Performance analysis of different 8-bit full adders

A.Sai Ramya¹, Mounica ACN², BSSV Ramesh babu³

^{1,3}(ECE Department, Raghu Institute of Technology, Visakhapatnam, INDIA) ^{2,}(ECE Department, AUCE, Andhra University, Visakhapatnam, INDIA)

Abstract: Full adder plays a major role in various fields like Very Large Scale Integrated Circuits(VLSI),Digital Signal Processing(DSP),Microprocessors(MP) for Arithmetic Operations as additions are the basic functions. There are many topologies with unique characteristics. Power dissipation, Delay and Area are the key parameters suggested for characterization of logics. In this paper, a thorough analysis of these parameters described topologies is analyzed. A comparative study reveals and suggests different logics pertaining to different profile considerations.

Keywords: full adders, power dissipation, chip area, time delay.

I. Introduction

Adder circuits are widely used in many digital systems as addition is the primary function on which these systems depend. Even in the VLSI applications arithmetic operations such as Addition, Subtraction, Multiplication and Multiply and Accumulate are mostly used. Hence, the performance of a digital system is dependent on the adder circuits used. Basically number of arithmetic operations are used in different VLSI applications ,Digital signal processing and microprocessor applications. Adder is the Basic circuit for all these operations . here we have taken 1-bit full adder cell as the basic building block for all these operations. In this section, we discuss about basic adder circuits. The paper provides an overview for the comparison of adder circuits in the early design phase for selecting their design structure for implementing adders with the constraints of area, delay, and power dissipation from[1]. High speed and low power full adder cells designed with pass transistors to reduce power delay product(PDP). We are having circuits like Ripple Carry Adder(RCA) or Carry Propagate Adder, Carry Look-Ahead Adder(CLA), Carry Skip Adder(CSkA), Carry Select Adder(CSIA), Carry Save Adder(CAS), Carry Increment Adder(CIA). The adder topology is present in literature [3-7], Ripple Carry Adder (RCA) is the simplest, but slowest adders with O(n) area and O(n) delay, where n is the operand size in bits. Carry Look- Ahead (CLA) have O(nlog(n)) area and O(log(n)) delay, but typically suffer from irregular layout. On the other hand, Carry Skip Adder, carry increment and carry select $I + \frac{2}{n+1}$

have O(n) area and O($n^{l+\frac{4}{l}+1}$) delay provides a good compromise in terms of area and delay, along with a simple and regular layout. Carry save adder have O(n) area and O(log n) delay from [2].

In this paper, the performance of different adder circuits are analyzed in terms of their area, delay and power dissipation. Power dissipation is due to the node capacitance and switching action.

II. Review On Existing Adder Technology

8-bitRipple carry adder: Numbers of full adders are used to design a ripple carry adder. To design a 8 bit RCA we need 8 full adders. These full adders must be in a cascaded form. In this circuit the out carry is given as input to the next stages hence the name 'ripple' carry adder. Due to propagation delay half adder cannot be used still the carry of that particular stage occurs. The delay between input and output is called as the propagation delay.

Fig.1: (a) Ripple Carry Adder Circuit, (b) RTL circuit

8-bit carry skip adder: Carry skip adder is designed using ripple carry adder with speed up carry chain. Number of blocks are used for addition. Depending on length of bits these blocks are divided. Here each cell is compared and carry is propagated .Carry is selected by MUX.

Fig.2: (a) Carry Skip Adder, (b) RTL circuit

8 bit carry look ahead adder: The propagation of carry is dependent on the propagation delay which means that propagation can be done after the carry occurs at that particular stage. This is a main drawback in RCA. This can be solved using carry look ahead adder by predicting the carry in advance. Hence, the propagation delay can be reduced.

8-bit Carry Increment Adder: This adder circuit is advantageous when an increased speed is required. It can achieve increased speed by using clock phase. It also has smaller chip area compared with other adder topologies. Increased speed and chip area are dependent on bits used for addition. If the bit width is increased speed will be increased and chip area will be reduced.

Fig.4: (a) Carry Increment Adder, (b) RTL circuit

Carry Save Adder: It is a digital adder. It is used when several operands to be added. But here we get partial additions which will be carried out further. With this adder circuit delays can be reduced.

Carry Select Adder: Here addition can be done in multiple stages. It uses two RCAs and a multiplexer. The computation starts only when the carry-in is delivered. Hence, the speed gets improved as soon as the carry-in gets there.

