
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) 

Volume 4, Issue 4, Ver. I(Jul-Aug. 2014), PP 08-15 
e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197  

www.iosrjournals.org  

www.iosrjournals.org                                                        8 | Page 

 

Establishing the presence of Cardiac Sub-Harmonics and its 

Importance in detecting Cardiac Abnormalities 
 

Anandarup Mukherjee
1
, Disha Singhania

2
, Nidhi Pathak

3
, Parakh Khandelwal

4  

1,2,3,4(Dept. of Electronics & Communication Engg., University of Engineering & Management, Jaipur, India) 

 

Abstract: This paper presents a novel method for detecting cardiac abnormalities in a way which is both non- 

invasive and low cost. This method utilizes the presence of harmonics generated within the human heart as 

indicators of possible cardiac abnormalities such as cardiac blocks or cardiac valve dysfunctions. Our work is 

divided into two sections; firstly, the establishment of the fundamental frequency of the human heart along with 

its associated sub-harmonics and secondly, the presence of various harmonics in normal and abnormal cardiac 

signals which may serve as possible indicators to determine cardiac dysfunctions. Our method was applied on 

Phonocardiograph (PCG) signals of patients with various cardiac conditions. 
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I. PHONOCARDIOGRAM AND ITS USE IN CARDIAC AUSCULTATION 

Heart sounds have been of great importance in the field of cardiography for a very long time. Studied 

and analyzed carefully, it helps in the detection of a variety of cardiac ailments. There have been many devices 

which have been used for the study of the heart sounds; most widely and commonly used amongst them is the 

stethoscope. At first, stethoscopes were purely mechanical and acoustic in nature which provided less 

amplification of sound. The advent of digital electronic stethoscopes made the detection of these sounds easier 

and efficient. New and more advanced versions of the electronic stethoscopes are regularly being launched into 

the market. These new versions of the stethoscopes come with monitors and provisions for displaying the heart 

sounds in analog form i.e., in the form of graphs. These graphs later on, can not only be viewed, but can also be 

processed and classified. This method of recording heart sounds is known as phonocardiography [1]. The graph 

generated is known as phonocardiogram. There are four types of heart sounds measured by phonocardiography 
namely systolic sound (S1), diastolic sound (S2), proto-diastolic sound (S3) and pre-systolic sound (S4).  

The cardiac sounds occur in the heart due to opening and closing of the heart valves. The study of 

phonocardiogram of a heart reveals huge amount of information regarding the fitness of the heart and can lead 

to the detection of various cardiac diseases, if present. The heart sounds are classified in the consecutive sub-

sections. 

 

1.1 FIRST HEART SOUND, S1 

This is a high frequency sound produced at the beginning of a systole i.e., contraction of the ventricles. It is 

caused due to the closure of atrio-ventricular valves. S1 is further divided into two sounds, M1 followed by T1. 

M1 is caused due to the closing of the mitral valve whereas T1 is produced due to the closing of the tricuspid 

valve. The blood flow from the atria to the ventricles raises the ventricular pressure causing the inlet valve to 
close. This closure prevents the reverse flow of blood into the atria and causes reverberation of blood which is 

detected as S1in PCG. The S1 sound is depicted in figure 2. 

 

Figure 1: A cross section of the human heart depicting the 

positions of various valves. 

 

 

Figure 2: A PCG recording of normal S1-S2 complex. 
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1.2 SECOND HEART SOUND, S2 

The second heart sound is yet another high frequency heart sound, produced at the end of a systole, which 
marks the beginning of diastole. It is caused due to the closure of aortic and pulmonary valves, also known as 

the semi-lunar valves. S2 comprises of two components A2 and P2. The blood flowing out from the left 

ventricle to the aorta causes a drop in the pressure of the left ventricle causing a reverse blood flow from the 

aorta to the ventricle. This flow is blocked by the closure of the aortic valve, causing the generation of A2. 

