 

Ra Rayleigh Number 

T Dimensionless Temperature 

To Reference Temperature 

T  Temperature 

hT   Hot Wall Temperature 

hT   Mean Hot Wall Temperature 

t Dimensionless Time 

t  Time 

u Dimensionless Component of Velocity in x-Dir. 

u  Component of Velocity in x-Dir. 

v Dimensionless Component of Velocity in y-Dir. 

v  Component of Velocity in y-Dir. 

w Dimensionless Component of Velocity in z-Dir. 

w  Component of Velocity in z-Dir. 

x Dimensionless Length in x-Dir. 

x  Length in x-Dir. 

y Dimensionless Length in y-Dir. 

y  Length in y-Dir. 

z Dimensionless Length in z-Dir. 

z  Length in z-Dir. 
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m  Thermal Diffusivity of the Porous Medium 

  Volume Coefficient of Expansion 

  Velocity Vector 

  Vector Potential 

zyx ,,   Vector Potential Component in x,y and z Dir. Respectively 

  Dynamic Viscosity 

f  Kinematic Viscosity of the Fluid  

  Density 

f  Fluid Density 

  Dimensionless Period 

  Period 

 

I. Introduction 
Convective heat transfer through porous media has been a subject of great interest for the last three 

decades. An upsurge in research activities in this field has been accelerated because of a broad range of 

applications in various disciplines, such as geophysical, thermal and insulation engineering, the modeling of 

packed sphere beds, the cooling of electronic systems, groundwater hydrology, chemical catalytic reactors, grain 

storage devices, fiber and granular insulation, petroleum reservoirs, coal combustors, and nuclear waste 
repositories. Since the pioneering work of Cheng and Minkowycz [1] on boundary-layer free convection from a 

vertical flat plate embedded in a fluid-saturated porous medium this configuration model has been progressively 

refined to incorporate various boundary conditions, inertial effects, conjugate heat transfer effects, layering, etc. 

The work of Cheng and Minkowycz [1] and Johnson and Cheng [2] were especially noteworthy as they 

introduced the mathematical technique of boundary-layer theory into the subject and identified similarity 

solutions of the governing equations. The existence and identification of similarity solutions have been central 

to a number of further developments, particularly in the examination of free convection resulting from the use of 

Darcy’s law. Several comprehensive reviews and books of the literature pertinent to this area are due to Cheng 

[2], Bejan [3], Tien and Vafai [4], Nakayama [5] and Nield and Bejan [6]. 

                Hossain and Pop [7] considers the unsteady free convection boundary layer flow which is induced by 

time-periodic variations in the surface temperature of a vertical surface embedded in a porous medium. The 

basic steady flow is that of a power-law distribution where the surface temperature varies as the nth power of the 
distance from the leading edge. Small-amplitude time periodic disturbances are added to this basic distribution. 

Both the low- and high-frequency limits are considered separately, and these are compared with a full numerical 

solution obtained by using the Keller-box method. Attention is restricted to the cases n  ≤ 1; when n = 1, the 

flow is locally self-similar for any prescribed frequency of modulation. 

                 Numerical study of natural convection in a porous cavity is carried out by Nawaf H. Saeid [8]. 

Natural convection is induced when the bottom wall is heated and the top wall is cooled while the vertical walls 

are adiabatic. The heated wall is assumed to have spatial sinusoidal temperature variation about a constant mean 

value which is higher than the cold top wall temperature. The non-dimensional governing equations are derived 

based on the Darcy model. The effects of the amplitude of the bottom wall temperature variation and the heat 

source length on the natural convection in the cavity are investigated for Rayleigh number range 20–500. It is 

found that the average Nusselt number increases when the length of the heat source or the amplitude of the 
temperature variation increases. It is observed that the heat transfer per unit area of the heat source decreases by 

increasing the length of the heated segment. 

