Design, synthesis, characterization and biological evaluation of 3-(4-(7-chloro-2-(4-chlorophenyl)-4-oxo-quinazolin-3(4H)-yl)phenyl)-2-aryl 1,3-thiazolidin-4-ones as a new class of antimicrobial agents

P. Bharath Rathna Kumar¹, M. Srinivasa Murthy² and K.N Jayaveera³
1Department of Pharmaceutical Chemistry, Oil Technological Research Institute- JNTUA, Ananthapuramu, A.P, India.
2Department of Pharmaceutical Chemistry, Vignan Institute of Pharmaceutical Sciences, Deshmukhi, Nalgonda, A.P, India.
3Director, Research and Development, Adept Pharma and Bioscience Excellence Pvt., Ltd, Hyderabad, A.P, India.

Abstract: Novel thiazolidinone derivatives TQ-VI(1-10) were designed, synthesized and screened for antimicrobial activity. Synthesis of 3-(4-(7-chloro-2-(4-chlorophenyl)-4-oxo-quinazolin-3(4H)-yl)phenyl)-2-aryltiazolidin-4-one TQ-VI(1-10) have been achieved from the starting material 2-amino-4-chlorobenzoic acid TQ-I on cyclization with p-chlorobenzyl chloride TQ-II to yield 7-chloro-2-(4-chlorophenyl)-4H-3,1-benzoazin-4-one, TQ-III, which on treatment with p-phenyldiamine gave 3-(4-amino phenyl)-7-chloro-2-(4-chlorophenyl)quinazolin-4(3H)-one, TQ-IV in good yield. Then, TQ-IV on reaction with substituted aromatic aldehydes converted to TQ-VI(1-10), which on cyclization with thioglycolic acid gave TQ-VI (1-10). All the synthesized compounds have been characterized on the basis of IR, 1H-NMR and mass spectral data. The compounds containing 4-OH, 4-OCH₃ and 3,4,5-(OCH₃)₃ showed good activity. The title compounds were screened for qualitative (zone of inhibition) and quantitative antimicrobial activity (MIC) by agar cup plate method and serial dilution technique, respectively. Among the synthesized compounds in the series, the compound TQVI4 and TQV15 were found to exhibit significant antifungal activity at lower concentration of 31.25 µg/ml against A.niger. The compound TQV15 and TQV14 showed zone of inhibition of 17mm and 15mm against A.niger and C.albicans respectively which is comparable to that of standard drug. The rest of the analogues in the series displayed weak to moderate antimicrobial activity when compared to the standard positive controls Ampicillin and Amphotericin B.

Key Words: Thiazolidinone, quinazolinone, benzoxazinone, synthesis, characterization.

I. Introduction

The usage of most of the antimicrobial agents is limited, not only by the rapidly developing drug resistance, but also by the unsatisfactory status of present treatments of bacterial and fungal infections and drug side effects. This has spurred the scientists to develop the new antibacterial agents having broad antimicrobial spectrum. In the present research work we reported the synthesis of some new thiazolidinone derivatives by using various substituted aromatic aldehydes and screened for their anti-microbial activity. Thiazolidinones are derivatives of thiazolidine and are significant group of heterocyclic compounds. There are three types of thiazolidinones based on 2nd, 4th and 5th position of carbonyl group. The most significant one is thiozolidinone with carbonyl group at 4th position, which is also known as 4-thiazolidinone or 4-oxo-thiazolidine. Thiazolidin-4-ones and their derivatives have attracted much attention due to diverse biological activities such as antidiabetic, antihistaminic, Ca²⁺-channel blocker, anti-platelet activating factor, anti-diarrheal, platelet activating factor (PAF) antagonist, cardioprotective, anti-ischemic, cyclooxygenase (COX) inhibitory, anticancer, nematocidal and convulsant activities. Quinazolinone is a important heterocyclic ring with broad spectrum of biological activities like anticonvulsant, analgesic, antitumor, anti-inflammatory, antimicrobial, antitubercular, antioxidant and antiviral activities. In view of antimicrobial activities of some thiazolidinone derivatives and quinazolinone derivatives it was of curiosity to couple these two moieties with the hope that the resulting compounds might exhibit superior activity. After a comprehensive literature survey our focus was to synthesise thiazolidinone derivatives as less toxic, more active antimicrobial agents (Fig. 1). The synthetic strategies adopted for the synthesis of the intermediate and target compounds are depicted in the Scheme I.
Design, synthesis, characterization and biological evaluation of 3-(4-(7-chloro-2-(4-chlorophenyl))...
II. Materials And Methods

