Prophylactic, Suppressive And Curative Antiplasmodial Potentials Of Methanol Root Extract Of Napoleona imperialis In Plasmodium berghei berghei Infected Male Albino Mice

*1Etim, O. E., 1Bassey, U. E., 1Akpakpan, E. I. and 2Udofoia, I. E.
1Department of Biochemistry, Obong University, Obong Ntak, Akwa Ibom State, Nigeria
2Department of Botany and Ecological Studies, University of Uyo, Uyo, Nigeria
*Corresponding Author: Dr Okon E. Etim; okprince25@yahoo.com

Abstract: The prophylactic, suppressive and curative anti-plasmodial potentials of methanol root bark extract of Napoleona imperialis in Plasmodium berghei berghei infected male albino mice were investigated. Sixty-five (65) albino mice weighing between 15 – 22g were used for the study. They were divided into 13 groups with 5 mice in each group. Group 1 served as control and was parasitized but not treated. Groups 2, 3, 4 and 5 served as prophylactic model and were treated daily with 200, 400, 600 mg/kg of N. imperialis root extract and 1.2 mg/kg of pyrimethamine respectively for 3 days followed with the parasite being inoculated in day 4. Groups 6, 7, 8 and 9 served as suppressive model and were inoculated with the parasite with simultaneous daily treatment with 200 mg/kg, 400 mg/kg, 600 mg/kg of N. imperialis root extract and 5 mg/kg of chloroquine respectively for 3 days. At the end of treatment, blood sample obtained from each mouse was examined under light microscope to reveal parasitized erythrocytes. The prophylactic model showed parasite suppression of 99.10%, 74.75%, 85.84% and 67.85% for 200, 400, 600 mg/kg of N. imperialis root extract and 1.2 mg/kg of pyrimethamine respectively. The suppressive model showed a percentage parasite suppression of 99.10, 96.88, 99.67 and 99.71 for 200, 400, 600 mg/kg of N. imperialis and 5.0 mg/kg of chloroquine respectively. In the curative model, parasitaemia clearance was only significant in the group treated with 200 mg/kg of N. imperialis root bark extract. The study has revealed that the methanol root extracts of N. imperialis have good antimalarial prophylactic and suppressive activity on Plasmodium berghei-infected albino mice.

Keywords: Napoleona imperialis, Plasmodium berghei berghei, Malaria, Antiplasmodial Activity

Date of Submission: 02-01-2018

Date of acceptance: 20-01-2018

I. Introduction

Malaria is a very important parasitic infectious disease of humans [1]. Chloroquine has been the most widely used anti-malaria, however, the spread of resistance to the drug led to its withdrawal from use in most countries in sub-Saharan Africa in the 1990s [2]. The resistance of malaria parasite to Chloroquine and other anti-malaria has driven scientists into an intensive search for more effective agents against the scourge. Artemisinin combination therapies (ACTs) are currently the drug of choice in the treatment of malaria. However, there are reports of parasite resistance to the newly developed artemisinin in some regions [3]. Thus, there is an urgent need for increased efforts in anti-malarial drug discovery especially in Africa [4]. In recent times, natural products of plant sources have been the center of focus as the main source of new, safer and more effective bioactive compounds with medicinal properties [5]. An appreciable level of studies has been done on African traditional medicinal plants, ranging from ethno botanical surveys, to the actual extraction of the active ingredients in the plants [6,7]. It has been noted that in traditional practice, several plants are often used in combination [8]. One of such plants is the Napoleona imperialis which is a wild plant found in South Eastern Nigeria N. imperialis is an evergreen non-timber plant that grows abundantly in bush fallows, secondary bushes and marginal lands in most of the tropical humid zones of West Africa [9]. The plant belongs to the family known as the lecythidaceae, along with the cannon ball tree (Corrputa guianensis), which grows in most regions of Nigeria [10,11]. The plant is commonly known as “Utumi” in the Ikwuano dialect and “Mkpodu” in Igbo language of Nigeria [12]. The chemical composition of the leaf, bark and roots of Napoleona imperialis have been documented [13,9]. The leaves and root extract of the plant have been reported to contain glycosides, tannins, proteins, flavonoids and saponins [14,15]. The leaves have a characteristic bitter taste, foaming properties, and can cause injuries to the digestive mucosa and hemolytic changes in blood [16].

