Polygonum glabrum Willd. leaf extract mediated green synthesis of silver nanoparticles and their assessment of antimicrobial activity

V. K. Rokhade and T.C.Taranath*

P.G.Dept. of studies in Botany, Environmental Biology Laboratory, Karnatak University, Dharwad-580003, Karnatak, India.

*Corresponding Author: V. K. Rokhade

Abstract: Green nanotechnology is gaining importance due to the elimination of harmful reagents and provides effective synthesis of expected products in an economically manner. In the present investigation aqueous leaf extract of Polygonum glabrum Willd. was used for the synthesis of silver nanoparticles. The colour of reaction mixture was changed from colourless to brown colour indicates the formation of silver nanoparticles, further confirmed by characteristic UV-Vis absorption peak at 429 nm. Synthesized nanoparticles were characterized by FTIR, Fluorescence Spectroscopy and SEM. Fluorescence Spectroscopy is a powerful tool to study the tereprelary structure of proteins. FTIR data reveals that biomolecules involved in the reduction and capping of silver nanoparticles. The SEM result shows the size of nanoparticles ranges from 10 to 35 nm and are spherical in shape. XRD result showed that crystalline nature of nanosilver. The biogenic silver nanoparticles showed excellent antimicrobial activity against S. typhi, E. coli, P. aeruginosa and S.aureus.

Keywords: Silver nanoparticles, Polygonum glabrum Willd. FTIR, Antimicrobial activity

I. Introduction

Nanotechnology is referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. Dimensions between approximately 1 and 100 nanometers are known as the nanoscale. The synthesis of nanoparticles and their characterization is an emerging field of nanotechnology since past two decades due to their wide applications in the fields of physics, chemistry, biology and medicine. Unusual physical, chemical and biological properties can emerge in materials at the nanoscale. These properties may differ in important ways from the properties of bulk materials and single atoms or molecules. Although metal is a poor catalyst in bulk form, nanosized particles can exhibit excellent catalytic activity due to their relative high surface area-to-volume ratio and their interface-dominated properties, which significantly differ from those of the bulk material. Controlled size and composition of nanoparticles are of fundamental interest since they provide solutions to environmental and technological challenges in the areas of catalysis, solar energy conversion and waste water treatment. More recently, nanoscale materials have been looked at with interest for synthesis of advanced materials, energy storage devices, electronic and optical displays, chemical and biosensors, drug delivery, optical spectroscopy including surface-enhanced raman scattering, detection and diagnostic, antimicrobial, therapeutics, biomedicine, waste water treatment, food industry, Antidiabetic, Antiviral, anticancer, Anti-inflammatory and antiplasmodial.

Nanoparticles are synthesized by physical and chemical methods but these methods have certain disadvantages due to involvement of toxic chemicals. A large amount of toxic chemicals are produced during the synthesis of nanoparticles, and these chemicals pose a serious threat to environment. Thus, there is a need for safe, clean, nontoxic and environment-friendly method for the synthesis of nanoparticles. Researchers in the field of nanotechnology have laid emphasis on biological method for synthesis of nanoparticles by biomimetic approach. Bio-inspired synthesis of metal nanoparticles can be considered as an emerging branch of green chemistry in which plant extract, bacteria, fungi and algae have been used for the reduction of Ag⁺ to Ag⁰. Recently, number of plants and plant parts such as leaf, fruit, flower, tuber and rhizome extract were used for the synthesis of silver and gold nanoparticles, further testing the efficacy of nanoparticles for antimicrobial activity. Viz. Garcinia mangostana, Dioscorea bulbifera, Alternanthera sessilis, Terminalia arjuna, Phyllanthus maderaspatensis, Cansjera rheedii J. F. Willd., Hemidesmus indicus, Linum usitatissimum L., Dimocarpus longan, Convolvulus pluricaulis, Lavandula intermedia, Allophylus serratus, Origanum Vulgare L., Bauhinia acuminate and Biophytum sensitivum. Polygonum glabrum Willd. is an annual or perennial herb, which belongs to the family Polygonaceae (Figure 1). The leaf extract of P. glabrum contains...
flavonoids, terpenoids, quinones, proteins, enzymes, amino acids etc. The present investigation was undertaken to study phytosynthesis of silver nanoparticles by using leaf extract of *P. glabrum* and testing the antibacterial activity of synthesized silver nanoparticles.

II. Materials and methods:

Silver nitrate was obtained from Sigma-Aldrich chemicals. All glassware’s were washed with distilled water and dried in an oven. Fresh leaves of *P. glabrum* were collected from botanical garden of Karnatak University campus, Dharwad.