Similar mechanism is followed in the case of blood flow from the right ventricle to the pulmonary artery and the 

resulting blocking of the back flow from the artery to the right ventricle, causing P2. The S2 sound is depicted in 

figure 2. 

 

1.3 THIRD AND FOURTH HEART SOUNDS, S3 & S4 

The third and fourth heart sounds S3 and S4 respectively, are both classified as low frequency sounds. S3 

is heard after S2 and is of lower frequency than the S2 sound. The main cause of S3 is the movement of blood 

within the walls of the ventricles, causing reverberation and consecutively, its generation. It is generally 

observed in athletes and is not harmful. However, it may indicate some serious heart disorders if found in aged 

patients. S4 is yet another low frequency sound which occurs just before S1. It is caused due to the forceful 

entry of blood into ventricles with stiffened walls. Rigid ventricular walls require the atria to pump blood into 

the ventricles with a force which is much greater than is normally required. This generates an extra sound S4 

just before the beginning of systole. It may indicate a case of left ventricular disorder, restrictive cardio-

myopathy and other such ailments. The heart sounds S3 and S4 are depicted in figure 3 and figure 4 

respectively. 

 

II. PROCESSING THE CARDIAC SOUNDS 
Various signal processing techniques were applied on the PCG signals, obtained from the University of 

Michigan, Heart Sound and Murmur Library [9], to extract meaningful information from them which, in turn 

could be universally applied to all PCG signals. Curve fitting on the signal was performed using Fourier series 

to obtain the fundamental frequency of the PCG complex at the instance of best fit. Consecutively, power 

spectrum analysis of the signal using Fourier transform was performed, to obtain the dominant frequency 

components of each PCG complex. Each of these methods is briefly explained in the following sub- sections. 

 

2.1 CURVE FITTING 

Curve Fitting [2] [3] is the process of fitting a curve or line that fits best on the given series of data points. 

The main objective of this operation is to find the curve generating equation or the function along with its 

underlying parameters which fit best on the original set of data points. This function or equation can be used to 
find points anywhere along the curve. It can be done either by Interpolation or by Smoothing. Interpolation 

requires an exact fit on the data points, whereas Smoothing requires the creation of a smooth function or 

equation that nearly fits to the data. It is also known as regression analysis. Regression analysis focuses on the 

uncertainty of the curve using random errors. 

The smooth curve fitting methods are Interpolation based on polynomials, Ratio of two polynomials, 

Fourier series expansion, Spline function, etc. For a single valued function, this method is based on the third 

order polynomial piecewise function whereas, for a multiple valued function, this method is based on third order 

pair of polynomials. 

 

Figure 3: A PCG recording, depicting S1, S2 and S3 sounds (in 

sequential order). 

 

 

Figure 4: A PCG recording, depicting the heart sounds S4, S1 and 

S2 (in sequential order). 
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Other than the above mentioned methods, another method is to produce a smooth curve. Here, a smooth 

curve is produced for a given set of unordered data just by knowing the starting and ending points of the data 
set. The polynomial curve fitting method is used for finding the boundary potential distribution function from 

the measured set of data. It is also used in modified Rice Algorithm. In many spectra, overlapping bands are 

present because of which many a times, the evaluation of band parameters, such as area, width and position, is 

not possible. The use of curve fitting helps in overcoming this problem as even with the presence of overlapping 

bands, the band parameters can be evaluated. This application of curve fitting is used in chemo-metrics and 

spectral analysis. The only condition for this method is that some information regarding the curve fitted 

spectrum is required. The parametric curve fitting is used in statistical data analysis pattern recognition, image 

processing and other applications. Sample curve fitting sessions using 8th order Fourier Series expansion are 

given in figures 5 and 6. 

