
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)
Volume 5, Issue 6, Ver. II (Nov -Dec. 2015), PP 36-43

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197
www.iosrjournals.org

DOI: 10.9790/4200-05623643 www.iosrjournals.org 36 | Page

Design of Real - Time Operating System Using Keil µVision Ide

Vijesh Mokati,Mtech(VLSI)
BMCT,Indore

Abstract: Real time operating system (RTOS) is widely used in real time embedded system for computing

resources management. It is commonly implemented as fundamental layer in software framework. Real-time

operating systems must provide three specific functions with respect to tasks: scheduling, dispatching, and

intercommunication and synchronization. In designing of RTOS, Here with Keil Ide, successfully implemented

these basic needs. Its major point focuses on explaining the context switching by tricky usage of stack and

synchronization mechanism.

Keyword: DCX, Mailbox, Nesting, Queue, Semaphore.

I. Introduction

In some cases ,well structured linear programming is sufficient for programmers to appreciate not

having to worry about structuring their code to perform all necessary tasks in a timely manner. This is where

RTOS, can help.Here,I am presenting a Real Time Operating System for 8051 microcontroller series, EMX.
EMX is a tiny real time operating system based on priority, developed on the keil_v5.5 µvision .It is priority

based ,having nested interrupts ,timer support and intercommunication with synchronization. Silent feature of

EMX are :

1.A task is a never return function which loops forever.

2.Memory allocation at compile time.

3.Event management is neglected because of low RAM space availability of 8051.

4.Fast timing services

5.Compact and speedy Synchronization

II. Keil C51 Compiler’s Setup
Because the limit size of 8051’s RAM, Keil C extent the ANSI C to generate better codes which

require less RAM and run faster. One extension is to let the compiler not to push all local register into memory

stacks when a function is calling the other functions. This means that Keil C51 compiler allocates the local

variables into fixed- addressing RAM. In another word, Keil C51 compiler let the local variables become global

variable. This is a special case needed more attention. In the other side, it is easy to show that the RAM may

have higher probability to run out if the program keeps on running different functions. Keil C51 compiler cures

this by the way of Data Overlaying Optimizing. In Keil C51 compiler, for interrupt service routine, the

contents of the R0 to R7, SFR ACC, B, DPH, DPL, and PSW, when required, are saved on the stack at function

invocation time. This means when unnecessary, they will not be saved. So there is no way for EMX know how

many and which registers are pushed into the stack. In order to make them all push the same registers when

interrupts happen, and deal with the over-clever Keil C51 compiler’s such unpredictable behaviors, it is

necessary to add several lines of useless code in order to make the code more complex and force the Keil C51

Compiler push all registers for all ISRs. Such useless codes are put at the beginning of the,

void Int_Run(void) as shown In the table 1.1.Assembly coding done in C51,won’t debug

void Int_Run(void)

{

//The following code is used for prevent the Keil C51's stupid optimization

INT8U* pt=0x06;

*pt = 0xff;

DPL =0x00;

DPH =0x00;

B =0x00;

PSW =0x00;

ACC =0x00

Design of Real - Time Operating System Using Keil µVision Ide

DOI: 10.9790/4200-05623643 www.iosrjournals.org 37 | Page

// The useful code start from here

}

in Evaluation software ,so care must be taken,SoPerformance Analysis of some different routine cannot be

evaluated in demo version. Running with code size more than 2k is also not feasible with this evaluation

software.

III. How To Use Emx
Like establish RTOS ,here also used of API, make the writing program code easy and for that different

API have been discussed. Configuration can be user defined as well as functional ,where one can make decision

according to choice.

