
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

Volume 4, Issue 4, Ver. II (Jul-Aug. 2014), PP 58-61
e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197

www.iosrjournals.org

www.iosrjournals.org 58 | Page

GSM Based Configuration of FPGA

S. Karthik
1
, Prasanna Vishal TR

2
, Jayaram SG

3
, K. Priyadarsini

4

1(Department of Electronics and Communication, SRM University,Vadapalani India)
2(Department of Electronics and Communication, SRM University,Vadapalani India)
3(Department of Electronics and Communication, SRM University,Vadapalani India)

4(Department of Computer Science and Engineering, SRM University,Ramapuram India)

Abstract : A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by

either the customer or a designer after manufacturing – hence “field-programmable”. In-flight reconfigurability

and dynamic partial reconfiguration enhances space applications with re-programmable hardware and at run-

time adaptive functionality attracts the use of FPGAs. FPGAs can provide designers with almost limitless

flexibility, but once FPGA is programmed and interfaced with other pheripherals, it’s difficult to change the

application which is running on FPGA. So, here we use a wireless programming technique to configure the

FPGA based on our requirement. A wireless medium is preferred so as to avoid a physical connection with

FPGA. In our idea we are going to select the application program in RAM and directly configuring it to FPGA

using GSM. Hence we can swap from one application program to another by using a message sent from the

user.

Keywords: Arduino, AVR, FPGA, GSM

I. Introduction
 In this paper, we focus on selecting different applications in a Data Flash and configuring it to the

FPGA. The application is chosen based on the message sent from the user. GSM is preferred as our wireless

medium [1] due to its wide range of coverage compared to ZIGBEE or IR. Hence a user can access the FPGA and

reconfigure it based on his convenience within minutes from any place. Arduino is interfaced with the FPGA so

as to transfer the message.

II. Arduino
 Arduino[3] is a single-board Atmel 8-bit AVR micro-controller intended to make the application of

interactive objects or environments more accessible. The ATmega328 is a single chip micro-controller of the

megaAVR series created by Atmel. The high-performance Atmel 8-bit AVR RISC-based microcontroller

combines 32KB ISP flash memory with read-while-write capabilities, 1KB EEPROM, 2KB SRAM, 23 general

purpose I/O lines, 32 general purpose working registers, three flexible timer/counters with compare modes,

internal and external interrupts, serial programmable USART, a byte-oriented 2-wire serial interface, SPI serial

port, 6-channel 10-bit A/D converter (8-channels in TQFP and QFN/MLF packages), programmable watchdog

timer with internal oscillator, and five software selectable power saving modes. The device operates in the voltage

range of 1.8V – 5.5V.

III. Interfacing with Spartan 3e fpga
 The Spartan-3E family [14] of Field-Programmable Gate Arrays (FPGAs) is specifically designed to

meet the needs of high volume, cost-sensitive consumer electronic applications. Spartan-3E FPGAs are

programmed by loading configuration data into robust, reprogrammable, static CMOS configuration latches

(CCLs) that collectively control all functional elements and routing resources. The FPGA’s configuration data is

stored externally in a PROM [2] [4] or some other non-volatile medium, either on or off the board. After
applying power, the configured data is written to the FPGA using any of seven different modes.

 Now, the Arduino is connected which receives the message from GSM and transmits it to the

FPGA.With respect to this application it is not necessary to connect the Arduino directly to the FPGA. For this

purpose, we need to note the different memory locations of each program given in Table I and interface it with

the Arduino.

 There is a data flash memory connected with the FPGA which is used to load the program in the FPGA

when booted or on reset. Initially, all the program data which the designer wants to load to the FPGA is placed

in this memory. We can access 2n memory locations using n lines. The application program can be configured in

GSM Based Configuration of FPGA

www.iosrjournals.org 59 | Page

to the FPGA via data flash or directly using the Xilinx FPGA programmer. The above steps are done by

establishing connection to the computer using USB.

Fig-I: Steps involved in implementation

Table -I: Memory Interface

PIN 1 PIN 2 PIN 3 PIN 4 Mode select

On On On On Selects Application Program 1

Off On On On Selects Application Program 2

On Off On On Selects Application Program 3

Off Off On On Selects Application Program 4

On On Off On Selects Application Program 5

Off On Off On Selects Application Program 6

On Off Off On Selects Application Program 7

Off Off Off On Selects Application Program 8

IV. Role Of Gsm
 GSM (Global System for Mobile) / GPRS (General Packet Radio Service) TTL –Modem is SIM900

Quad-band GSM / GPRS device [5] which works on frequencies 850 MHZ, 900 MHZ, 1800 MHZ and 1900

MHZ. It is very compact in size and easy to use as plug in GSM Modem.
 To interface GSM module with Arduino [6] three connections have to be made between them along

with separate power supply.