DOI: 10.9790/3008-1301027377 www.iosrjournals.org
Study revealed that the plant extract has a better wound healing property (100% efficacy) than a standard antibiotic, Cicatrin. [17]. It has been reported that oral administration of methanol extract of *N. imperialis* may be useful for prevention and treatment of hypertension [14]. Evaluation of antimicrobial properties of ethyl acetate extract of the root of *N. imperialis* showed the extract had activities against certain bacteria confirming the use of the plant in ethno-pharmacology, [18]. The anti-plasmodial potential of the leaves of *N. imperialis* have been evaluated to justify its usage in traditional medicine for treatment of malaria [19]. The present study is therefore aimed at investigating the anti-malarial potentials of Methanol root extract of *N. imperialis* in mice.

II. Materials And Methods

2.1 Plant Materials

The plant *N. imperialis* was obtained from Mgbirichi community in Imo state and identified at the herbarium of University of Nigeria, Nsukka. The *N. imperialis* roots were washed clean, dried and pulverized into fine powder. The powdered root was macerated in 80% methanol and allowed to solubilize. The filtrate was obtained and concentrated in a Waterbath at 45°C. The crude extract was obtained and preserved in refrigerator at -4°C.

2.2 Malaria Parasite

A chloroquine – sensitive Strain of *Plasmodium berghei-berghei* was obtained from National Institute of Medical Research (NIMR) in Lagos, Nigeria and Maintained by sub-passage in mice. The parasitized blood donor with high parasitaemia was obtained by first anaesthetizing the mouse with chloroform, and through cardiac puncture, blood was collected using sterile syringe into heparinized bottles. The percentage parasitaemia was determined by counting the number of parasitized red blood cells against the total number of red blood cells. The desired volume of blood obtained from the donor mouse was suitably diluted with sterile normal saline so that the final inoculum (0.2 ml) for each mouse contained the required number of parasitized red blood cells (1.0 x 10^7 parasitized red blood cell). The method described by Okokon et al., [20] was employed in inoculating the parasite in the experimental animals.

2.3 Animals And Experimental Design

Sixty-five (65) inbred male albino mice (15 – 22 g) were obtained from the animal house of Pharmacology and Toxicology Department, University of Uyo. They were maintained at standard laboratory condition; twelve hours’ light – dark cycle, fed with rat pellet feed with clean drinking water *ad libitum*. Parasitized red blood cells containing *Plasmodium berghei-berghei* was injected through intraperitoneal route into the mice. The mice were divided into thirteen groups with 5 animals in each group. Group 1 served as the control (received no treatment). Groups 2, 3, 4 and 5 served as prophylactic model and were treated daily with 200 mg/kg, 400 mg/kg, 600 mg/kg of *N. imperialis* root extract and 1.2 mg/kg of pyrimethamine respectively for 3 days followed with the parasite being inoculated in day 4. 72 hours (3 days) after the inoculation of the parasite, the animals were sacrificed and blood sample obtained for analysis. Treatment with pyrimethamine is the standard prophylactic antimalarial therapy and served as the positive control for comparison in the prophylactic model. Groups 6, 7, 8 and 9 served as suppressive model and were inoculated with the parasite with simultaneous daily treatment with 200 mg/kg, 400 mg/kg, 600 mg/kg of *N. imperialis* root extract and 5 mg/kg of chloroquine respectively for three days. Groups 10, 11, 12 and 13 served as curative model and were first inoculated with the parasite followed by daily treatment with 200 mg/kg, 400 mg/kg, 600 mg/kg of *N. imperialis* root extract and 5 mg/kg of chloroquine respectively for three days. The treatment started 72 hours (3 days) after the parasite were inoculated in the mice. Leishmann’s stained thin smears were prepared from the tail blood of each animal on Day 0, Day 1, Day 2 and Day 3 of treatment.

2.4 Evaluation of Antimalarial Activity

Thin blood films obtained from each mouse in all the group was examined under the light microscope to reveal parasitized erythrocytes in a random field of a microscope. The percentage parasitaemia was obtained by counting the number of parasitized blood cells out of 500 erythrocytes in random fields of microscope.

\[
\text{% Parasitaemia} = \frac{\text{Number of parasitized RBC}}{\text{Total No. of RBC counted}} \times 100
\]

2.5 Statistical Analysis

Data obtained from this Study were analyzed using the Statistical package for Social science (SPSS) Version 20.0 for windows. Analysis of Variance (ANOVA) were used to compare means and values were considered significant at P < 0.05. Post hoc multiple comparisons for ANOVA were done using least significant difference (LSD).
III. Results

3.1 Prophylactic Antiplasmodial Effect of Methanol Root Extract of *N. imperialis* on *Plasmodium berghei berghei* infected mice

The prophylactic antiplasmodial effect of methanol root extract of *N. imperialis* in albino mice infected with *Plasmodium berghei berghei* is presented in Table 1. The result shows that there was no significant difference (p > 0.05) in the *P. berghei* parasitaemia in the mice treated with different concentrations of *N. imperialis* methanol extract compared to the control and the chloroquine treated mice.