A. EMX API

There are 16 API functions for EMX ,Which are tabulated below:

01 INT8U E_Version();

02 INT8U E_RunningTaskID();

03 void Int_Run (void);

04 void Int_Out(void);

05 void OSStart(void);

06 void OSInit(void);

07 void Del_Task(INT8U nTicks);

08 void MsgQ_Create(INT8U TaskID,INT8U* pMsgQ,INT8U Size);

09 void MsgQ_Post(UINT8* pMsgQ,INT8U Msg);

10 void MsgQ_Pend(INT8U* pMsgQ,INT8U* pRetV);

11 void Mailbox_Create(INT8U TaskID, Mailbox_t* pMailbox);

12 void Mailbox_Send(Mailbox_t* pMailbox,INT16U Msg);

13 void Mailbox_Receive(Mailbox_t* pMailbox,INT16U* pRetV);

14 void BinSem_Create(BinSem_t* pBinSem);

15 void BinSem_V(BinSem_t* pBinSem);

16 void BinSem_P(BinSem_t* pBinSem);

B. EMX Configuration:

// Functional Configuration 1 = Enable 0 = Disable

#define E_CONFIG_EN_MAILBOX 1 Support for mailbox ?

#define E_CONFIG_EN_MSGQ 1 Support for message queue ?

#define E_CONFIG_EN_BIN_SEMAPHORE 1 Support for binary semaphore ?

#define E_CONFIG_EN_SYSTEM_TIMER 1 Support for system timing service?

#define E_CONFIG_EN_INT_NESTING 1 Support for interrupt nesting?

//Timer Setup

#define E_CONFIG_TICKS_CNT 32 How many times of interrupt convert to one system ticks?

 //Task Information Setup

#define E_MAX_TASKS 4 Number of Tasks

#define E_STAK_TASK_SIZE 20 Stack size of Tasks (Unit: Byte)

C. User Configuration

These are the configuration to maintain at the run time of application. The application programmer

could keep it intact or change it according to need of the program.

INT8U idata Stack0 [E_TASK_STACK_SIZE];

INT8U idata Stack1 [E_TASK_STACK_SIZE];

INT8U idata Stack2 [E_TASK_STACK_SIZE];

INT8U idata StackIdle[E_TASK_STACK_SIZE];

//Static Create Tasks ;As the need of program one can reduce the number of task

void Task0(void);

void Task1(void);

Design of Real - Time Operating System Using Keil µVision Ide

DOI: 10.9790/4200-05623643 www.iosrjournals.org 38 | Page

void Task2(void);

INT8U idata Cod_task [E_MAX_TASKS]={Task0,Task1,Task2,E_IdleTask};

INT8U idata Stak_task [E_MAX_TASKS]={Stack0,Stack1,Stack2,StackIdle};

// Maximum number of task can also be according to user choice, but maximum 4 no.

//Static Creation

D_Mlbox Mailbox1;

D_BSem BinSem1;

INT8U MsgQ1[E_MSGQ_OFFSET+4];

IV. Designing With Keil
EMX contains priority based task scheduling, nesting interrupt supporting, timer functions as well as

synchronizing mechanisms including critical section, binary semaphore, and mailbox and message queue. Please

notice all the designs are served for the purpose of real application. Context switching is fast and routine has

been in C programming . Event related routines and EDF scheduling cannot be implemented since EMX is

primarily designed for 8051 and 89S52 which having small RAM size .

A. Task & Static Memory Allocation

As in other RTOS, a task in EMX is simply a never return function which loops forever. Besides,

every task has its own stack which is defined by the application programmer. Memory allocations of EMX are

done in compile time. The task stack is defined explicitly as an array. As there is only very little RAM space for

data, cannot possible to allocate too much for tasks stack. But there is a lower bound of the stack size because

interrupt may happen during the executing time of the task and nested interrupt may even happened. ISRs may

be called many times and they will push registers into the stack of the task that is running. For 8051, there are at

most two levels of nesting interrupts may happen. Each ISR will push 13 Bytes registers and 2 Bytes of Return

address into the stack. A third level of nesting is also possible but here we use only two level has been

employed, So in case of nesting interrupt, at least allocate (13+2)*2 = 30 Bytes for the stacks of tasks. It is the

application programmers’ job to put the address of the entry code for each tasks into the Cod_task array. Also,

as in many RTOS, EMX does not support tasks killing and assumes that each task will loop forever.

