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Abstract: This proposed paper presents architecture of generalized recursive function to generate 

approximation of orthogonal function  DCT with an approximate length  N could be derived from a pair of 

DCTs of length (N/2) at the cost of  N additions for input preprocessing. Approximation of DCT is useful for 

reducing its computational complexity without  impact on its coding performance. Most of the existing design  

for approximation of the DCT target only the small transform lengths DCT, and some of them are non-

orthogonal. Proposed method  is highly scalable for hardware and software implementation of DCT of higher 

lengths, and it can make use of the present approximation of 8-point DCT to obtain DCT approximation  of any 

power of two length, N>8. It is shown that proposed design involves lower arithmetic complexity compared with 

the other existing design. One uniquely interesting feature of the proposed method is that it could be composed  

for the calculation of a 32-point DCT or for parallel calculation of two 16-point DCTs or four 8-point DCTs. 

The proposed method is found to offer many advantages in terms of hardware  regularity , modularity and 

complexity. The design is implemented in Xillinx IES 10.1 design suite and synthesized using Cadence 

Encounter. 

Keywords: Algorithm-architecturecodesign, DCT approximation, discrete cosine transform, high efficiency 

video coding. 

  

I. Introduction 
The DCT is popularly used in image and video compression. The main purpose of the approximation 

algorithms is to eliminate multiplications which consume more power and computation time. The use of 

approximation is important for higher-size DCT since the computational difficuties of the DCT grows 

nonlinearly. Haweel  [8] has proposed the signed DCT for 8 X 8 blocks where the basis vector elements are 

given by their sign, i.e,±1. Bouguezel-Ahmad-Swamy have proposed many methods. They have given a good 

estimation of the DCT by replacing the basis vector elements by 0, ±1/2, ±1 [7]. In the paper [5], [6]  Bayer and 

Cintra have proposed two transforms derived from 0 and ±1 as elements of transform kernel, and have proved 

that their methods gives better than design in [7], particularly for low- and high-compression ratio scenarios. 

Modern video coding standards such as high efficiency video coding [10] uses DCT of larger block sizes (up to 

32 32) in order to perform higher compression ratio. But, the extension of the design strategy used in H264 

AVC for larger transform sizes is not possible [11]. Besides, in many image processing applications such as 

tracking [12] and simultaneous compression and encryption [13] needs higher DCT sizes. In this case, Cintra 

has introduced a new class of integer transforms applicable to many block-lengths [14]. Cintra et al. have 

proposed a new 16 X 16 matrix also for approximation of 16-point DCT, and have validated it experimentally 

[15]. Two new transforms have been proposed for 8-point DCT approximation: Cintra et al. have developed a 

less-complexity 8-point DCT approximation based on integer functions [16] and Potluri et al. have proposed a 

new 8-point DCT approximation that uses only 14 additions [17]. On the other hand, Bouguezel et al. have 

proposed two designs wchich is multiplication-free approximate form of DCT. The first method is for length N 

= 8 , 16 and 32; and is mainly based on the relevant extension of integer DCT [18]. Also, by using the 

sequency-ordered Walsh-Hadamard transform  proposed in [4] a systematic method for developing a binary 

version of higher-size DCT is developed. This transform is a permutated method of the WHT which gives all the 

benifits of the WHT. 

 

A scheme of approximation of DCT should have the following features: 

i) It should have low computational complexity. 

ii) It should have low error energy to give compression performance near to exact DCT, and preferably should 

be orthogonal. 

iii) It should applicable for higher lengths of DCT to support modern video coding standards, and other 

applications like surveillance, tracking, encryption and simultaneous compression.    
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Some of the existing methods are deficient in terms of scalability [18], generalization for higher sizes 

[15], and orthogonality [14]. This proposed design try to maintain orthogonality in the approximation of DCT 

for two reasons. Firstly, if the transform is orthogonal, then find its inverse, and the kernel matrix of this inverse 

transform is obtained by transposing the kernel matrix of the forward transform. This feature of inverse 

transform could be used to compute the inverse and forward DCT by similar computing structures. Moreover, in 

case of orthogonal transforms, similar fast algorithms are relevant to both inverse and  forward transforms [19], 

[20]. This paper proposes an algorithm to derive approximate form of DCTs which satisfy all the three features. 