 

2.2 FOURIER SERIES 

Fourier series provides an alternative way of representing a data or a waveform. A normal signal is 

represented as a function of time. It is very cumbersome to work on the generalized time domain form of the 

signal and extract much information from it. Fourier series transforms the signal information content from its 

time domain to its frequency domain. Instead of single amplitude as a function of time, a signal is expressed as 

the summation of its sine and cosine components. Working with frequency domain information is much easier 

and less complex than working with time domain information, which makes this method a powerful 

mathematical tool while dealing with periodic signals. This tool is widely used for the analysis of various 

signals and biological systems alike; some examples of the application domain of this tool include but are not 

limited to neurobiological rhythms, cardiac signals and others[4][5]. It isolates different frequencies present in 

the signal, providing an overview of how the system or signal is being affected by these frequency components 

and also the power spectrum of the signal [6]. The Fourier series can be mathematically generalized by equation 
1 below. 
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where, mm baa ,,0 are Fourier series coefficients and m is the fundamental frequency of the signal under Fourier 

series expansion. The property of the original wave can be recovered by using integration. This is possible due 

to the basic harmonics, which are sine and cosine functions given by Euler’s formula in equation 2. 

)2sin()2cos(2  ie i           (2) 

 

2.3 FOURIER TRANSFORM 

Fourier series finds its use in changing the time domain signals into frequency domain signals albeit; it only 

applies to periodic signals. There have been many questions about the application of Fourier series on biological 

systems due to the uneven nature of these systems. To transform a non-periodic signal from its time domain to 

its frequency domain, the concept of Fourier transform was introduced. Here, the period of the non-periodic 

signal is increased to approach infinity while maintaining its periodicity. This decomposed signal helps in 

understanding the distribution of various frequency components of the signal. The signal is represented in the 

form of its harmonics i.e., the sum of its sinusoidal components [7].  

The following equation shows the mathematical expression for transferring a signal from its time domain to 

frequency domain: 

 

Figure 5: Plot of a curve fitting session with an overall bad fit 

(R-square=0.1011) 

 

 

Figure 6: Plot of a curve fitting session with an overall 

excellent fit (R-square=0.9991) 
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Where, )(F is the signal in frequency domain, )(tf is the time- domain signal to be transformed into frequency 

domain and is the fundamental frequency of the signal. To retrieve the original time- domain signal from its 

transformed frequency domain information, inverse Fourier transform is performed, which is given as: 
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2.4 POWER SPECTRAL DENSITY 

Power Spectral Density (PSD) describes the distribution of the power of a signal with respect to its 

frequencies [8]. The power can be the actual power of the signal or in case of abstract signals; it is generally 

taken as the square of the signal. Squaring the signal is equivalent to the actual power obtained if the signal was 

applied, across a 1  load, as a voltage source. Since, a signal with non- zero average power is not square 

integrable, the Fourier Transform does not exist in this case. A simple alternative was provided by the Weiner- 

Khinchin theorem [4], [5]. The PSD is considered as the Fourier Transform of the auto-correlation function

)(xxr  of the signal, albeit, the signal is treated as a wide sense stationary (WSS) random process. Integrating the 

signal over a range of positive and negative frequencies, yields the power of that signal for that particular 

frequency band The PSD of a signal exists only for a wide sense stationary signal. In case of non- stationary 

signals, the auto-correlation function has to be a function of two variables, which rules out the existence of its 

PSD. Techniques similar to the Weiner- Khinchin theorem may be used to estimate a time varying spectral 

density as shown in figure 7. 

 For continuous- time signals, the Weiner- Kinchin theorem states that if x is a WSS process such that 

the auto correlation function, xxr  is defined in terms of the expectation value E,  )(*).()( txtxErxx  exists and is 

finite at every time interval  , then there exists a monotone function )( fF in the frequency domain  f , 

such that, )()( 2 fdFer fi

xx 



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Figure 7: Figure depicting the plot of a Power Spectral Density (PSD) of a sample WSS signal 

 

 

Figure 8: A normal S1 complex in a PCG signal 

 

 

Figure 9: A normal S1 complex (Top) and its 

corresponding PSD (Bottom) 
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The PSD of a signal provides invaluable information about the frequency domain distribution of the signal 

strength, which can be used for designing Linear Time Invariant (LTI) filters to suppress or extract parts of a 
signal. 

