Strong Result for Level Crossings of Random Polynomials

Dr. P.K. Mishra, A.K. Mansingh

1Dept. of Mathematics and Humanities, CET, BBSR, ODISHA, INDIA
2Dept. of Basic Science and humanities, MITM, BBSR, ODISHA, INDIA

Abstract: Let \(N_n \) be the number of real roots of the algebraic equation

\[f_n(x) = \sum_{k=0}^{n} \xi_k x^k = 0 \]

where \(\xi_k x^k \) are independent random variables assuming real values only.

Then there exists an integer \(n_0 \) such that for each \(n > n_0 \) the number of real roots of most of the equations \(f(x) = 0 \) is at least \(en \log n \) except for a set of measure at most \(\frac{\mu}{(e_{n_0} \log n_0)} \).

Keywords and Phrases: Independent identically distributed random variables, random algebraic polynomial, random algebraic equation, real roots

I. Theorem

Let \(f_n(x, w) \) be a polynomial of degree \(n \) whose coefficients are independent random variables with a common characteristics function \(\exp \left(-C|t|^\alpha \right) \), where \(\alpha = 1 \) and \(C \) is a positive constant. Take, \(\{e_n\} \) to be any sequence tending to zero such that \(e_n \log n \) tends to infinity as \(n \) tends to infinity. Then there exists an integer \(n_0 \) such that for each \(n > n_0 \) the number of real roots of most of the equations \(f(x) = 0 \) is at least \(en \log n \) except for a set of measure at most \(\frac{\mu}{(e_{n_0} \log n_0)} \).

II. Introduction

Let \(N_n \) be the number of real roots of the algebraic equation

\[f_n(x) = \sum_{k=0}^{n} \xi_k x^k = 0 \]

where \(\xi_k x^k \) are independent random variables assuming real values only. Several authors have estimated bounds for \(N_n \) when the random variables satisfy different distribution laws. Littlewood and Offord [2] made the first attempt in this direction. They considered the cases when the \(\xi_k x^k \) are normally distributed or uniformly distributed in (-1, +1) or assume only the values +1 and -1 with equal probability. They obtained in each case that

\[P \left(N_n > \frac{\mu_{\log n}}{\log \log n} \right) > 1 - \frac{A}{\log n} \]

Samal [3] has considered the general case when the \(\xi_k x^k \) have identical distribution, with exception zero, variance and third absolute moment finite and non-zero. He has shown that \(N_n > s_n \log n \) outside an exceptional set whose measure tends to zero as \(n \) tends to infinity, where \(s_n \) tends to zero, but \(s_n \log n \) tends to infinity.

Samal and Mishra [4] have considered the case the \(\xi_k x^k \) have a common characteristics function \(\exp \left(-C|t|^\alpha \right) \) where \(C \) is a positive constant and \(\alpha \geq 1 \). They have shown that

\[N_n > \frac{\mu_{\log n}}{\log \log n} \]
outside an exceptional set measure at most

\[
\begin{cases}
\frac{\mu}{(\log \log n)(\log n)^{\alpha-1}}, & \text{if } 1 \leq \alpha < 2, \text{if } \alpha = 2 \\
\frac{\mu \log \log n}{\log n} & \text{if } \alpha = 1
\end{cases}
\]

In all the above cases the exceptional set depends upon \(n \). Evans [1], was the first to obtain ‘strong result’ for these bounds. In such case the exceptional set is independent of the degree \(n \) of the polynomial. We use the term ‘strong result’ in the following sense:

All the above results are of the form

\[
P\left(P^\left(\frac{N_n}{\Delta_n} > \mu\right) \rightarrow 1 \text{ as } n \text{ tends to infinity}
\]

whereas the theorem of Evans is of the form

\[
P\left(\sup_{n > n_0} \frac{N_n}{\Delta_n} > \mu\right) \rightarrow 1 \text{ as } n_0 \text{ tends to infinity.}
\]

Evans [1] has shown, in case of normally distributed coefficients, that there exists an integer \(n_0 \) such that for \(n > n_0 \),

\[
N_n > \frac{\mu \log n}{\log \log n}
\]

e xcept for a set of measure at most \(\frac{\mu' \log \log n_0}{\log n_0} \).

Samal and Mishra [5] have shown in the case of characteristic function \(\exp\left(-C|t|^\alpha\right) \) that for \(n > n_0 \),

\[
N_n > \frac{\mu \log n}{\log \log n}
\]

outside an exceptional set of measure at most

\[
\frac{\mu'}{\left(\log \left(\frac{\log n_0}{\log \log n_0}\right)\right)^{\alpha-1}}
\]

where \(\alpha > 1 \).