This paper obtain the proposed approximate form of DCT by recursive decomposition of sparse DCT matrix. It 

shows that proposed method involves lower arithmetic complexity than the existing DCT approximation 

algorithms. The proposed DCT approximation form of different lengths are orthogonal, and result in lower 

error-energy compared to the existing system. The decomposition process gives generalization of a proposed 

transform for higher-size DCTs and proposed algorithm is easily scalable for hardware and  software 

implementation of  higher lengths DCT. Based on the proposed algorithm, paper has proposed a fully scalable, 

reconfigurable, and parallel architecture for the computation of approximate DCT. One unique feature of 

proposed design is that the structure for the computation of 32-point DCT could be used for the parallel 

exicution of two 16-point DCTs or four 8-point DCTs. The proposed method is more usefull than the existing 

methods in terms of  hardware complexity and energy compaction.  

 

II. Proposed System Design And Methodology 

The elements of -point DCT matrix 𝐶𝑁   are given by:  

𝑐 𝑖, 𝑗 =∈𝑖   
2

𝑁
 cos (2𝑗+1)𝑖𝜋

2𝑁
      (1) 

where 0 ≤ i, j ≤ N ‒1, 𝜖0 =  1  2 , and ∈𝑖  = 1 for i>0. The DCT given by (1) is referred to as exact DCT in order 

to disting- uish it from approximated forms of DCT. For k  [0,(N/2) – 1] and i =2k, for any even value of  N  it 

can find that 

c(2k,j) = ∈2𝑘   2

𝑁
 cos (2𝑗+1)2𝑘𝜋

2𝑁
       (2) 

since ∈2𝑘  = ∈𝑘 , (2) can be rewritten as: 

c(2k,j) = ∈𝑘   2

𝑁
cos(2𝑗 + 1)𝑘𝜋𝑁      (3) 

Hence, on the right-hand side of (3) the cosine transform kernel corresponds to N/2-point DCT and its 

elements can be assumed to be  2𝑐 (k, j), for 0  ≤  𝑗 ≤ (𝑁/2) - 1. Hence, the first N/2 elements of even rows of 

DCT matrix of size N  N corresponds to the N/2-point DCT matrix. Accordingly, the recursive decomposition 

of 𝐶𝑁  can be performed as detailed in (4)–(8). Using odd/even symmetries of its row vectors, DCT matrix 𝐶𝑁  

can be represented by the following matrix product 

𝐶𝑁  = 1

 2
 𝑀𝑁

𝑝𝑒𝑟
 𝑇𝑁  𝑀𝑁

𝑎𝑑𝑑          (4) 

where 𝑇𝑁   is a block sparse matrix expressed by: 

𝑇𝑁=  
𝐶𝑁

2
0𝑁

2

0𝑁
2

𝑆𝑁
2

         (5) 

where  0𝑁 2  is  ((N/2) × (N/2)) zero matrix. The submatrix  𝑆𝑁 2   consists of odd rows of the first  N/2 columns 

of   (2)𝐶𝑁 . 𝑀𝑁
𝑝𝑒𝑟

 is a permutation matrix expressed by: 

𝑀𝑁
𝑝𝑒𝑟

 =  
𝑃

𝑁−1,𝑁2
0

1,𝑁2

0
1,𝑁2

𝑃
𝑁−1,𝑁2

        (6) 

Where  01, 𝑁 2  is a row of  N/2 zeros and 𝑃𝑁−1,𝑁/2 is a (N-1)  (N/2) matrix defined by its row vectors as: 

𝑃
𝑁−1,

𝑁
2

(𝑖)
  =   

0
1,𝑁 

2
,  𝑖𝑓 𝑖 = 1, 3, … , 𝑁 − 1

𝐼 𝑁
2

  
𝑖
2  

, 𝑖𝑓 𝑖 = 0, 2, … , 𝑁 − 2
        (7) 

where 𝐼𝑁 2 (𝑖/2) is  (i/2) th row vector of the ((N / 2) × (N / 2)) identity matrix and  𝑀𝑁
𝑎𝑑𝑑  is defined by: 

                                  𝑀𝑁
𝑎𝑑𝑑  = 

𝐼𝑁
2

𝐽𝑁
2

𝐼𝑁
2

−𝐽𝑁
2

          (8) 

where 𝐽𝑁/2  is an ((N/2) × (N/2)) matrix having all ones on the anti-diagonal and zeros elsewhere. 

