Comparative Analysis Of The Vitamin Composition Of Two Different Species Of Garden Egg (Solanum Aethiopicum And Solanum Macrocarpon).

1C.E. Offor, 1S.U. Igwe and 2C.O. Egwu
1Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
2Department of Medical Biochemistry, Federal University, Ndutu-Alike, Ebonyi State, Nigeria

Abstract: The vitamin contents of two species of garden egg, Solanum aethiopicum and Solanum macrocarpon, were determined using spectrophotometric methods. The Solanum aethiopicum recorded higher concentrations (mg/100g) of retinol (53.550±0.55), calciferol (0.010±0.00), tocopherol (0.310±0.00), thiamine (0.037±0.00) and riboflavin (0.034±0.00) while Solanum macrocarpon contained higher amount (mg/100g) of ascorbic acid (2.400±0.00). The niacin contents of both species were relatively the same. Solanum aethiopicum could serve a better source of vitamins than Solanum macrocarpon.

Keywords: Vitamins, Solanum aethiopicum and solanum macrocarpon.

I. Introduction

Garden egg, also known as eggplant, is believed to have originated from India, China and other parts of Southeast Asia. The name eggplant or garden egg was given it by Europeans in the middle of eighteenth century because the variety they knew had fruits that were the shape and size of goose eggs (Tindall., 2008).

Garden egg has different species. There are over 100 species of Solanum which are indigenous to Africa and several of these have been developed as vegetables (Harlan and Wolfe, 2011). It is represented in Nigeria by some 25 species including those domesticated with their leaves, fruits or both eaten as vegetables or used in traditional medicine (Seyiarinlola, 2013). Solanum aethiopicum L. (The green-striped garden egg or scarlet egg-plant) has fruits that are round-shaped, striped with green. Solanum macrocarpon L. (Gboma eggplant) originated from Asia. The fruits are oval, white-green stripped and bigger than Solanum aethiopicum (Michael, 2010).

The name vitamin arose initially from what was thought to be the need we have for certain vital chemical compounds-amines. However, it was later discovered that these chemical vital-amines were not all amines. Again it was realized that each vitamin is necessary for us and that we can obtain the vitamins from foods. A well balanced diet of natural foods generally provides the vitamin requirements of man. The lack of any particular vitamin soon manifests in a nutritional disease (avitaminosis) which is characteristic of that specific vitamin. Moreover, lack of vitamins predisposes very low resistance to diseases (Russel and Fehily, 2010). Vitamin is generally classified into two main groups: fat soluble and water soluble vitamins. Fat soluble vitamins are vitamins A (retinol), D(calciferol), E(tocopherol), and K(phylloquinone), while water soluble vitamins are B complex, B1(riboflavin), B3(niacin), C(ascorbic acid) and B12(thiamine) Supplementation is important for the treatment of certain health problems (Fortmann et al., 2013).

The work was aimed at determining and comparing the vitamin compositions of Solanum aethiopicum and Solanum macrocarpon.

Fig.1: Solanum aethiopicum (Micheal, 2010).

DOI: 10.9790/3008-10526668 www.iosrjournals.org 66 | Page
Comparative Analysis Of The Vitamin Composition Of Two Different Species Of Garden...

II. Materials And Methods

Materials
Fresh Solanum aethiopicum and Solanum macrocarpon fruits were procured from Abakaliki main market, Ebonyi State, Nigeria. All chemicals and reagents were of analytical grade.

Methods
Determination of Vitamin Composition
The methods of Okwu and Josiah (2006) were used.

III. Results

Fig. 3: Retinol concentration of Solanum aethiopicum and Solanum macrocarpon fruits

Fig. 4: Niacin, ascorbic acid and tocopherol concentrations of Solanum aethiopicum and Solanum macrocarpon fruits.
Comparative Analysis Of The Vitamin Composition Of Two Different Species Of Garden

Fig. 5: Thiamine, riboflavin and calciferol concentrations of Solanum aethiopicum and Solanum macrocarpon fruits.

IV. Discussion And Conclusion

Investigation of the vitamin contents of the two species showed that both Solanum aethiopicum and Solanum macrocarpon contained vitamins such as retinol, thiamine, riboflavin, niacin, ascorbic acid, calciferol and tocopherol (Figs. 3, 4 and 5). This is in accordance with the work carried out by Agoreyo et al. (2012). Offor (2015) reported that Dissotis rotundifolia leaves contain high levels of retinol, tocopherol, thiamine and low level of ascorbic acid. These vitamins are required for proper development and health of man. The presence of these vitamins supports the use of garden egg as a food delicacy in different parts of the world (Akuyili et al., 2013).

Solanum aethiopicum recorded more of retinol, calciferol, tocopherol, thiamine and riboflavin than Solanum macrocarpon while Solanum macrocarpon had more of ascorbic acid (Figs. 3, 4 and 5). Achikanu et al. (2013) reported that Solanum aethiopicum has higher concentrations of most of the vitamins than Solanum macrocarpon.

Solanum aethiopicum and Solanum macrocarpon fruits contained relatively very high levels of retinol (Fig. 3). This could reconcile the study on the use of garden egg for the treatment of glaucoma as suggested by Akuyili et al. (2013). Retinol is important for normal vision, gene expression, growth and immune function by its maintenance of epithelial cell functions (Lukaski, 2004).

In conclusion, Solanum aethiopicum fruits could serve a better source of vitamins than Solanum macrocarpon fruits.

References

DOI: 10.9790/3008-10526668 www.iosrjournals.org 68 | Page