III. Simulation Results And Discussions

The circuits given for Ripple Carry adder, Carry skip adder, Carry Look ahead Adder, Carry Increment Adder, Carry Save Adder, Carry Select Adder, Carry Bypass Adder are simulated and synthesized and the corresponding results are presented in this section. For Simulation Xilinx 1.2 are used on windows OS with INTEL dual core processor. Generated plots pertaining to Delay profile, Area utilized and power dissipated for each circuit in SECTION II are mentioned in the following sub-sections.

a) RCA: Fig.7(a) corresponds to generated plots for RCA. It can be read from power profile that is 79.8mW of power is dissipated, area utilized is 9 and time delay is 13.226ns to accomplish 8-bit full adder operation.

				1,054.662 ns	
Name	Value	10 ms	1500 nei	1,400 mi	1,500 re
▶ 🎼 sj8.0j	109	(166 (113 (120)(132)(370	395 (348 (385 (429) 235	5 (19) (203) 170 (191) (177	242 262 203 258 380
Carry	0				
► ■ a[7:0]	99	36 (99 (101) 13 (23)	198 (229) 143 (232) 185	32 (150 (83) 2	207 (202 (138) 120 (182)
▶ 📢 b[7:5]	10	129 (13) 18 (118) 14	197 (119) 242 (197) 45	170 19 107 174	35 60 65 137 198
The cin	0	in an			
(31:0)	10				15 (16) 17 (18) 19
		X1: 1.054.662 nt			
		12. 1102-11022-10			

Fig. 7.Simulation result of RCA

b) CSkA: Generated plots for CSkA are as shown in Fig.8. The time delay for CSkA is 13.238ns , power dissipation is 79.8mW and area utilized is12.

								1,167.203 ns		
Name	Value	10 ns		500 ns			1,000 ns		1,500 ns	
▶ 🛃 s[7:0]	203	(166)(113)	120 132 122	139 92	129 173	235	109 20	(170 (191)(177	242 6 203 2	124
1 cout	0					1				
🕨 📷 a[7:0]	32	36 99	101 13 237	198 229	143 232	(189	99 32	(150) 83 2	207 202 138 120	182
🕨 🍯 b[7:0]	170	129 13	18 118 140	197 119	242 197	45	10 17	19 107 174	35 60 65 137	198
18 cin	1									1
▶ 剩 i[31:0]	11	0 X 1 X	2 X 3 X 4	5 6	$\sqrt{7}\sqrt{3}$	X 9	10 11	X 12 X 13 X 14	15 16 17 18	X 19
		X1: 1,167.20	3 ns							

Fig. 8.Simulation result of CSkA

c) CLA: Delay profile, area profile and power dissipated which are generated are 11.532ns, 10 and 80.6mW respectively. The corresponding simulation plot has been shown in Fig.9.

							1,160.772 n	S				
Name	Value	10 ns	500 m	s .		1,000 ns			1,500 na			
▶ 👯 s[8:0]	203	(166)(113)(120)(133	378 395	(348)(385)	(429)(235	5 109 20	3)(170)(19	1)(177)	242 2	62 203	258	380
le cout	0											
🕨 🚮 a[7:0]	32	36 99 101 13	237 198	229 143	232 189	99 3	150 8	3 2	207 2	02 138	120	182
▶ 🚮 b[7:0]	170	129 13 18 118	140 197	119 242	(197) (45	10 17	19 (10	7 174	35	60 65	137	198
1a cin	1											L
[31:0]	11	0 (1) (2) (3)	$\chi_{4}\chi_{5}$	(6)(7)	9	<u>10 X 1</u>	$\chi_{12}\chi_{1}$	3 14	15 (16 17	X 18	19
)												
		X1: 1,160.772 ns										

Fig. 9.Simulation result of CLA

d) CIA: Fig.10 (a) corresponds to generated plots for CLA. It can be read from power profile that is 80.6mW of power is dissipated, area utilized is 11 and time delay is 11.035ns to accomplish 8-bit full adder operation.

								1,163.9	87 ns					
Name	Value	10 ns		500 ns			1,000 ns			1,50	0 ns			
🕨 駴 sum(8:0)	203	(166)(113)(120)	(132)(378)	395 348 3	85 429	235	109 20	3)(170	(191)(1	77 242	262	203	258	380
Le carry	0	7				1						1		
🕨 📷 a[7:0]	32	36 99 101	13 (237)	(198)(229)(1	43 (232)	189	99 3	(150	83	2 207	202	(138)	120	182
▶ 📑 b[7:0]	170	129 13 18	(118)(140)	(197)(119)(2	42 197	45	10 17	19	107 1	74 35	(60	65	137	198
🔓 cin	1													1
🕞 📑 i[31:0]	11	0 (1) (2)	3(4)	<u>5)6)</u>	7 8	9	10 X 1	12		4 15	X 16	17	18	19
		X1: 1,163.987 ns												

Fig. 10.Simulation result of CIA

e) CSA: Generated plots for CSA are as shown in Fig.11. The time delay for CSA is 14.999ns, power dissipation is 78.91mW and area utilized is13.