In the present study the title compounds were examined for in vitro antimicrobial potency against four bacterial pathogens and two fungal pathogens. Bacterial and fungal strains (Microbial Type Culture Collection, MTCC) were purchased from IMTECH, Chandigarh, India. Ampicillin and Amphotericin B were procured from Sigma Aldrich, Bangalore, India. Samples were routinely purified by crystallization from ethanol. Melting points were taken in open capillaries and are uncorrected. The purity of compounds was checked by TLC on silica gel ‘G’ coated glass plates. IR spectra were recorded in BRUKER ATR-IR spectrophotometer. 1H-NMR spectra (DMSO) were recorded on NEW AVANCE- (300 MHZ) NMR spectrometer using TMS as internal standard. Mass spectra of the synthesized compounds have been recorded on a VG Autospec MS using ESI software with capillary voltage 3.98 kV and ESI mode positive ion trap detector. Chloroform and ethylacetate in the ratio 7:3 was used as mobile phase for elution and the spots were detected in iodine chamber.

III. Experimental

General procedure for synthesis of 7-chloro-2-(4-chlorophenyl)-4H-3, 1-benzoazin-4-one TQ-III:23,24: 2-Amino-4-chlorobenzoic acid (0.1 mol) was dissolved in 30ml of dry pyridine by stirring slowly at room temperature. The solution was cooled to 0°C and a solution of a p-chloro benzoyl chloride (0.2 mol) in 30ml of dry pyridine was added slowly with constant stirring. After this addition the reaction mixture was further stirred for half an hour at room temperature and set aside for 1h. The pasty mass obtained was diluted with 50 ml of water and treated with aqueous sodium bicarbonate solution. When the effervesence ceased, the precipitate obtained was filtered and washed with water. The crude 7-chloro-2-(4-chlorophenyl)-4H-3, 1-benzoazin-4-one obtained was dried and recrystallized from diluted ethanol (m.p:155-157), yield (92%).

General procedure for synthesis of 3-(4-aminophenyl)-7-chloro-2-(4-chlorophenyl)-quinoxalin-4(3H)-one TQ-IV:25: 7-chloro-2-(4-chlorophenyl)-4H-3,1-benzoazin-4-one (0.01mol) and p-phenylenediamine (1.08 g, 0.01 mol) was dissolved in 50 mL of anhydrous pyridine and refluxed for 6 h. The resulting solution was cooled in ice bath and treated with 100 mL of dilute hydrochloric acid. The obtained crude precipitate of 3-(4-aminophenyl)-7-chloro-2-(4-chlorophenyl)quinoxalin-4(3H)-one was filtered, washed with water and recrystallized from ethanol (m.p:165-167), yield (85-90%).

General procedure for synthesis of 7-chloro-2-(4-chlorophenyl)-3-(4-[[[E]-arylmethylidene] amino) phenyl) quinoxalin-4(3H)-one TQ-V (1-10): 3-(4-aminophenyl)-7-chloro-2-(4-chlorophenyl) quinoxalin-4(3H)-one TQ-IV (0.01 mol) and aromatic aldehydes (0.01 mol) were dissolved in absolute ethanol (50 ml), by the addition of a few drops of glacial acetic acid. The reaction mixture was refluxed for 8h. The reaction mixture was allowed to cool and poured into ice cold water. The separated solid was filtered, washed and recrystallized from ethanol.

General procedure for the synthesis of 3-(4-(7-chloro-2-(4-chlorophenyl)4-oxo-quinoxalin-3(4H)-yl)phenyl)-2-arylthiazolidin-4-one TQVI(1-10): 3-(4-(7-chloro-2-(4-chlorophenyl)4-oxo-quinoxalin-3(4H)-yl)phenyl)-2-phenyl thiazolidin-4-one TQVI(1): ATR-IR (cvmax cm−1): 1730 -C=O stretching; 1662 -C=O stretching; 1517 -C=N stretching; 3085 -H aromatic stretching; 812 -C=Cl stretching; 1370 -NCS stretching; 1HNMR δ ppm 300 MHz, DMSO-d6: δ5.9 (s, -CH-Ar, 1H), δ3.7 (s, -CH2S- 2H), δ6.7-8.8 (m, Ar-H and quinazoline-H, 16H), MS: m/z 544(M+) 3-(4-(7-chloro-2-(4-chlorophenyl)-4-oxo-quinoxalin-3(4H)-yl)phenyl)-2-(4-chlorophenyl) thiazolidin-4-one TQVI(2): ATR-IR (cvmax cm−1): 1703 -C=O stretching; 1665 -C=O stretching; 1519 -C=N stretching; 3093 -C-H aromatic stretching; 816 C=Cl stretching; 1363 -NCS stretching; 1HNMR δ ppm 300 MHz, DMSO-d6: δ6.0 (s, -CH-Ar, 1H), δ3.5 (s, -CH2S- 2H), δ6.3-9.0 (m, Ar-H, 15H and quinazoline-H) MS: m/z