 

III. METHODOLOGY & OBSERVATIONS 
3.1 DATABASE AND ITS DESCRIPTION 

The PCG signal database was obtained from the University of Michigan, Heart sound and Murmur library 

[9]. The database contains records of patients with various heart conditions. The PCG sounds are categorized 

primarily on the basis of the site of data acquisition, e.g. apex area, pulmonary area, aortic area, etc. The records 

show a variety of cardiac conditions such as murmurs and clicks, along with the presence of normal sounds. 

Two types of records were taken from the database viz., the normal S1 and S2 record and holo- systolic 
murmur, recorded at the apex region of the chest. This paper will henceforth, refer to the normal S1-S2 and the 

Holo-systolic murmur record set as Apex-1 and Apex-9, respectively. All the files provided in the database are 

mp3 encoded with a bit rate of 128kbps. 

 

3.2 CALCULATING THE FUNDAMENTAL FREQUENCY OF A PCG COMPLEX 
The records are first manually segregated into S1 and S2 complexes. Each of these complexes is 

decomposed into its constituent sinusoids using 8th order Fourier series based curve fitting. The fit of the 

mathematically generated curve to the original signal gives us an approximate idea about the goodness of the 

curve generating equation in describing the constituents of the original signal. Figures 10 and 11 show the plots 

of the equation generated data after overlapping it on the original data points, to estimate the goodness of fit. 

The better the fit, the better is our mathematical formula for artificially generating the signal. The 2R  value is 

used to determine the goodness of the fit of the equation based curve to the original signal. Nearer the 2R value is 

to unity, better is the fit of the curve. The 2R values for all the complexes in both the records were calculated and 

it was found that the fit with the lowest 2R value was 0.9593, which actually indicates a very good fit. The plot 

 

Figure 12: A plot of the R2 values (Y-axis) for the corresponding complexes (X- axis), obtained from Apex-1 record-set 
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Figure 10: A plot showing the interpolation of the equation 

generated curve on the original data points. 

 

 

Figure 11: A magnified view of the interpolation of the 

generated curve on the original curve, plotted in Fig.10 
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of the 2R values against its corresponding complex number for record Apex-1 (for both S1 and S2 complexes) is 
given in figure 12. It can be seen that the values are mostly above 0.95. Having, established the goodness of fit 

of the 8th order Fourier series to a PCG signal, the fundamental frequency of each complex is calculated. The 

Fourier expansion of a single PCG complex can be generalized by the following equation: 
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Here, 81810 ,, bbaaa  are the Fourier coefficients and is the fundamental frequency of the signal. Since, the first 

objective of our study was established; the consecutive motive was to detect the harmonics in the original signal. 

The harmonics are the frequencies which are integer multiples of the fundamental frequency. For example, a 

sinusoidal signal with fundamental frequency  will have ,4,3,2  as its harmonics. 

 

Table 1: The detected fundamental frequencies for S1 and S2 complexes for both record-sets Apex-1 and Apex-9 

Table-1 summarizes the calculated fundamental frequencies for all S1 and S2 complexes in both record sets 

Apex-1 and Apex-9. These fundamental frequencies correspond to the 52 individual complexes of S1 and S2 in 

each record set (Apex-1 and Apex-9). 

 

Tables 2A & B: list of the detected frequencies in all S1 and S2 complexes in Apex-1 and its equivalent sub- 

harmonic as calculated against the detected fundamental frequency. 

 

3.3 ESTABLISHING THE EXISTENCE OF HARMONICS IN A PCG SIGNAL  

This stage involves the PSD analysis of each complex in both records Apex-1 and Apex-9. The 

fundamental frequency calculated in the previous stage was used for checking the presence of harmonics in the 

PCG complexes by calculating the multiplying factor with respect to the detected fundamental frequency and 

the detected peaks in the PSD estimation stage. It was found that, for both records Apex-1 and Apex-9, there 

was a single fundamental frequency for both S1 and S2 complexes. This had variations only after four to five 

decimal places for the different record-sets and complexes, as is evident in Table-1. 