To reduce the computational complexity of DCT, the computational cost of matrices presented in (4) is 

required to be assessed. Since 𝑀𝑁
𝑝𝑒𝑟

 does not involve any arithmetic or logic operation, and 𝑀𝑁
𝑎𝑑𝑑  requires N/2 

additions and N/2 subtractions, they contribute very less to the total arithmetic complexity and cannot be 
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reduced further. Therefore, for reducing the computational complexity of  N-point DCT, it needs  to 

approximate 𝑇𝑁  in (5). Let 𝐶 𝑁/2 and 𝑆 𝑁/2 denote the approximation matrices of  𝐶𝑁/2 and 𝑆𝑁/2 ,respectively. To 

find these approximated submatrices it need to take the smallest size of DCT matrix to stop the approximation 

procedure to 8, since 4-point DCT and 2-pointDCT can be implemented by adders only. Correspondingly, a 

good 𝐶𝑁  approximation , where N is an integral power of two, N  8, leads to a proper approximations of 𝐶8  

and 𝑆8 . For approximation of  𝐶8, choose the 8-point DCT given in [6] since that presents the best trade-off 

between quality of the reconstructed image and the number of required arithmetic operators. The trade-off 

analysis given in [6] shows that approximating 𝐶8  by 𝐶 8 =  2𝐶8  where  .   denotes the rounding-off operation 

outperforms the current state-of-the-art of 8-point approximation methods. 

From (4) and (5), observe that 𝐶8 operates on sums of pixel pairs while 𝑆8 operates on differences of 

the same pixel pairs. Therefore, by replacing 𝑆 8 by 𝐶 8, there are two main advantages. Firstly, there is a good 

compression performance due to the efficiency of 𝐶 8 and secondly the implementation will be much simpler, 

scalable and reconfigurable. For approximation of  𝑆8 this paper has investigated two other low-complexity 

alternatives, and in the following paper will discuss three possible options of approximation of  𝑆8: 

i)   The first one is to approximate 𝑆8 by null matrix, which implies all even-indexed DCT coefficients are 

takenas zero. The transform obtained from this approximation is far from the exact values of even-indexed 

DCT coefficients, and odd coefficients do not have any other information. 

ii)   The second solution is gien by approximating 𝑆8 by 8 × 8 matrix where each row contains one 1 and  other 

all elements are zeros The approximate transform in this case is nearer to the exact DCT when compared to 

the solution obtained by null matrix. 

iii) The third solution consists of approximation 𝑆8 of by 𝐶 8 .Since as well as 𝑆8 are submatrices of 𝐶16  and 

operate on matrices generated by differences and sum of pixel pairs at a distance of 8, approximation of 𝑆8  

by 𝐶 8  has attractive computational properties: good compression efficiency, orthogonality since 𝐶 8  is 

orthogonalizable, and regularity of the signal-flow graph, other than scope for reconfigurable 

implementation and scalability. 

Based on this third possible approximation of 𝑆8 , this paper has obtained the proposed approximation of as: 

 𝐶 𝑁  = 1

 2
 𝑀𝑁

𝑝𝑒𝑟
  
𝐶 𝑁

2
0𝑁

2

0𝑁
2

𝐶 𝑁
2

  𝑀𝑁
𝑎𝑑𝑑          (9) 

As state d before, matrix 𝐶 𝑁  is orthogonalizable. Indeed, for each 𝐶 𝑁  we can calculate 𝐷𝑁  given by: 

              𝐷𝑁  =   𝐶 𝑁 ×  𝐶 𝑁 
𝑡
 
−1

                        (10) 

where  .  𝑡   denotes matrix transposition. For data compression, use 𝐶𝑁
𝑜𝑟𝑡𝑕  =  𝐷𝑁 ×  𝐶 𝑁   instead of 𝐶 𝑁   

since  𝐶𝑁
𝑜𝑟𝑡𝑕 −1 =  𝐶𝑁

𝑜𝑟𝑡𝑕 𝑡 . Since 𝐷𝑁  is a diagonal matrix, it can be integrated into scaling in quantization 

process. Therefore, as adopted in [4]–[8], the computational cost of is equal to that of Moreover, the term of in 

(9) can be integrated in the quantization step in order to get multiplerless architecture. The design for the 

generation of the proposed orthogonal approximated DCT is stated in Algorithm 1. 