<table>
<thead>
<tr>
<th>Treatment/Dosage</th>
<th>Parasitaemia</th>
<th>% Suppression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 – Control</td>
<td>10,678.00 ± 8,736.10</td>
<td>-</td>
</tr>
<tr>
<td>Group 2 – 200 mg/kg/day</td>
<td>96.67 ± 66.73</td>
<td>99.10</td>
</tr>
<tr>
<td>Group 3 – 400 mg/kg/day of N. imperialis</td>
<td>2,626.70 ± 1132.57</td>
<td>75.40</td>
</tr>
<tr>
<td>Group 4 – 600 mg/kg/day of N. imperialis</td>
<td>1,511.70 ± 1,494.20</td>
<td>83.84</td>
</tr>
<tr>
<td>Group 5 – 1.2 mg/kg/day of Pyrimethamine</td>
<td>3,433.30 ± 1,566.67</td>
<td>67.85</td>
</tr>
</tbody>
</table>

Values are presented as Mean ± SEM. * = Significant difference at P < 0.05 when compared to control.

Suppressing Antiplasmodial Effect of Methanol Root Extract of *N. imperialis* on *Plasmodium berghei berghei* infected mice

The suppressive antiplasmodial model revealed that at 200, 400 and 600 mg/kg of *N. imperialis* methanol extract the *P. berghei* parasitaemia in the mice was significantly lower (p < 0.05) compared to the parasitaemia in the control. As shown in Table 2, at 600 mg/kg the extract was most effective in suppressing *P. berghei* parasitaemia in the mice with the parasitaemia not significantly (p > 0.05) different from the parasitaemia in the chloroquine treated mice.

<table>
<thead>
<tr>
<th>Treatment/Dosage</th>
<th>Parasitaemia</th>
<th>% Suppression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 – Control</td>
<td>10,500.00 ± 50.08</td>
<td>-</td>
</tr>
<tr>
<td>Group 6 – 200 mg/kg/day</td>
<td>105.00 ± 88.08</td>
<td>99.10</td>
</tr>
<tr>
<td>Group 7 – 400 mg/kg/day of N. imperialis</td>
<td>328.33 ± 12.75*</td>
<td>96.88</td>
</tr>
<tr>
<td>Group 8 – 600 mg/kg/day of N. imperialis</td>
<td>35.00 ± 5.00*</td>
<td>99.67</td>
</tr>
<tr>
<td>Group 9 – 5 mg/kg/day of Chloroquine</td>
<td>30.00 ± 15.28*</td>
<td>99.71</td>
</tr>
</tbody>
</table>

Values are presented as Mean ± SEM. * = Significant difference at P < 0.05 when compared to control.

Curative Antiplasmodial Effect of Methanol Root Extract of *N. imperialis* on *Plasmodium berghei berghei* infected mice

Curative effect of methanol root extract of *N. imperialis* on *Plasmodium berghei berghei* infected mice is presented in Table 3. The result shows that at day zero there was no significant difference (P > 0.05) in the *P. berghei* levels in the mice treated with *N. imperialis* root extract treated rats compared to the chloroquine treated and the control. After one day of observation the mice, *P. berghei* levels were significantly lower (P < 0.05) in the 600 mg/kg *N. imperialis* root extract and chloroquine treated rats compared to the control. On day two and three the *P. berghei* levels in the mice were higher in the control compared to the extract and chloroquine treated mice although the mean differences were not statistically significant (P > 0.05). Furthermore, parasitaemia clearance was significantly evident only in the 200mg/kg extract treated group.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 – Control</td>
<td>4,166.70 ± 927.96 *</td>
<td>5,530.22 ± 4,938.63 *</td>
<td>2,753.97 ± 1,034.43 *</td>
<td>6,516.70 ± 2,630.01 ±</td>
<td>-</td>
</tr>
<tr>
<td>Group 10 – 200 mg/kg/day</td>
<td>10,500.00 ± 7,023.77 ±</td>
<td>23,103.33 ± 2948.63</td>
<td>2,606.70 ± 1,034.43</td>
<td>9,000.00 ± 2,630.01</td>
<td>80.9</td>
</tr>
<tr>
<td>Group 11 – 400 mg/kg/day</td>
<td>12,333.00 ± 2,420.97 ±</td>
<td>7,933.33 ± 3,876.57*</td>
<td>3,329.16 ± 1,034.43</td>
<td>10,833.0 ± 2,630.01</td>
<td>12.1</td>
</tr>
<tr>
<td>Group 12 – 600 mg/kg/day</td>
<td>5,031.70 ± 4,984.17 *</td>
<td>289.00* ± 2753.79</td>
<td>5,166.70 ± 1013.79</td>
<td>10,500.00 ± 2,630.01</td>
<td>-</td>
</tr>
<tr>
<td>Group 13 – 5 mg/kg/day of Chloroquine</td>
<td>4,166.70 ± 2920.78</td>
<td>283.00* ± 441.00*</td>
<td>7,677.00 ± 6,451.00</td>
<td>6,666.70 ± 2,455.15</td>
<td>-</td>
</tr>
</tbody>
</table>