In [7], they have considered the ‘strong result’ in the general case. Assuming that the random variables (not necessarily identically distributed) have exception zero, variance and third absolute moment non-zero finite, they have shown that for \(n \geq n_0 \),

\[
N_n > (\mu \log n) / \log\left\{(K_n/t_n) \log n\right\}
\]

outside a set of measure at most

\[
\frac{\mu'}{\log \left(\frac{\log n_0}{
\log \left(\frac{K_{n_0}}{t_{n_0}} \log n_0\right)\right)}\right}\]

DOI: 10.9790/3008-1103031218 www.iosrjournals.org 13 | Page
Strong Result for Level Crossings of Random Polynomials

provided \(\lim_{n \to \infty} \frac{p_n}{t_n} \) is finite and \(\log \left(\frac{K_{n\theta}}{t_{n\theta}} \log n_0 \right) = 0 \) (logn) where \(K_n = \max_{\theta \leq a} \sigma_{\theta} t_n = \max_{\theta \leq a} \sigma_{\theta} \text{ and } \max_{\theta \leq a} \sigma_{\theta}^2, \sigma_{\theta}^3 \) being the variance and third absolute moment respectively of \(\xi_{\theta} \).

Our object is to improve the ‘strong result’ for lower bound in case of characteristic function exp \(-C|t|^\alpha \). We have shown that for \(n>n_0 \).

\(N_n > \in_n \log n \)

Outside an exceptional set of measure at most \(\left(\frac{\mu'}{\in_{n_0} \log n_0} \right) \) where \(\in_n \to 0, \text{ but } \in_{n_0} \log n \to \infty \).

The result of Evans [1] is a special case of ours and is obtained by taking \(\alpha=2 \) and \(\in_n = (\log \log n)^{-1} \) in our theorem 1. The result of Samal and Mishra [5] is also a special case of our theorem 1. On the other hand our exceptional set is smaller.

All authors who have estimated bounds for \(N_n \) have used one kind of basic technique originally used by Littlewood and Offord [2].

We shall denote \(\mu \) for positive constants which may have different values in different occurrences.

We suppose always that \(n \) is large so that any inequalities true when \(n \) is large may be taken as satisfied.

Throughout the paper, \([x]\) will denote the greatest integer not exceeding \(x \).

It may be noted that although Evans [1] is a special case of ours, a much better estimate for the lower bound with smaller exceptional set can be derived from our theorem 1. For example, if we take \(\alpha=2, \)

\(\in_n = (\log \log n)^{-p} \) where \(0<p<1 \), then for \(n>n_0 \).

\(N_n > \frac{\log n}{(\log \log n)^p} \)

outside an exceptional set of measure at most \(\mu(\log \log n_0)^p \log n_0 \)

Lemma 1.2.

If a random variable \(\zeta \) has characteristic function exp \(-C|t|^\alpha \), then for every \(\epsilon>0 \)

\(P \{ |\zeta| > \epsilon \} \leq \frac{2^{1+\alpha} C}{1+\alpha} \frac{1}{\epsilon^2}. \)

This lemma is due to Samal and Mishra [4].

Proof of the Theorem

Take constant \(A \) and \(B \) such that \(0<B<1 \) and \(A>1 \). Choose \(\beta_m \) such that \(\beta_m \) and \(\frac{\log m}{\log \beta_m} \) both tend to infinity as \(m \) tends to infinity. Let

\(\lambda_m = m^{2/\alpha} \beta_n, M_n = \left[2^\alpha \beta_n^{\alpha} \left(\frac{Ae}{B} \right) \right] + 1. \) (1.1)

So

\(\mu_1 \beta_n^{\alpha} \leq M_n \leq \mu_2 \beta_n^{\alpha}. \)