Preparation of leaf extract: The one gram of *P. glabrum* leaf material was incisor into small pieces and macerated by adding 10 ml sterile distilled water with the help of pestle and mortar. During the extract preparation, 20 ml of sterile distilled water was used for centrifugation at rotation speed of 1200 rpm for 20 min. The supernatant was decanted and pellet was re-macerated in 10 ml distilled water and again followed by centrifugation. The supernatant was used as extract for conducting experiments.

![Figure 1: Shows the Habit of Polygonum glabrum Willd.](image)

Synthesis of silver nanoparticles: The 5 ml *P. glabrum* leaf extract was added to 250 ml Erlenmeyer conical flask containing 100 ml of 1mM silver nitrate solution. The tightly capped flasks were kept in a shaker at a rotation speed of 200 rpm at 27°C and pH of the solution was maintained at 9 pH. The change in the colour of solution to dark brown was noted after reaction period which indicates the formation of silver nanoparticles further confirmed by characteristic absorption peak of UV-Vis spectrometer.

Characterization of silver nanoparticles: The UV–VIS spectra of the sample was measured on a UV-2450 (Shimadzu) spectrophotometer operated at a resolution of 1 nm. The bio-reduction of silver ions in aqueous solution was monitored by UV–Vis spectrum between the ranges from 400 to 800 nm. Detection of tryptophan / tyrosine residues in proteins present in the reaction mixture or extract was analyzed spectrophotometrically by the measurement of absorbance in the range between 200-300 nm wavelength regions by using U-3010 spectrophotometer. Fluorescence Spectroscopy is a powerful tool to study the tertiary structure of proteins. The Fluorescence of the solution of silver nanoparticles was studied by using F-7000FL spectrophotometer. The detection of tryptophan / tyrosine residues in protein was made by excitation at 250 nm for the confirmation of their presence. FTIR characterization of reaction mixture using FTIR (F-7000FL) spectrophotometer for identification of biomolecules involved in bioreduction and capping of silver nanoparticles. In order to remove any free biomass residue, the residual solution after reaction was centrifuged at 4000 rpm for 20 min and the resulting suspension was redispersed in 10 mL sterile distilled water. The centrifuging and redispersing processes were repeated for three times. Finally, the dried samples were palletized with KBr and analyzed using FT-IR.

After bioreduction, solution containing silver nanoparticles was dried at 60°C for 2-3 days in an oven. Dried sample was collected for the determination crystalline structure of Ag nanoparticles by X’ Pert pro X-ray diffractometer operated at an voltage of 40 kv and a current of 30mA with Cu Kα radiation. The bioreduced solution was dried at 60°C in an oven. After complete drying, fine powdered material was separated and collected. This material was used for SEM (scanning electron microscopy) observation. The material was mounted on clear aluminum stub using double sided adhesive cellotape. The sample was gold plated in a vacuum evaporator. SEM image was taken on JEOL, JSL 35 C model operated at an accelerating voltage of 20 kv at a magnification 27,000 X.

Antimicrobial activity: Antimicrobial activity of biogenic silver nanoparticles was assessed by well diffusion method against gram negative (*Escherichia coli* MTCC 723, 1554, *Pseudomonas aeruginosa* MTCC 736 and *Salmonella typhi* MTCC3216) and gram positive (*Staphylococcus aureus* MTCC3160) microorganisms.
Initially, the stock cultures of bacteria were revived by inoculating broth media and grown at 37°C for 18 hrs. The agar plates were poured by muller hinton media and wells were made in the plate. Each plate was inoculated with 18 h old cultures (100 μl, 10^5 cfu) and spread evenly on the plate. After 20 min, the wells were filled with desired quantity (20, 40, 60, 80 and 100 μl) of nanoparticles solution. All the plates were incubated at 37°C for 24 h and the diameter of inhibition zone was noted.

III. Results and discussion

When leaf extract of *P. glabrum* was added to aqueous 1mM silver nitrate solution which leads to the appearance of dark brown colour within 10 min. The colour change was arising due to the property of quantum confinement which is a size dependent property of nanoparticles which affects the optical property of the nanoparticles. UV-Visible absorption spectroscopy is widely used to study the optical properties and electronic structure of nanoparticles. The process of bio reduction of silver ions was gradually monitored in UV-Vis spectroscopy Figure 2 depicts a series of absorption spectra recorded from the solution of silver nanoparticles at different time intervals. The absorption spectra showed an intense peak at 429 nm due to the surface Plasmon resonance (SPR) band of silver nanoparticles. Noble metals exhibit unique optical properties due to the property of surface plasmon resonance (SPR) which is the collective oscillation of the conduction electrons induced by the interacting electromagnetic field. The size and shape of metal nanoparticles determine the spectral position of plasmon band absorption as well as its width. The appearance of single prominent peak shows that the particles are spherical and uniform in size which is further confirmed by SEM photograph.