B Context Switching & Stacks

When context switching happens, it is necessary to push all register into the task stack. Also the stack

pointer will be saved in EMX which will retrieve back to resume the right information. The code uses src

directive of Keil µvision and produces C code for assembly routines. Here two API’s namely, Save_Context()

and Load_Context() used in conjunction . In Save_Context () ,running task PSW,ACC,B,DPL,

DPH,SP and registers are pushes on the stack, while in Load_Context all of these registers

Pop back to continue the task completion. Another important thing is that all the above procedures

must be guarded by macros E_ENTER_CRITICAL() & E_EXIT_CRITICAL() of the since any interrupt

interference will cost disaster error here. These macros can be defined as

#define E_ENTER_CRITICAL() Disable_Interrupt(), Critical_Sum++

#define E_EXIT_CRITICAL() if (Critical_Sum==0) Enable_Interrupt()

 we need the variable Critical_Sum to record the levels of Critical Section the CPU enter

This is used to solve the potential problem of stack overflow. Important point is here both of these macros must

be used in tandem.

 C. Priority Based Scheduling & Distributed TCB
In fact, the scheduler of tasks is very simple. It just need to check bit by bit whether a task is in ready

state from higher priority to lower priority ones. The real codes are not shown here, but in example program

mention how to use the scheduler. In the implementation of EMX there is no explicit Task Control Block in the

data structure of RTOS. In EMX , we store them like this:

1. Task PC Value In the stack (PUSH inexplicitly by hardware when MCU is executing CALL instruction or

hardware interrupt happens)

2. Task Stack Pointer Value In the array Stak_Task[]

3. Task Registers Value In the stack (PUSH explicitly by assembly language)
4. Task State In the word E_TaskCond .

Design of Real - Time Operating System Using Keil µVision Ide

DOI: 10.9790/4200-05623643 www.iosrjournals.org 39 | Page

C. Interrupt & Context Switching

The interrupt invoking attribute uses keil C51interrupt calling procedure embracing ISR with RTOS Define API.

The codes of interrupt invoking are tabulated below:

#pragma disable

void userISR(void) interrupt N {

 Int_Run() ;

 //user ISR code here

 Int_Out (); }

void Int_Run (void); {

E_IntNesting++;

Save_Context_Int()

Enable_Interrupt(); }

void Int_Out(void {

E_ENTER_CRITICAL();

E_IntNesting--;

if(E_IntNesting==0) {

E_Scheduler();

Load_Context_Int(); // Gone and never return

}else

{

 Critical_Sum--; // = OS_EXIT_CRITICAL() + Disable_Interrupt()

}

}

Here Save_Context_Int () do not need to push the register on to the stack and Load_Context_Int () need to run

the instruction RETI .

D. Interrupt Nesting

 Nested interrupts is supported by recording the nesting count in E_IntNesting. Then when the ISR call
Int_Out () before return, the RTOS will make use of E_Int Nesting to determine whether performing scheduling

algorithm, load new context and switch to the new task or just simply come back to the low priority level ISR.

A tricky technique is used to reduce the Critical count Critical_Sum while still keep on disabling interrupt

before POP back all registers. The Keil C51 compiler then will generate the code to pop back all register and

after that a “SETB EA” to enable the interrupt again. If the code enable interrupt by calling

OS_EXIT_CRITICAL() , the interrupt is enable when the CPU is popping back the registers.