We define

\(\Phi(X) = x^{[\log x]+x} \)
Let k be the integer determined by
\[
\varphi(8k + 7)M^{8k+7}_n \leq n < \varphi(8k + 11)M^{8k+11}_n \tag{1.2}
\]
The first inequality gives $k \leq \frac{\log n}{\log \beta_m}$. The second inequality gives
\[
\log \leq \left(\log(8k + 11)\right)^2 + (8k + 11)\log(8k + 11) + (8k + 11)\log M_n
\]
\[
< 2(8k + 11) + (8k + 11)^2 + (8k + 11)\log M_n
\]
\[
< \mu k^2 \log M_n
\]
So
\[
k > \mu \frac{\log n}{\log M_n} > \mu \frac{\log n}{\log \beta_m}
\]
Thus
\[
\mu \frac{\log n}{\log \beta_m} < k \leq \mu \frac{\log n}{\log \beta_m} \tag{1.3}
\]
By the condition imposed on β_n it follows that k tends to infinity as n tends to infinity. We have
\[
f(x) = U_m + R_m \text{ at the points}
\]
\[
X_m = \left\{1 - \frac{1}{\varphi(4m + 1)M^{4m}_n}\right\}^{1/u}
\]
for $m = \lceil k/2 \rceil + 1, \lceil k/2 \rceil + 2, \ldots, k$ \textit{where}
\[
U_m = \sum \xi v_X, R_m = \left(\sum + \sum \right) \xi v_X
\]
the index v ranging from $\varphi(4m + 1)M^{4m-1}_n + 1$ to $\varphi(4m + 3)M^{4m+3}_n$ in \sum from 0 to $\varphi(4m + 1)M^{4m-1}_n$ and from $\varphi(4m + 3)M^{4m+3}_n + 1$ to n in \sum. We also have
\[
f(x_{2m}) = U_{2m} + R_{2m}, f(x_{2m+1}) = U_{2m+1} + R_{2m+1} \tag{1.5}
\]
Obviously U_{2m} and U_{2m+1} are independent random variables. Again it follows from (1.3) that $2k+1<n$ for larger n. Also the maximum index in U_{2m+1} for $m=k$ is $\varphi(8k + 7)M^{8k+7}_n$, which, by (1.2) is consistent with (1.5).

Let $V_m = \left(\sum x^{\alpha v}_m\right)^{1/2}$. Then
\[
V^\alpha_m = \sum x^{\alpha v}_m > \sum \varphi(4m - 1)M^{4m-1}_n + 1 x^{\alpha v}_m
\]
\[
> \varphi(4m + 1)M^{4m}_n - \varphi(4m - 1)M^{4m-1}_n x^{2\varphi(4m+1)M\alpha v}_m
\]
\[
> \varphi(4m + 1)M^{4m}_n \left\{1 - \varphi(4m - 1) \frac{1}{\varphi(4m + 1) M_n}\right\} (e^{-1}/A)
\]
\[
> \varphi(4m + 1)M^{4m}_n (B/A)e^{-1}
\]
when n is large
Now we estimate
\[
P = P \left((U_{2m} > V_{2m}, U_{2m+1} < -V_{2m+1}) \cup (U_{2m} < -V_{2m}, U_{2m+1} > V_{2m+1}) \right)
\]
\[
P_1 \left(U_{2m} > V_{2m}, \Pr(U_{2m} < -V_{2m}) + \Pr(U_{2m} < -V_{2m}) \Pr(U_{2m+1} > V_{2m+1}) \right)
\]

Since the characteristic function of \(\xi \) is \(\exp \left\{-C|t|^\alpha \right\} \), the characteristic function of \(U_{2m} \) is therefore
\[
\exp \left\{-C|t|^{\alpha} \sum_{m} x_{mv} \right\} = \exp \left\{-C|t|^{\alpha} V_{2m} \right\}
\]

where the index \(V \) ranges from \(\phi(8m - 1)M_{m-1} + 1 \) to \(\phi(8m + 3)M_{n+3} \). Therefore the characteristic function of \(U_{2m}/V_{2m+1} \) is \(\exp \left\{-C|t|^{\alpha} \right\} \), which is similarly also the characteristic function of \(U_{2m}/V_{2m+1} \).

1.2. We shall need the following lemmas.

Lemma 1.2.

\[
\sum_{m} x_{mv} < \frac{\phi(4m + 1)M_{m+3}}{1 - x_{m}} \text{ for sufficiently large } n.
\]

Proof.

The characteristics function of
\[
\sum_{m} x_{mv} = \exp \left\{-C|t|^{\alpha} \sum_{m} x_{mv} \right\}
\]

\[
\leq \frac{2^{1+2\alpha} C A e}{B(1 + \alpha)} \exp \left\{(4m + 1)^2 M_{m}^2 \right\}
\]

But
\[
\sum_{m} x_{mv} \leq \sum_{m} \phi(4m + 3)M_{m+3+1} \left\{ \frac{1}{\phi(4m + 1)M_{m+3+1}} \right\}
\]

Since
\[
\phi(4m + 3)M_{m}^2 < \phi(4m + 1)(4m + 1)M_{m}^2
\]

Hence using (1.6), we obtain
\[
P_1 < \frac{2^{1+2\alpha} C A e}{B(1 + \alpha)} \exp \left\{- (4m + 1)^2 M_{m}^2 \right\}
\]

as required

DOI: 10.9790/3008-1103031218 www.iosrjournals.org 16 | Page
Lemma 1.3.

\[\sum_{m=1}^{\infty} \xi v x^m \leq \lambda \left(\sum_{m=1}^{\infty} \xi v x^m \right)^{1/a} \]

This follows directly from lemma 1.1.