Values are presented as Mean ± SEM. * = Significant difference at P < 0.05 when compared to control.

DOI: 10.9790/3008-1301027377 www.iosrjournals.org 75 | Page
VI. Discussion

Malaria is a mosquito-borne infectious disease of humans and other animals caused by protozoan - a group of single celled microorganism belonging to the plasmodium genus [21]. Anemia, fever, nausea and flulike illness are the common manifestation of malaria with coma and death reported in severe cases [22]. Development of drug resistant by plasmodium species and the resistance of anopheles’ mosquitoes to many insecticides have compounded the control of malaria in infested area [23]. High cost of antimalarial drugs, its unavailability in certain areas, existence of resistance and reported toxicity of the available antimalarial drugs have warranted the inquiry into alternative source of drugs for malaria treatment especially in the rural areas of developing and undeveloped countries of the world.

N. imperialis root is used locally for several purposes. The phytochemical screening of the root of *N. imperialis* have revealed the presence of alkaloid, tannins, saponins, renins, flavonoid, protein, carbohydrate and steriod [9]. Alkaloids, saponins, tanins and flavoniods have been reported to be responsible for antimalarial activities in plants [24]. The presence of these phytochemicals in methanol root extract of *N. imperialis* as reported by Etim et al., [9] suggest that the plant has antimalarial activity. These secondary metabolites may have elicited the observed antimalarial activity either singly or in synergy with each other [25].

The prophylactic model of the study reveals that the root extract of *N. imperialis* had a significant chemoprophylactic activity when compared to the control. The high parasite count in the repository test may be attributable to the metabolism of the administered extract (before inoculation) to inactive product. The report corroborates the study by Alli et al., [26] who also reported high levels of parasitaemia clearance in the prophylactic study of the root extract of Acacia nilotica. Dose dependent significant chemosuppressive activity was observed in the suppressive model of the study when the extract treated groups were compared to the control. A compound is said to be active when its percentage chemosuppression in parasitaemia is 30 and above [27,28]. A plant with percentage suppression of 50 and above is categorised as good and very good [29]. The chemosuppressive activity of *N. imperialis* corroborates with similar studies on several other antiplasmodial medicinal plants such as *Dicliptera verticillata*, *Agelanthus dodenifolius* and *Sida rhombifolia* [25,30,31].

In the curative model, the *N. imperialis* root extract at extract concentration of 200 mg/kg showed gradual reduction in the parasitaemia level from day one to day three even more than the reference drug chloroquine. Chloroquine has a very high volume of distribution as it diffuses into the body adipose tissue [25]. The drug concentrates in the acidic food vacuoles of the parasite and interferes with the essential processes [32]. Chloroquine enters the red blood cells, inhibiting parasite cell and digestive vacule by simple diffussion [33]. In this research result, chloroquine at day zero and day one reacted posistively by reducing the malaria parasite level. But at day two and three, there was a development of resistant. The effectiveness of chloroquine against *Plasmodium falciparium* has declined as resistant strains of *Plasmodium falciparium* evolved.

The mechanism of action of the extract of *N. imperialis* has not been elucidated but some plants are known to exert antimalarial action by causing elevation of red blood cell oxidation or by inhibiting protein synthesis [34]. Phytochemicals in plants have been documented to be responsible for the antiplasmodial potentials of medicinal plants [35]. Alkaloids have been known to exhibit antimalarial propertices by blocking protein synthesis in *Plasmodium falciparium* [36]. Flavonoids have been reported to chelate with nucelic acid base pairing of the parasites [37]. The extract could have elicited its action through either of the mechanisms mentioned above or by some other unknown mechanisms.

VII. Conclusion

From this study, it can be concluded that, the methanol root extracts of *N. imperialis* have shown a good antimalarial prophylactic and suppressive activity on *Plasmodium berghei*-infected albino mice.

References