E. Timing Service

 EMX provides the timing service by the API “void Del_Task(INT8U nTicks)” which will delay the

called task but nTicks numbers of Ticks. The unit of nTicks, Tick, include. E_CONFIG_TICKS_CNT numbers

of happening of E_Timer0_ISR(). This mechanism is to prevent too frequent calling the E_TimeWake ()

functions which may waste lots of time, i.e., to slow down the timer in case you do not need it to run so quickly.

void Del_Task(INT8U nTicks)

{

if(nTicks==0) // prevent dead lock happen

return;

OS_ENTER_CRITICAL();

RestTick[PresentTask] = nTicks;

TaskCond = TaskCond & (~(0x01<<PresentTask));

Save_Context();

E_Scheduler();

Load_Context(); //Never return

}

E_TimeWake(void) is used to awake the sleeping blocked tasks if the time for them to wake up arrives. It

reduces the count in the RestTick [] array and check whether it is equal to zero. If yes, it will change the state of

Design of Real - Time Operating System Using Keil µVision Ide

DOI: 10.9790/4200-05623643 www.iosrjournals.org 40 | Page

the that task into ready state.API function “void Del_Task(INT8U nTicks)” is used to set the remaining time in

the RestTick[] array and change the running task into ready state.

F. Binary Semaphore

Binary semaphore is the most simple synchronization mechanism in EMX. At the same time, it is also

the most efficient one in EMX. It will cost only 1 Byte RAM.

The usage example:

D_BSem BinSem1;

BinSem_Create(&BinSem1);

BinSem_V(&BinSem1);

BinSem_P(&BinSem1);

One bit of the semaphore is used for indicating whether the corresponding task is waiting or not. If yes, the

corresponding bit will be set to 1. Since the Idle Task will not try to get the semaphore, so the most significant

bit which is corresponding to the idle task is used to indicate the value of the semaphore.

The Keil C51 µvision program for Binary Semaphore creation is shown below and

Typedef D_BSem pBinSem

#if OS_CONFIG_EN_BIN_SEMAPHORE > 0u

D_BSem BinSem_Create(INT8U* pBinSem) { *pBinSem = 0x80;}

#endif

Performance Analysis figure also shown in the respective figure 1. The such analysis for all the API related to

Binary Semaphore can be done and find the response of them.

Figure.1 Performance Analysis of BinSemCreate.

G. Mailbox
A mailbox needs 4 Bytes to store the information which contains 2 Bytes for message content, 1 Byte

for the pointer of return address, and 1 Byte for saving the task ID of the task that is waiting.

The usage of Mailbox can be accomplished as shown below:

D_Mlbox Mailbox1;

Design of Real - Time Operating System Using Keil µVision Ide

DOI: 10.9790/4200-05623643 www.iosrjournals.org 41 | Page

Mailbox_Create(0,&Mailbox1);

Mailbox_Send (&Mailbox1,0x1234);

Mailbox_Receive(&Mailbox1,&rcvMsg);

Here ,presented the Performance analysis of Mailbox_Receive () with µvision and the respective figure is shown

in figure 2.Similar Performance analysis of different API related to Mailbox operation can also be possible. The

special care must be taken for assembly routine written in C51 compiler.

Figure .2 Performance analysis for API Mailbox_Receive()

H. Message Queue

The message queue is kind of RAM consuming mechanism. At least 6 Bytes are needed to implement a

message queue. The message size for message queue is 1 Bytes which is a half of the message size in mailbox.
The API related to Message Queue are tabulated below with performance analysis of one of them and the

figure.3 give the detail of API void MsgQ_Pend().

Figure .3: Performance Analysis of API MsgQ_Pend().

H. Idle Tasks

This is the simplest part of EMX. The code for Idle Task is tabulated here for reference .

Design of Real - Time Operating System Using Keil µVision Ide

DOI: 10.9790/4200-05623643 www.iosrjournals.org 42 | Page

void E_IdleTask(void) { while(1){ PCON ! =0x01; /* Save Power and Statistic*/; }

V. Example

Here ,an example presented which provide an insight to use of EMX RTOS. In this example ,created

the Semaphore,Mailbox,and Message Queue ,initialize one of the timer of 8051 and created a task .In this task

,use of reception of a message and then forward it to Port 0. The full Program is given below for the reference

and its debug analysis is also presented .The Code coverage facility provided by µvision Provides statistical data

about the execution of the application. Execution analysis reports can be viewed and printed for certification

requirements.