1.3. Now

\[\lambda \left(\sum_{m=1}^{\infty} \xi v x^m \right)^{1/a} < \lambda \left\{ \varphi(4m-1)M_n^{4m-1} + 1 \right\}^{1/a} \]

\[\leq \lambda \left\{ \varphi(4m-1)M_n^{4m-1} \left(1 + \frac{1}{\varphi(4m-1)M_n^{4m-1}} \right) \right\}^{1/a} \]

\[< 2^{1/a} \lambda \left\{ \varphi(4m-1)M_n^{4m-1} \right\}^{1/a} \]

\[= 2^{1/a} \lambda \left\{ \varphi(4m-1)(4m-1)^{\left\lfloor \log(4m-1)+(4m-1) \right\rfloor} M_n^{4m-1} \right\}^{1/a} \]

\[\leq \frac{2^{1/a} \lambda M_n \varphi(4m+1)M_n^{4m}}{16m^2 M_n^2} \]

\[< \frac{2^{1/a} \lambda \frac{Ae}{B} V_n^{4m}}{16m^2 M_n^2} \]

\[< \frac{2^{1/a} \lambda \frac{Ae}{B} V_n^{4m}}{16m^2 M_n^2} \]

\[< \frac{1}{2} V_m \]

The last two steps above follow from (1.1) and (1.6). Hence by using lemmas 1.2 and 1.3, we have \(R_m \) < \(V_m \) for every sufficiently large \(n \) except for a set of measure at most

\[\mu \exp\left\{- (4m+1)^2 M_n^2 \right\} + \frac{\mu'}{\lambda_m^a} \leq \mu \exp\left\{- (m^2 M_n^2) \right\} + \frac{\mu'}{\lambda_m^a} \]

Thus we have

\[|R_{2m}| < V_{2m} \text{ and } |R_{2m+1}| < V_{2m+1} \]

for \(m = m_0, m_0 + 1, \ldots, k \), where \(m_0 = \lceil k/2 \rceil + 1 \)

The measure of the exceptional set is at most
\[
\mu \exp \left\{ \left(4m^2M_2^n\right)^2 \right\} + \frac{\mu'}{\lambda^2} \leq \mu \exp \left\{ \left(2m+1\right)M_2^n \right\} + \frac{\mu'}{\lambda^2} \\
< \mu \exp \left\{ \left(-m^2M_2^n\right)^2 \right\} + \frac{\mu_2'}{\lambda^2}
\] (1.7)

1.4. We define the events \(E_m\) and \(F_m\) as follows:
\[
E_m = \{U_{2m} > V_{2m}, \quad U_{2m+1} < V_{2m+1}\} \\
F_m = \{U_{2m} < V_{2m}, \quad U_{2m+1} > V_{2m+1}\}
\]
We have shown earlier that
\[
P_r(E_m \cup \overline{F_m}) = \delta > 0
\]
Let \(\eta_m\) be a random variable such that it takes value 1 on \(E_m \cup F_m\) and zero elsewhere. In other words
\[
\eta_m = \begin{cases} 1, & \text{with probability } \delta \\ 0, & \text{with probability } 1 - \delta \end{cases}
\]
Let \(\eta_m\) are thus independent random variables with \(E(\eta_m) = \delta\) and \(V(\eta_m) = \delta^2 < 1\).
We write
\[
S_m = \begin{cases} 0, & \text{if } |R_{2m}| < V_{2m}, \quad |R_{2m+1}| < V_{2m+1} \\ 1, & \text{otherwise} \end{cases}
\]

III. Conclusion

By considering the polynomial
\[
f_n(x) = \sum_{k=0}^{n} \xi_k x^k = 0
\]
where \(\xi_k x^k\) are independent random variables assuming real values only we found that the number of zeros of the above polynomial of the equations \(f(x) = 0\) is at least \(\left(en \log n \right) \) except for a set of measure at most \(\frac{\mu}{\varepsilon_0 \log n_0}\)

References