3-(4-(7-chloro-2-(4-chlorophenyl)4-oxo-quinoxalin-3(4H)-yl)phenyl)-2-(3-nitrophenyl) thiazolidin-4-one (TQVI(3)): ATR-IR (cvmax cm−1): 1730 -C=O stretching; 1661 -C=O stretching; 1510 -C=N stretching; 3049 -C-H aromatic stretching; 812 -C=Cl stretching; 1377 -N=C-S stretching; 1HNMR δ ppm 300 MHz, DMSO-d6: δ6.2 (s, 1H, -CH-Ar), 3.4(s, 2H, -CH2S), δ7.2-8.9 (m, Ar-H and quinazoline-H, 15H) MS: m/z 589 (M+) 3-(4-(7-chloro-2-(4-chlorophenyl)4-oxo-quinoxalin-3(4H)-yl)phenyl)-2-(4-hydroxyphenyl) thiazolidin-4-one TQVI(4): ATR-IR (cvmax cm−1): 1740 -C=O stretching; 1654 -C=O stretching; 1503 -C=N stretching; 3074 -C-H aromatic stretching; 827 -C=Cl stretching; 3389 -OH stretching; 1242 -N=C-S stretching;
Antimicrobial activity - cup plate method

The antimicrobial screening of synthesized compounds was performed using the cup plate method. Nutrient broth media and Sabouraud’s dextrose was prepared sterilized by autoclaving and was transferred into sterile Petri plates. After solidification of media, cups of diameter 8mm were made with a sterile cork borer. 200 µl of the standardized39 bacterial inoculums and fungus inoculums containing about 3 x 10^8 cfu/ml were spread on medium using bent glass rod. The synthesized compounds were dissolved in DMF to get a final concentration 100µg/0.1ml and tested for activity. Ampicillin and Amphotericin B were used as a standard for the antibacterial and antifungal activity, respectively. All the bacterial Petri plates were kept in incubator at 37±1°C and the fungal Petri plate was in an incubator at 24±1°C. Then the zones of inhibition of bacterial and fungal growth were measured by using a transparent ruler.

Antibacterial and antifungal activity of all the synthesized compounds was screened against two gram-positive bacterial strains (S.aureus & B.subtilis) and two gram-negative (E.coli & P.aeruginosa) bacterial strains, two fungal strains (A.niger & C.albicans) at a concentration of 100 µg/0.1ml using cup plate method. The MIC level of compounds TQ-VI (1-10) against these organisms is given in Table 2. The screening results of antibacterial activities showed that the compound with TQ-VI4, TQ-VI5, TQ-VI6 with 4-OH, 4-OCH3 and 3,4,5-(OCH3)3 substituent’s respectively showed potent activity against A.niger. Compound TQ-VI4 bearing 4-OH substituent showed good activity against C.albicans. Compounds TQ-VI2, TQ-VI5 with 4-Cl and 4-OCH3 substituent’s showed good activity against E.Coli and P.aeruginosa. Other compounds showed mild to moderate antibacterial and antifungal activity. Structure of compounds TQ-V (1-10) and TQ-VI (1-10) was established on the basis of spectral data. The IR spectra of TQ-VI (1-10) showed absence of absorption in the region 1500-1525 cm⁻¹ which confirms the absence of =CH=N- and presence of absorption band in the range 1730-1740 cm⁻¹ due to C=O of thiazolidinone. 1H NMR spectra of compounds TQ-V (1-10) showed a singlet of -N=CH- at 6.00, and the presence of a a singlet of -CH2-S- at 3.65 in compounds TQ-VI (1-10) confirms the formation of TQ-VI (1-10).
Acknowledgement

The authors thank Prof. Dr. N. Devanna, Director, Oil Technological Research Institute, JNTUA, Ananthapuram for the encouragement and facilities provided to carry out this research work. We also thank the IICT, Hyderabad for providing spectral data.

V. Conclusion

In the present paper, we report the synthesis, spectral studies, evaluation of antimicrobial activity of 3-(4-(7-chloro-2-(4-chlorophenyl)-4-oxoquinazolin-3(4H)-yl))phenyl-2-arylthiazolidin-4-one (TQ-VI(1-10)), thus these compounds constitute an interesting template for the evaluation of antimicrobial activity. In conclusion, we reported herein a simple and convenient route for the synthesis of some new heterocyclic compounds based on thiazolidinone for antimicrobial evaluation.

References

Design, synthesis, characterization and biological evaluation of 3-(4-(7-chloro-2-(4-chlorophenyl))...
Design, synthesis, characterization and biological evaluation of 3-(4-(7-chloro-2-(4-chlorophenyl))...