             Yasin Varol and Hakan [9] numerically investigates the steady natural convection flow through a fluid-

saturated porous medium in a rectangular enclosure with a sinusoidal varying temperature profile on the bottom 

wall were conducted. All the walls of the enclosure are insulated except the bottom wall which is partially 

heated and cooled. The governing equations were written under the assumption of Darcy-law and then solved 

numerically using finite difference method. The problem is analyzed for different values of the Rayleigh number 

Ra in the range 10≤Ra≤1000, aspect ratio parameter AR in the range 0.25≤AR≤1.0 and amplitude λ of the 

sinusoidal temperature function in the range 0.25≤λ≤1.0. It was found that heat transfer increases with 

increasing of amplitude λ and decreases with increasing aspect ratio AR. Multiple cells were observed in the 

cavity for all values of the parameters considered. 

              Gang Wang and Qiuwang Wang [10] studied the unsteady natural convection for the sinusoidal 
oscillating wall temperature on one side wall and constant average temperature on the opposing side wall. The 

present article is on the unsteady natural convective heat transfer in an inclined porous cavity with similar 

temperature boundary conditions as those of Kalabin et al. The inclined angle ϕ of the cavity is varied from 0 to 
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80. The flow field is modeled with the Brinkman-extended Darcy model. The combined effects of inclination 

angle of the enclosure and oscillation frequency of wall temperature are studied for Ra = 103, Da = 10−3, ε = 0.6, 

and Pr=1. Some results are also obtained with the Darcy–Brinkman–Forchheimer model and Darcy’s law and 

are compared with the present Brinkman-extended Darcy model. The maximal heat transfer rate is attained at 

the oscillating frequency f = 46.7π and the inclined angle ϕ = 42.2°. 

                 The problem of unsteady natural convection in a square region filled with a fluid-saturated porous 

medium having non-uniform internal heating and heated laterally is considered by Saleh and Hashim [11]. The 
heated wall surface temperature varies sinusoidally with the time about fixed mean temperature. The opposite 

cold wall is maintained at a constant temperature. The top and bottom horizontal walls are kept adiabatic. The 

flow field is modelled with the Darcy model and is solved numerically using a finite difference method. The 

transient solutions obtained are all periodic in time. The effect of Rayleigh number, internal heating parameters, 

heating amplitude and oscillating frequency on the flow and temperature field as well as the total heat generated 

within the convective region are presented. It was found that strong internal heating can generate significant 

maximum fluid temperatures above the heated wall. The location of the maximum fluid temperature moves with 

time according to the periodically changing heated wall temperature. The augmentation of the space-averaged 

temperature in the cavity strongly depends on the heating amplitude and   rather insensitive to the oscillating 

frequency. 

                 Mansour and Abd-Elaziz [12] studied The problem of double-diffusive convection in inclined 
triangular porous enclosures with sinusoidal variation of boundary conditions in the presence of heat source or 

sink was discussed numerically. The dimensionless governing equations of the problem were solved 

numerically by using finite difference method. The effects of governing parameters, namely, the dimensionless 

time parameter, various values of the inclination angle, Darcy number, the heat generation/absorption parameter, 

the buoyancy parameter and the amplitude wave length ratio on the streamlines, temperature and concentration 

contours as well as the velocity component in the x-direction at the triangle mid-section, the average Nusselt and 

Sherwood numbers at the bottom wall of the triangle for various values of aspect ratio were considered. The 

present results are validated by favorable comparisons with previously published results. All the results of the 

problem were presented in graphical and tabular forms and discussed. 

 

The mean objective of this paper is to study the effect of various boundary conditions on natural convection 

inside porous cavities heated laterally with a sinusoidal time variation. Numerical solution based on finite 
difference method was employed to solve the governing equations. Some graphical results were presented to 

illustrate the different influences of the problem parameters on heat and fluid motion. 