![Figure 2: UV-Vis spectra recorded as a function of reaction time of silver nanoparticles](image)

![Figure 3: UV-Vis spectrum recorded at lower wavelength of silver nanoparticles](image)

Further in lower wavelength region of UV-Vis spectrum recorded from the reaction medium at 72 hrs (Figure 3) showed an absorption band at 250 nm is clearly indicates that presence of aromatic amino acid viz. tryptophan and tyrosine in the protein. The presence of this amino acid which may be involved in reduction
and capping of silver nanoparticles. Figure 4 shows the fluorescence spectra recorded from the silver nanoparticles solution. An emission band observed at 330 nm due to proteins which are present in the solution are in their native form no change in the tertiary confirmation of proteins while the reduction process.

![Figure 4](image)

Figure 4: Fluorescence emission spectrum recorded from the silver nanoparticles solution.

FTIR measurements were carried out to identify the possible reducing biomolecules in the leaf extract responsible for the formation of silver nanoparticles and to identify the chemical change of the functional groups involved in bioreduction. Figure 5 and Table 1 shows that the FTIR spectrum of silver nanoparticles synthesized by leaf extract of *P. glabrum*. The absorption band at ~1640 cm\(^{-1}\) was arised due to amide-I and was assigned to stretch mode of carbonyl group (C=O) coupled to amide linkage. The spectrum exhibit an intense band at ~2100 cm\(^{-1}\) was arised due to S-H stretching vibration in amino acid residues. The band at ~1250 cm\(^{-1}\) was arised due to stretching vibration of N-H group which is a characteristic of amide band-III in the amide linkage. The spectrum of *P. glabrum* showed a broad intense band at ~3300 cm\(^{-1}\) which arised due to O-H group present in phenols. The band at ~1730cm\(^{-1}\) is a characteristic of carbonyl stretch vibration in carboxylic acids and phenols. The amide linkage between amino acid residues in polypeptide and protein gave rise to well-known signatures in the infrared region of the electromagnetic spectrum. The band at ~1640 cm\(^{-1}\) is close to that reported for native proteins, which suggests that proteins are interacting with biosynthesized silver nanoparticles and also their secondary structure was not affected during reaction with Ag\(^+\) ions or after binding with Ag\(^0\) nanoparticles. The similar results were observed in the carob leaf extract. The carbonyl group of proteins which have a strong ability to bind silver and formation of layer around the silver nanoparticles act as a capping agent to prevent agglomeration and provide stability.

![Figure 5](image)

Figure 5: FTIR spectrum of leaf extract of *P. glabrum* after bioreduction of 1mM silver nitrate solution.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Absorption peak(cm(^{-1}))</th>
<th>Functional groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3300</td>
<td>Stretch frequency of the O-H band</td>
</tr>
<tr>
<td>2</td>
<td>2100</td>
<td>Stretching vibration in S-H</td>
</tr>
<tr>
<td>3</td>
<td>1730</td>
<td>Stretching vibration in carbonyl groups</td>
</tr>
<tr>
<td>4</td>
<td>1640</td>
<td>Amide-I band (Stretch mode of carbonyl group)</td>
</tr>
<tr>
<td>5</td>
<td>1250</td>
<td>Amide-III band</td>
</tr>
</tbody>
</table>

Table 1. FTIR absorption peaks and their functional groups of silver nanoparticles synthesized by *P. glabrum*.

X-ray diffraction is a very powerful and versatile quantitative technique to elucidate the complete three-dimensional structure of matter at molecular and atomic levels. Elucidation of detailed structural features at atomic levels is possible if the specimen is in crystalline state. The XRD patterns of silver nanoparticles

Polygonum glabrum Willd. leaf extract mediated green synthesis of silver nanoparticles and their...