Table 2A lists the frequency components detected in Apex-1 for both S1 and S2 complexes. Table 2B lists 

the multiplying factor, which was calculated with respect to the fundamental frequency of its corresponding 
complex. Tables 3A and 3B follows the above pattern, albeit, for record Apex-9. This multiplying factor is the 

sub-harmonic of the fundamental frequency. The multiplying factors in tables 2B and 3B are, thus, the sub-

harmonics of the detected fundamental frequency. 

 

 

 

Record Complex Fundamental frequency  

Apex-1 S1 0.001684 

S2 0.001611 

Apex-9 S1 0.001441 

S2 0.002041 

Frequencies 

Detected 

S1 S2  Sub-

Harmonics 

(multiplying 

factor) 

Sub- Harmonic_S1 

( 1S = 0.001684 Hz) 

Sub- Harmonic_S2 

( 2S = 0.001611 Hz) 

1f  0.34375 0.34375 /11 fm   204.1271 213.3768 

2f  0.375 0.375 /22 fm   222.6841 232.7747 

3f  0.4065 0.4065 /33 fm   241.3895 252.3277 

4f  0.4375 0.4375 /44 fm   259.7981 271.5705 

5f  0.46875 0.46875 /55 fm   278.3551 290.9683 

6f  0.5 0.5 /66 fm   296.9121 310.3662 

7f  0.53125 0.53125 /77 fm   315.4691 329.7641 

8f  0.5625 0.5625 /88 fm   334.0261 349.162 
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Table 3A& B: list of the detected frequencies in all S1 and S2 complexes in Apex-9 and its equivalent sub- 

harmonic as calculated against the detected fundamental frequency. 

Frequencies 

Detected 

S1 S2  Sub-

Harmonics 

(multiplyin

g factor) 

Sub-Harmonic_S1 

( 1S =0.001441 Hz) 

Sub-Harmonic_S2 

( 2S =0.002041Hz) 

1f  0.375 0.375 /11 fn   260.2359 183.7335 

2f  0.4375 0.4375 /22 fn   303.6086 214.3557 

3f  0.5 0.5 /33 fn   346.9813 244.978 

4f  0.5625 0.5625 /44 fn   390.3539 275.6002 

 

IV. CONCLUSION 
It was observed from Table 1 that the fundamental frequencies for the complexes S1 and S2 were almost 

same up-to four decimal places in the record-set apex-1, whereas the values of fundamental frequencies for S1 
and S2 complexes in record-set apex-9 were same up-to two decimal places. 

Tables-2a and 2b show the sub-harmonics detected for apex-1 S1 and S2 complexes. A total of 8 

frequencies were detected in the power spectrum for each S1 and S2 complexes. The difference between 

successive S1 sub-harmonics is approximately 18 whereas for successive S2 sub- harmonics are approximately 

19. Similarly, tables- 3a and 3b show the sub- harmonics detected for apex-9 or the record with holo-systolic 

murmur. A total of 4 frequencies were registered on the power spectrum of this record-set. The difference 

between successive S1 sub- harmonics was 43.37 and S2 sub- harmonics was 30.622.  

This wider difference between successive sub- harmonics in apex-9 (holo-systolic murmur) can be 

attributed to the abnormal nature of the signal, due to the presence of murmurs. This difference was observed in 

the S1 and S2 complexes, without taking into account, the actual murmur signals lying between the S1 and S2 

complexes. This system can be used for detecting or predicting heart valve abnormalities cheaply, as this system 

relies only on the powerful S1 or S2 sounds (which are easiest to detect). The non dependence of this system on 
the need for precision equipments for detecting the faint murmur sounds makes this method very cheap. Our 

future work will comprise mainly on the implementation of this method on  actual hardware and testing it on 

patients with valve dysfunctions. 
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