 

Algorithm 1 for proposed DCT matrix  

function PROPOSED DCT(N)                ⋯𝑁 power of  2, N ≥ 8 

     𝑁𝑂 ← 𝑙𝑜𝑔2(𝑁/8)                                  ⋯𝑁0 is the number of 8-sample blocks 

    𝐶 𝑁 2𝑁0    2𝐶8  

    while 𝑁𝑂   0 do 

 𝑁 ←  𝑁 2𝑁𝑂  −  1  

              Calculate  M𝑁 
𝑝𝑒𝑟

, M𝑁 
𝑎𝑑𝑑                              Eq(6),(8) 

              Calculate 𝐶 𝑁                                                    ⋯ Eq(9) 

              𝑁𝑂 ← 𝑁𝑂 −  1 

    end while 

    Calculate 𝑫𝑵                                                            Eq(10) 

    return 𝑪 𝑵 ,𝑫𝑵 

 end function 

 

III. Scalable and Reconfigurable Architecture For Dct Computation 
This section discuss about the proposed scalable architecture for the computation of approximate DCT 

of  N = 16 and 32. Paper has derived the theoretical estimate of  its hardware complexity and discuss the 

reconfiguration scheme. 
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A. Proposed Scalable Design 

The block diagram of the computation of DCT based on 𝐶 8 is shown in Fig. 1. For a given input 

sequence  𝑋 𝑛  , n   0, 𝑁 − 1 , the approximate DCT coefficients are obtained by F = 𝐶 𝑁   𝑋𝑡 . An example of 

the block diagram of 𝐶 16  is illustrated in Fig. 2, where two units for the computation of  𝐶 8 along with an input 

adder unit and output permutation unit are used. The functions of these two blocks are shown respectively in (8) 

and (6).Note that structures of 16-point DCT of Fig. 2 could be used to obtain the DCT of higher sizes.  

 

 
Fig. 1 Signal flow graph of  𝐶 8. Dashed arrows represent multiplications by -1 

 

 
Fig. 2 Block diagram of the proposed DCT for N = 16 (𝐶 16) 

 

Table I: Requirement of Arithmetic operations For Several Approximation Algorithms 
N Method Arithmetic operation 

Add Shift                   

8 Proposed 

BDCT [4] 

BAS [18] 
BC [6] 

22          

24 

24 
22 

0 

0 

4 
0 

16 Proposed 
BDCT [4] 

BAS [18] 

BC [15] 

60 
64 

64 

72 

0 
0 

8 

0 

32 Proposed 

BDCT [4] 

BAS [18] 

152 

160 

160 

0 

0 

16 

64 Proposed 
BDCT [4] 

368 
384 

0 
0 

 

B. Complexity Comparison 

To obtain the computational complexity of proposed N–point approximate DCT, it required to 

determine the executing cost of matrices given in (9). As in Fig. 1 the 8-point DCT approximation uses 22 

additions. Since 𝑀𝑁
𝑝𝑒𝑟

 has no computational cost and 𝑀𝑁
𝑎𝑑𝑑  requires N additions for N –point DCT, the overall 

arithmetic complexity of 16-point, 32-point, and 64-point approximate DCT are 60, 152, and 368 additions, 

respectively. More generally, the arithmetic complexity of N-point DCT is equal to 𝑁(𝑙𝑜𝑔2𝑁 − (1/4)) 

additions. Since the structures for the computation of  DCT of different lengths are scalable and regular, the 
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computational time for N DCT coefficients can be found using 𝑙𝑜𝑔2 (𝑁)𝑇𝐴  where 𝑇𝐴  is the addition-time. The 

number of arithmetic operations used in proposed approximate DCT of different lengths are shown in Table I. It 

can be found that the proposed method requires the less number of additions, and does not use any shift 

operations. Note that shift operation needs only rewiring during hardware implementation and does not involve 

any combinational components. 

Using an integrated logic analyze pipelined and non-pipelined designs of different methods are 

developed, synthesized and validated and validation is done using the Digilent EB of Spartan6-LX45. This 

method used 8-bit inputs, and have allowed the increase of output size . For the 8-point transform of Fig. 1, 

there is 11-bit and 10-bit outputs. By adding registers in the input and output stages along with registers after 

each adder stage the pipelined design are obtained, while the no pipeline registers are used within the non-

pipelined designs. The synthesis results obtained from XST synthesizer are presented in Table II. It shows that 

pipelined designs gives higher maximum operating frequency  and shows that the proposed design involves 

nearly 7%, 6%, and 5% less area when compared to  BDCT method for N equal to 16, 32, and 64, respectively. 