The synthesized silver nanoparticles show crystalline nature. The lattice constant calculated from this pattern was $a=4.088\,\text{Å}$, ‘a’ value which is in agreement with the value reported in literature for silver ($a=4.088\,\text{Å}$ JCPDS-04-0783). Further, the sharpness of the peak (111) clearly specifies the nano formulations that were confirmed by using the Debye-Scherrer formula:

$$D = \frac{k \lambda}{\beta \cos \theta}$$

Where ‘D’ is the mean crystalline size of the particle, K is the shape factor whose value is 1-0.9, λ is the wavelength of the X-ray radiation source that is 0.154 nm, β is $(\pi/180)^{\circ}$ full width at half maximum (FWHM) and ‘θ’ is the bragg angle respectively. The sizes of silver nanoparticles of leaf extract of P. glabrum are 21.59 nm.

![Figure 6: XRD pattern of silver nanoparticles](image)

A representative SEM microphotograph of the silver nanoparticles formed by P. glabrum are shown in Figure 7. This photograph shows spherical shaped nanoparticles as well as some aggregates. Observation of such images in an optical microscope, reveals that assemblies were found to be aggregates of silver nanoparticles in the size ranges 10 to 35 nm. The nanoparticles were not in direct contact even within the aggregates indicating stabilization of the nanoparticles by capping agent. The separation between silver nanoparticles seen in the SEM images could be due to capping by proteins and would explain the UV-Vis spectroscopy measurement which is characteristic of well dispersed silver nanoparticles. The above findings corroborates with the results of previous observation made by in their study on biosynthesis of silver nanoparticles in Aeromonas species SH10.

![Figure 7: SEM images of silver nanoparticles synthesized by leaf extract P. glabrum](image)

Antimicrobial activity

Silver nanoparticles shows good antimicrobial activity against both gram positive and gram negative bacteria. Gram negative bacteria were more sensitive to silver nanoparticles than the gram positive bacteria. Silver nanoparticles at different concentration (20, 40, 60, 80 and 100µl) showed different zone of inhibition (ZOI) with respect to different microorganisms. The gram negative bacteria S. typhi, P. aeruginosa and E. coli showed maximum zone of inhibition at 12, 8 and 8 mm respectively but, gram positive bacterium S. aureus showed 6 mm (Figure 8 and table 2). Similar results were found in the fruit extract of Leea indica in their study on biosynthesis of silver nanoparticles in Aeromonas species SH10. The silver...
nанопартицы прикрепленные к негативно заряженной стенке клетки вызывают накопление протеиновых предшественников, что приводит к нарушению проницаемости мембраны и диссипации протонного моторного потенциала. Серебро обладает большей привлекательностью по отношению к фосфорсодержащим и серосодержащим биомолекулам в клетках. Серосодержащие белки в мембране и фосфорсодержащие ДНК-элементы являются предпочтительными местами для присоединения нанопartic. Серебряные нанопarticы вливают на репликационную машину.

Figure 8: Antimicrobial activity of concentrations of silver nanoparticles (20, 40, 60, 80 and 100 µl)

Table 2. Zone of inhibition (mm) of different concentration of silver nanoparticles on the test pathogens by well diffusion method

<table>
<thead>
<tr>
<th>AgNPs (µl/ well)</th>
<th>Zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E.coli</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>80</td>
<td>7</td>
</tr>
<tr>
<td>100</td>
<td>8</td>
</tr>
</tbody>
</table>

IV. Conclusion

В настоящем исследовании листовой экстракт Polygonum glabrum Wild. был использован для синтеза биогенных нанопartic серебра. Результаты XRD и SEM указывают на размер нанопartic в диапазоне от 10 до 35 нм и их сферическую форму. Нарощающий синтез биогенными способами является быстрым, дешёвым, чистым и экологически безопасным подходом. Биогенные серебряные нанопarticы показали отличную антимикробную активность против грамотрицательных (S. typhi, E. coli и P. aeruginosa) и грамположительных (S. aureus) бактерий. S. typhi более чувствительны к серебряным нанопarticам, синтезированным из листьев Polygonum glabrum. Грамотрицательные бактерии показали более высокую антимикробную активность, чем грамположительные бактерии.

Acknowledgment:

Авторы благодарят Главного Ученого Совета, П. Г. Департамента Ботаники, Каннанака Университета, Дхарвард за предоставление необходимых ресурсов и Грантовую Комиссию Университета, Нью-Дели за финансовую поддержку в рамках программы UGC-SAP-DSA I Phase programme департамента. Одному из авторов (Рокхаде) благодарность за предоставление UGC-UPE стипендии. Авторы выражают признательность за предоставление инструментального оборудования в USIC, К. У. Дхарвард.
Polygonum glabrum Willd. leaf extract mediated green synthesis of silver nanoparticles and their antibacterial activity.

Reference.

DOI: 10.9790/3008-1303026875 www.iosrjournals.org