				1,047.619 ns				
Name	Value	0 ns	500 ns	1,000 ns	1,500 ns			
▶ 🍕 s[7:0]	109	1(1)(1)(122	1	1(2)(1)(177	(2) 6 (2) 2 (124)			
1 cout	0							
▶ 🚮 a[7:0]	99	36 99 1 13 237	1	9)(32)(1)(83)(2)	2/2/1/182			
▶ 📷 b[7:0]	10	1/13/18/1/140	1	10 (1)(19 (1)(174	(35)(60)(65)(1)(198)			
16 cin	0							
i[31:0]	10	0(1)(2)(3)(4)	<u>(5)(6)(7)(8)(9)</u>		15 16 17 18 19			
		X1: 1,047.619 ns						
Fig. 11.Simulation result of CSA								

f) CSIA: Delay profile, area profile and power dissipated which are generated are 13.226ns, 12 and 878.9mW respectively. The corresponding simulation plot has been shown in Fig.12.

de la contra								1,167.203 n	s				
Name	Value	10 ns		500 ns			1,000 ns			1,500 m	IS		
▶ 📢 s[8:0]	203	(166)(113)(12	0 132 378	395 348	385 429	235	109 20	(170)(19	1)(177	242	262 203	258	(380
Un cout	0									Г			
▶ 🚮 a[7:0]	32	36 99 10	1 13 237	198 (229	143 232	189	99 32	150 8	3 2	207	202 138	(120)	182
▶ 📑 b[7:0]	170	129 13 18	3 118 140	197 (119	242 197	45	10 17	19 10	7 174	35 (60 (65	(137)	198
1a cin	1												1
▶ 📑 i[31:0]	11			<u>5 (6</u>	$\sqrt{7}\sqrt{8}$	X)	10 11	X 12 X 1	3 (14	<u>15 (</u>	16 17	X 18	19
		X1: 1,167.203 r	ns										

Fig. 12.Simulation result of CSIA

g) Comparison: A comparison study based on power profile, delay and area is tabulated in Table.1.It shows that CSA provides low power, Whereas RCA provides low area utilization and CIA provides low time delay

Table.1. Comparison of unterent full adders									
Adders	Time delay(ns)	Area utilized	Power dissipation(mW)						
RCA	13.226	9	79.8						
CLA	11.532	10	80.6						
CSA	14.999	13	78.91						
CIA	11.035	11	80.6						
CSEA	13.226	14	79.8						
CSKA	13.238	12	79.8						

Table 1: C	Comparison	of different	full	adders
1 4010.1. 0	Joinparison	or uniterent	run	auaus

IV. Conclusion

The available and most widely used full adder topologies are simulated and synthesized with Xilinx and thorough analysis basing on reports generated like delay profile, area and power dissipation. The study reveals that the RCA is utilized minimum chip area .And it can be concluded that for minimum delay CIA is suggested and for low power dissipation CSA is recommended.

References

- Shams, A.M., Darwish, T.W. and Bayomui, M.A. "Performance analysis of low power 1-bit CMOS full adder cells.", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.10, Issue No.1, Feb 2002.
- [2] Oh-Hyeong Kwon, "A Boolean Extraction Technique For Multiple-Level Logic Optimization" IEEE 2003.
- [3] Shrirang K. Karandikar and Sachin S. Sapatnekar," Fast Comparisons of Circuit Implementations", IEEE Transaction on Very Large Scale Integration (VLSI) Systems, Vol. 13, No. 12, December 2005.
- [4] Mariano Aguirre-Hernandez and Monico Linares-Aranda, "CMOS Full-Adders for Energy-Efficient Arithmetic Applications", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.19, No. 4, April 2011.
- [5] Sreehari Veeramachaneni, M.B. Srinivas, "New Improved 1-Bit Full Adder Cells", IEEE, 2008.
- [6] R.uma, Vidya Vijayan, M. Mohanapriya, Sharon Paul," Area, Delay and Power Comparison of Adder Topologies", International Journal of VLSI and Communication Systems, 2012.
- [7] Alioto, M, Palumbo, G "Analysis and comparison on full adder block in submicron technology", IEEE December 2002.