 
II. Mathematical Formulations 

Consider unsteady, three-dimensional natural convection flow in a cubic region filled with a fluid- 

saturated porous medium (Fig.1). The co-ordinate system employed is also depicted in this figure. The top 

surface is held at constant cold reference temperature  


T  and the bottom surface is held at constant hot 

temperature hT  . The temperature of the vertical surfaces varies sinusoidally in time about a mean value of hot 

temperature hT with amplitude Aand period  . The hot wall is greater than the cold reference wall at all 

times, as graphically depicted in Fig.2.The fluid and porous medium properties are assumed to be constant 

except for the variation of density with temperature in the buoyancy term in Darcy's equation for the fluid flow 

(Boussinesq approximation). The convective fluid is assumed to remains a single-phase. Under these 
assumptions, the non-dimensional equations governing convection in a volume of  porous medium are the 

conservation of mass, momentum(darcy's law), and energy:  

(3)                                                          
2

t

T

(2)                                                                RG-p-

(1)                                                                           0

TT 














 

Where: 

 
  (4)                                  

m 
f

gLx  
1

 T Ra , 0 , 0

 C1 , 0 , 0






















K
C

R

G  

 Ra is a modified Rayleigh number for a porous medium saturated with a fluid  
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(5)                                                                  
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where the primes denote dimensional quantities. 

Due to the solenoidal form of the velocity in (1), there is an alternative formulation described by Horne [13] in 

which a vector potential    is introduced such that   

(6)                                                                               

Then, Taking the curl of  (2),  

  (7)                                            RGp    

And introducing (6)  yields the following set of equations: 
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fig. (1): the cubic region boundary conditions 
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 fig.(2) : periodically variation of temperature with time 

 
2.1 Boundary Conditions 

For rigid boundaries, the boundary conditions in terms of the vector potential are derived by Hirasaki [14] : 
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The solution to (10) with the boundary conditions for z  is z = 0 everywhere.  

The non-dimensional thermal boundary conditions are 
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Fig.(1) illustrates these boundary conditions. 

 

 

2.2 Initial Conditions 
The flow is initiated by changing the top boundary temperature to Tο at time t = 0 and maintaining the lower 

boundary temperature at hT  . Therefore 
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III. Numerical Method and Validation 
A standard finite difference numerical method is employed to solve (3),(8) and (9) subjected to 

conditions in (11)-(18).  The parabolic part of the formulation (3) is solved using the alternating-direction 

implicit (ADI) method. The resulting algebraic equations are solved by the tri-diagonal matrix algorithm. The 

elliptic part corresponding to (8) and (9) is solved using the Successive Over-Relaxation (SOR) method. In order 

to validate the computation code, the previously published problems on natural convection in cavity filled with a 

fluid- saturated porous medium were solved. Table (1) shows the average Nusselt number on the bottom wall,  

(19)                                                     dy         

00

1

0  
1-Nu dx

z

C

z

T
B


 




  

Where:  
Lx

Ly
C , 

Ly

Lz
B1   

 is in good agreement with the solutions reported by the literature. Equation (19) is integrated numerically for 

each instant of time until steady state is reached within prescribed error. 

                      
Table (1): Comparison with Previous Work 

Ra 

Nu 

Constant wall temperature b.c. 

Stamps[15] Holst[16] Schubert[17] 
Present 

work 

60 - 1.67 - 1.66 

80 - - - 2.30 

100 2.66 - 2.651 2.67 
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IV. Results and Discussion 
The analysis in the undergoing numerical investigation are performed in the following domain of the 

associated dimensionless groups: the heating amplitude, 0.2 ,the Rayleigh number, Ra=200,Period, 

τ=0.01,time, 0 ≤ t ≤ 0.024. The results of this analysis are shown in Figs. 3,4,5,6,7,8,9,10,11,12,13 and 14.                                                                 
 

4.1  Representative Temperature and Flow Fields 

Figs. 3-12 present the time-dependent isotherms and flow patterns over the duration of the amplitude 

(0.2,0.4,0.6,0.8) at Ra=200 and τ=0.01. Figs. 3, 5, 7  shows the temperature evolution during one period in 

vertical section in the cavity (x=0.214) while Figs. 4,6,8 presents temperature contours evolution in horizontal 

section (z=0.35).Initially, at t=0, the walls are cold and there is no fluid motion inside the enclosure. As heating 

started, the fluid temperatures adjoining the hot wall rise. The fluid moves due to buoyancy force from bottom 

region of the cavity to the top region of the cavity as we can dedicated in the velocity vector plot in Figs. 9-