 #pragma disable

 void myISR1(void) interrupt 0

{ void Int_Run (void);

 Mailbox_Send(&Mailbox1,0x2234);

 void Int_Out(void);}

void Task0(void)

{ IN16U rcvMsg;

 while(1){

 Mailbox_Receive(&Mailbox1,&rcvMsg);

 P1=rcvMsg/256;

 P0=rcvMsg%256;

 Del_Task (1);}}

void main(void)

{ OSInit();

Mailbox_Create(0,&Mailbox1);

BinSem_Create(&BinSem1);

MsgQ_Create(2,MsgQ1,4);

PX0=0; IT0=1; PX1=1; IT1=1; //Extern Interrupt

TMOD = (TMOD & 0XF0) | 0X01; //System Timer Setup

TH0 = 0x0; TL0 = 0x0; //Time interval = 0xFFFF

TR0 = 1;

ET0 = 1;

PT0 = 1;

OSStart();

}

Figure. 4: Code coverage of Example

VI. Conclusion

Design of Real - Time Operating System Using Keil µVision Ide

DOI: 10.9790/4200-05623643 www.iosrjournals.org 43 | Page

Keil C51 complier together with uVision IDE, the most popular developing environment around the

world for 8051, offers an excellent programming & debugging environment, as well as very precise simulator.

The EMX simulate here pretty well and some examples of synchronization and inter task communication have

been taken .Their response is quite encouraging. The version of my complier and simulator are Keil C51

V9.53.0.0 and µVision V5.11.2.0. The target MCU is the most popular 8051 series MCU -- Atmel AT89S52.

References
[1]. Schulz,C and the 8051

[2]. Michael J. Pont,Embedded C

[3]. Jean J Labrosse, MicroC/OS, The Real-Time Kernel
[4]. Ganssle,Jack G.,The Art of programming Embedded System

[5]. McConnell,Steve Code-Complete, A Practical Handbook of Software Construction

[6]. Jean J.Labrosse, Embedded System Building Blocks,

[7]. Gerald Jochum,Emmanuel Tuazon and Subramaniam ,Ganesan Traffic Light Implementation Using uC/OS

[8]. Richard A. Burgess,MMURTL V1.0,
[9]. ARM-uvision_Tutorial

[10]. Phillip A. Laplante Real -Time System Design and Analysis

[11]. David Kallinsky ,Basic Concept of real-time operating systems,Windows Embedded

[12]. Micrium Corporation uC/OS-III,The Real-Time Kernel,users manual

[13]. Qing Li and Carolyn Yao Real –Time Concepts for Embedded System
[14]. Wikibooks ,Embedded System,Building and Programming Embedded Devices, 15. Giorgio C. Buttazzo ,Hard Real-Time

Computing System : Predictable Scheduling algorithms and Application

[15]. Donal Huffernan 8051 Tutorial,

[16]. Wind River VxWorks 6.0 Harware Consideration Guide
[17]. 80C51 Family Hardware description,Philips Semiconductor

[18]. Jane_W_S_Liu,Real-Time System

[19]. Rajib Mall , Real-Time Systems and Theory

[20]. Ke Yu, Real-Time Operating System Modeling and Simulation,using SystemC

[21]. XIAO, Jianxiong Project Report of a Small Real Time Operating System – USTOS
[22]. Raj Kamal, . Embedded Systems: Architecture, Programming and Design

[23]. Jogesh K. Muppala, HKUST COMP355 Embedded System Software Lecture Notes andCourse Materials

[24]. Keil Software Corporation: User’s Guide of Cx51 Compiler, http://www.keil.com/

[25]. Atmel Corporation: Manuals of AT89S52 chip

[26]. David E. Simon, An Embedded Software Primer
[27]. Muhammad Ali Mazidi,Janice Gillispie Mazidi Rolin D. McKinlay, The 8051 Microcontroller and Embedded Systems Using

Assembly and C