The three connections are:

 1. Connect TX pin of SIM900 GSM/GPRS module to TX pin of Arduino.

 2. Connect RX pin of SIM900 GSM/GPRS module to RX pin of Arduino.

 3. Connect GND pin of SIM900 GSM/GPRS module to GND pin of Arduino, so that they work in the same

logic level.

V. Configuration
 Spartan-3E FPGAs are programmed by loading configuration data into robust, reprogrammable,

static CMOS configuration latches (CCLs) that collectively control all functional elements and routing

GSM Based Configuration of FPGA

www.iosrjournals.org 60 | Page

resources. The FPGA’s configuration data is stored externally in a PROM or some other non-volatile medium,

either on or off the board.

 The user types the command needed to select the specific application program and sends it using the

mobile. When the command is received, the GSM module sends the command serially to Arduino. Arduino

processes the command sent and selects the necessary application program as described in Fig. II and Fig. III.

Fig-II: Overall process

Fig-III: Working model

VI. Applications
Applications of FPGAs include digital signal processing, ASIC prototyping, medical imaging,

computer vision, speech recognition, cryptography, bioinformatics, computer hardware emulation, radio

astronomy, metal detection and a growing range of other areas. Few of those are as follows:

Software-Defined Radio (SDR): The ability to adapt to varying waveforms is a paramount goal in

military SDR.

Field testing: By designing with reconfigurable components, applications can be reconfigured in the

field without needing to go back to the lab for re-engineering.

Airborne applications: Susceptibility to radiation-induced single event upsets (SEUs) makes it

important to monitor and reconfigure devices with bit failures.

GSM Based Configuration of FPGA

www.iosrjournals.org 61 | Page

Remote sensors: The ability to reconfigure devices that are difficult to reach physically makes it important to be

able to update “over the air.”

VII. Conclusion
 Current FPGA capabilities in the area of run-time reconfiguration are maturing to meet the needs of

military and wireless communications customers. As the capabilities of programmable logic devices grow, there

will be an increased demand for flexible reuse of FPGA resources. Advances in this area will continue to be

made in device configuration and reconfiguration speed, built-in error detection and recovery and ease of design

of the reconfiguration modes. Designers are more likely to continue developing sophisticated designs that

require robust implementations of partial reconfiguration. For this reason, work will continue both in developing

the capabilities and ease-of-use of partial reconfiguration, as well as software partial reconfiguration .As is the

case with many FPGA capabilities, having the technology available today is not sufficient to compel.

References
[1]. Guifen Gu and Guili Peng, The survey of GSM wireless communication system 2010 International conference on computer and

information application (ICCIA)

[2]. Malik U and Diessel O, On the placement and granularity of FPGA configurations 2004 IEEE International conference on Field-

Programmable technology

[3]. Steven F.Barrett, Arduino Microcontroller Processing for Everyone (Morgan and Claypool publications 2010)

[4]. Lawal N, Thomberg B and O’Nils M, Architecture driven memory allocation for FPGA based real-time video processing systems

[5]. 2011 VII Southern Conference on Programmable logic (SPL)

[6]. Dehng G.K, Kuo C.F and Wang S.T, A single-chip RF transceiver for quad-band GSM/GPRS applications 2004 IEEE Radio

frequency integrated circuits (RFIC) Symposium

[7]. Vandana Pandya and Deepali Shukla, GSM Modem based data acquisition system International journal of Computational

Engineering research, 2(5), 2012, 1662-1667

[8]. B. Fiethe, H. Michalik, C. Dierker, B. Osterloh, G. Zhou, Reconfigurable System-on-Chip Data Processing Units for Miniaturized

Space Imaging Instruments, Proceedings of the conference on Design, automation and test in Europe (DATE), pp. 977-982, ACM,

2007, ISBN 978-3-9810801-2-4

[9]. M. Cassel, D. Walter, H. Schmidt, F. Gliem, H. Michalik, M. Stähle, K. Vögele , P. Roos, NAND-Flash Memory Technology in

Mass Memory Systems for Space Applications, Proceedings of the conference on Data Systems In Aerospace (DASIA), May 2008

[10]. M. Ullmann, M. Huebner, B. Grimm, J. Becker: “An FPGA Run-Time System for Dynamical On-Demand Reconfiguration”,

RAW04, Santa Fee.

[11]. M. Hübner, J. Becker: “Exploiting Dynamic and Partial Reconfiguration for FPGAs - Toolflow, Architecture and System

Integration”

[12]. Cristiana Bolchini, Davide Quarta, Marco D. Santambrogio: “SEU Mitigation for SRAM-Based FPGAs through Dynamic Partial

Reconfiguration”

[13]. Davin Lim and Mike Peattie: Two types for partial reconguration: Module based or small bit manipulations, xapp290 (v1.0). May

2002.

[14]. Davin Lim and Mike Peattie: Difference-based partial reconguration, xapp290 (v2.0). Dec 2007.

www.xilinx.com/support/documentation/data_sheets/ds312.pdf