Both pipelined and non-pipelined designs involve the same number of LUTs. Mainly, for different transform 

lengths,the proposed designs are reusable. 

 

C. Proposed Reconfiguration Scheme 

DCT of different lengths required to be used in video coding applications. Therefore the proposed 

method should be  reused for the DCT of different lengths instead of using separate structures for different 

lengths. The reconfigurable architecture for the implementation of approximated 16-point DCT is shown in Fig. 

3. It consists of three computing units, namely two 8-point DCT  approximation units and a 16-point input adder 

unit that generates a(i ) and b(i), i  [1: 7]. The input to the first 8-point DCT approximation unit is fed through 

8 MUXes that select either [a(0), a(1), . . . ,a(7)] or [X(0), X(1), . . . , X(7)], depending on whether it is used for 

16-point DCT calculation or 8-point DCT calculation. Similarly, the input to the second 8-point DCT unit (Fig. 

3) is fed through 8 MUXes that select either [b(0), b(1), . . ,b(7)] or [X(8), X(9), . . ,X(15)], depending on 

whether it is used for 16-point DCT calculation or 8-point DCT calculation. On the other hand, the output 

permutation unit uses 14 MUXes to select and re-order the output depending on the size of the selected DCT. 

Sel16 is used as control input of the MUXes to select inputs and to perform permutation according to the size of 

the DCT to be computed. Specifically, Sel16 = 1 enables the computation of 16-point DCT and Sel16 = 0 

enables the computation of a pair of 8-point DCTs in parallel. Consequently, the architecture of Fig. 3 allows the 

calculation of a 16-point DCT or two 8-point DCTs in parallel. 

 

 
Fig. 4 Proposed reconfigurable architecture for approximate DCT of lengths N = 8 , 16 and 32. 

 

A reconfigurable design for the computation of 32, 16, and 8-point DCTs is presented in Fig. 4. It 

performs the calculation of a 32-point DCT or two 16-point DCTs in parallel or four 8-point DCTs in parallel. 

The architecture is composed of 32-point input adder unit, two 16-point input adder units, and four 8-point DCT 

units. The reconfigurability is achieved by three control blocks composed of 64 2:1 MUXes along with 30 3:1 

MUXes. The first control block decides whether the DCT size is of 32 or lower. If Sel32 = 1, the selection of 

input data is done for the 32-point DCT, otherwise, for the DCTs of lower lengths. The second control block 

decides whether the DCT size is higher than 8. If Sel16 = 1 the length of the DCT to be computed is higher than 

8 otherwise, the length is 8. The third control block is used for the output permutation unit which re-orders the 
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output depending on the size of the selected DCT. Sel32 and Sel16 are used as control signals to the 3:1 MUXes. 

Specifically, for  𝑆𝑒𝑙32, 𝑆𝑒𝑙16   2 equal to {00}, {01} or {11} the 32 outputs correspond to four 8-point parallel 

DCTs, two parallel 16-point DCTs, or 32-point DCT, respectively. 

  

IV. Experimental Validation 
The proposed system simulation results as follows: 

 
Fig. 5  8-point DCT output. 

 

 
Fig. 6 16-point DCT output 

 

 



Reconfigurable Architecture and an Algorithm for Scalable And Efficient Orthogonal Approximation  

DOI: 10.9790/4200-0603028290                                   www.iosrjournals.org                                           88 | Page 

 
Fig. 7 32-point DCT output 

 

The proposed system synthesized  result  using Cadence Encounter: 

 
Fig. 8  GDS report of 8-point DCT 

 

 
Fig. 9  RTL Schematic of 8-point DCT 
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Fig. 10  GDS report of 16-point DCT 

 

 
Fig. 11  RTL Schematic of 16-point DCT 

 

 
Fig. 12 GDS report of 32 point DCT 

 

V. Conclusions 

This paper has proposed a recursive algorithm to obtain orthogonal approximation of DCT. The value 

of length N could be obtained from a DCT pair of length (N/2) at the cost of N additions for input preprocessing. 

In this proposed architecture it contains many advantages like regularity, structural simplicity, lower-

computational complexity, and scalability. Comparison with existing competing methods shows the 

effectiveness of error energy, hardware resources consumption, and compressed image quality to obtain better 

quality in proposed architecture. Paper has also proposed a fully scalable architecture which is reconfigurable 

for approximate DCT computation where the computation of 32-point DCT could be configured for two 16-

point DCTs or four 8-point DCTs placed in parallel. 
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