12.This movement creates a clockwise circulation cell inside the left enclosure and an anticlockwise circulation 

cell inside the right enclosure (Figs. 9 and 11). At the very beginning, t=0.006, the isotherms are almost 
curvilinear as shown in Fig. 3 and the conduction or diffusion mode is dominant. For t=0.012 and t=0.024, it is 

observed that the thermal boundary layer develops at the hot and cold boundaries as shown in Figs. 5 and 7 

implies that the convection mode is dominant and the isotherms  become more curvilinear.  At amplitude =0.2, 

the maximum temperature occurs at the heated wall. Increasing the amplitude result the maximum temperature 

occurs at the fluid inside the enclosure. Careful inspection of Figs 3-8 discloses that the temporal maximum 

fluid temperature location moves away from the heated wall appropriate with time increasing.                    

 

4.2 Effect of Amplitude on Nusselt number 
The periodic oscillations of Nusselt number Nu at Ra=200 and  τ=0.01 are shown in Figs. 11 and 12. It 

can be shown that the Nu varies with the identical values of the positive and negative amplitudes to indicate the 

net zero heat flux from the oscillating temperature wall to the constant temperature wall. As the amplitude 
increases, the Nusselt number becomes larger than zero when it is integrated in time. This suggests that the heat 

flux is positive from the vertical walls to the horizontal walls. Fig. 11 clearly shows that the amplitude of 

Nusselt number increases with the increase in the oscillating amplitude. It is seen that Nu is positive when the 

heat is transferred into the enclosure and negative when it is transferred from the enclosure to the environment.            
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fig. (3): three dimensional transient temperature distribution of different amplitude at section 

(x=0.214) for Ra=200, period=0.01, t=0.006  
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fig. (4): three dimensional transient temperature distribution of different amplitude at section 

(z=0.35) for Ra=200, period=0.01, t=0.006 
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fig. (5): three dimensional transient temperature distribution of different amplitude at section 

(x=0.214) for Ra=200, period=0.01, t=0.012 
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fig. (6): three dimensional transient temperature distribution of different amplitude at section 

(z=0.35) for Ra=200, period=0.01, t=0.012 
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 fig. (7): three dimensional transient temperature distribution of different amplitude at section 

(x=0.214) for Ra=200, period=0.01, t=0.024 
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fig. (8): three dimensional transient temperature distribution of different amplitude at section 

(z=0.35) for Ra=200, period=0.01, t=0.024 
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fig. (9): velocity distribution of different amplitude at section (x=0.214) for Ra=200, period=0.01, 

t=0.006  

 

 

 



Amplitude Effects on Natural Convection in a Porous Enclosure having a Vertical Sidewall with 

www.iosrjournals.org                                                             91 | Page 

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Amplitude=0.2

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Amplitude=0.4

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Amplitude=0.8

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Amplitude=0.6

 
fig. (10): velocity distribution of different amplitude at section (z=0.35) for Ra=200, period=0.01, 

t=0.006  
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fig. (11): velocity distribution of different amplitude at section (x=0.214) for Ra=200, 

period=0.01, t=0.024  
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fig. (12): velocity distribution of different amplitude at section (z=0.35) for Ra=200, period=0.01, 

t=0.024 
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fig.(13): variation of Nusselt number with time at the vertical wall for various values of 

amplitude 
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fig.(14): variation of Nusselt number with time at the bottom wall for various values of 

amplitude 
 

V. Conclusions 
The present numerical study modeled the effect of  a time periodic boundary conditions on natural 

convection in a square enclosure filled with a porous medium . The dimensionless forms of the governing 

equations are solved numerically using finite difference method. The computation code is validating with the 

published data for a fixed mean hot wall temperature. Detailed numerical results for flow and temperature field, 

time-dependent behavior of the temperature in the cavity have been presented in the graphical form. The main 

conclusions of the present analysis are as follows:                                       

 1. The time required to reach the basic steady state is longer for low amplitude than for high amplitude. 

2. The location of the maximum fluid temperature moves with time according to the periodically changing the 

heated wall temperature. 

3. Amplitude of Time sinusoidal oscillating boundary conditions have drastically been changing the temperature 

in the cavity. 
4. The flow field is characterized by two main cells rotating in opposite direction to each other. 

5. Changing the amplitude does not affect the two cell pattern of the flow field. 
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