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Abstract: Network attacks that flow through network firewalls or network intrusion detection systems (NIDS) are 

often identifiable by the patterns of data that they contain. The patterns are normally represented by complex regular 

expressions which are matched at a very high speed. The regular expressions are built into their equivalent automata, 

using minimal hardware resources in order to detect variations of these patterns. This paper explains the design, 

structure, and suitability of a hardware-based automata implementation. The approach is based on an input 

compression technique that uses Equivalence Classification (EC) technique. The technique is used to drive a novel 

Nondeterministic Finite Automata (NFA) referred to as Equivalence Class Descriptor NFA (ECD-NFA). The 

ECD-NFA approach creates classes of compressed inputs represented by positive integer values simply referred to 

as ECDs. The ECDs are class descriptors, which are used as inputs to drive the automata, instead of unclassified raw 

character-input strings. The ECD-NFA design is built to take advantage of the parallelism provided by Field 

Programmable Gate Array (FPGA) technology. The design further exploited the FPGA to provide high throughput 

and support for quick updates. The ECD-NFA design clocks at 460.00 MHz, with a throughput value of 3.68 Gigabits 

(Gbps). The design incurs very minimal logic circuit cost, and the preliminary results look promising. 

Keywords: ECDs, ECD-NFA, FPGA, LUTs, Throughput. 
 

I. Introduction 
Network security or policing has become a serious concern for the increasing number of computer network users 

and Internet Service Providers (ISPs) across the world. Most network security systems usually rely on layers of 

protection and are made up of multiple components including network monitoring and software protection. In 

addition to hardware and other related appliances, all the network system components work in unison to increase 

the overall security of a computer network.  

As network bandwidths have continued to increase, so have the frequency of network attacks and illegal 

accesses. These frequent attacks are capable of compromising even the most well secured networks. Network 

attacks have severe consequences to the privacy and confidentiality of both network clients and confidential 

documents. These attack patterns could be in form spam, bugs, denial-of-service (DoS), and malicious software 

such as: viruses, worms, Trojan horse, spyware, hybrid, droppers and blended threats [1]. As such pattern 

matching has become necessary for finding predefined patterns in a wide range of data streams [2].  A pattern set 

can be composed of thousands of patterns and could keep growing in order to enforce new policies related to 

security issues [2]. The matching processes could be considered to be regular expression or exact string matching. 

Exact string matching on a given packet can be performed during the process of deep packet inspection 

of the packet payload flowing into a given network. However, the problem with string matching is that it has 

become inadequate due to the complex nature of the current patterns of network attacks. To deal with the problem 

attributed to exact string matching, most popular and current software tools [3], [4], [5] now use regular 

expressions or simply termed „regexp‟ to describe payload patterns [6]. A regexp is a regular language 

constructed with character classes that is defined over a fixed alphabet. A regular language has three basic 

operations performed on its character classes [7] namely: concatenation (.), union (|) and Kleene closure (*). By 

properly compounding the three basic operators mentioned, more complex regexps can be constructed. Yang et.al 

[7]  also added that some other common operators such as: optionality (?) and quantified repetitions like ({a, }, {, 

b} and {a, b}), could be constructed by using combinations of the three mentioned basic operators.  

Regexps remain more expressive compared to simple patterns of exact–match strings [6], but their 

implementation process requires huge memory space and bandwidth. Current software solutions for regexp 

pattern matching have become inadequate in coping with the speed of the current frequency of network attacks. 

Currently, network speeds are measured in several Gigabits per second, prompting the need for alternative 

solutions. The alternative solutions are hardware-based regexps pattern matching designs, which are based on 

hardware technologies such as the: Application-specific Integrated Circuits (ASICs) [8], Graphic Processing 

Units (GPUs) [9], [10], and Field-programmable Gate Arrays (FPGAs) [11], [12], [13], and [14].  
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According to Yang et al. [7] „any given pattern that can be matched by a regexp can also be matched by 

an automaton‟, and the preferred choice of automata includes: Deterministic Finite Automata (DFA) or 

Nondeterministic Finite Automata (NFA). A variation of the former and the latter automata is called the hybrid 

DFA-NFA (hybrid-FA) [6]. Becchi and Crowley [6] explained that DFAs have a „predictable memory 

bandwidth‟, having a deterministic number of memory accesses. The DFA can process an input string using a 

DFA state traversal per character [6]. The NFA [15] on the other hand „requires that the number of states… 

[needed] to represent a regexp should be in the order of the number of characters present in the regexp itself‟ [6]. 

The combination of the advantages of both the NFA and DFA lead to the creation of a hybrid-FA [6].  On a 

typical software implementation, regexps are first converted to either NFAs or DFAs. A DFA processes each 

character in constant time O(1), but requires O(2
n
) memory [16], which can degrade performance [17]. With 

NFAs, each character is processed in O(n) time, and requires O(n) memory.   

However, the NFA processing time could be  reduced to O(1), but require O(n
2
) memory [15] on 

FPGAs, which is achieved by exploiting its fine-grained parallelism. Parallelism is the fundamental advantage of 

FPGAs over microprocessors for regexp matching. As a result, NFA-based approaches are increasingly being 

appreciated, because they are suitable for exploiting the parallelism and re-configurability provided by current 

FPGAs. However, the use of DFAs for representing regexps that appear in most current rulesets may not be 

adequate. This is especially true when dealing with regexps composed of multiple wildcards (.*) that are repeated 

a number times. Such regexps are capable of generating a DFA with potentially millions of states, leading to a 

condition known as state explosion. A good example is the regexp having: prefix.{100} suffix [6], where both the 

prefix and suffix are some regexps. The NFA on the other hand also suffers from the problem of large memory 

bandwidth requirement, unless some clever minimization or compression strategy is applied to it to reduce the 

bandwidth requirement. The ECD-NFA approach in this paper is designed to reduce the huge memory bandwidth 

requirement attributed to most naïve NFA approaches. 

The ECD-NFA design uses equivalence classification technique to classify all the input strings that have 

the same effect on the automata. The technique creates the relevant ECDs or class descriptors. The ECDs are then 

assigned in ascending order, before using them to drive the automata. The matching process utilizes Block 

Random Access Memories (BRAMs), which are used to compress all the raw data inputs into their various 

equivalence class vectors of next state transitions. The equivalence classes are then mapped to their respective 

ECDs accordingly. The BRAMs are later synthesized on a target FPGA device, during the pre-synthesis stage of 

the design hardware phase as described in Section III.D. The contents of the BRAMs are then fetched and used to 

compare against the input strings that are streamed into the ECD-NFA for matching to occur within the associated 

NFA matching units. The description and evaluation of the ECD-NFA structure is discussed by comparing the 

preliminary results obtained to the other known NFA-based designs. The regexps utilized in this design are drawn 

from rulesets found in the popular Snort community rulesets [3]. The main contribution of the ECD-NFA is that 

this type of classification strategy is unique and only suitable for NFAs rather than DFAs, and that the matching 

of input strings is performed at a very high throughput. The matching process also incurs minimal logic circuit 

cost in comparison to the other related approaches. The ECD-NFA design is also suitable for implementation on 

any high speed network that is capable of performing exact pattern matching.  

The remainder of this paper is organised thus: A brief summary of related works is described in Section 

II. Section III describes the algorithm used for constructing the ECD-NFA automaton, and also describes the 

process used in creating ECDs. Section III also explains the overall structure of the ECD-NFA design and the 

preliminary evaluation of the results obtained for our ECD-NFA design. Section IV compares the various 

related designs under consideration by using charts to evaluate preliminary results obtained from Section III. 

The preliminary results obtained for the related designs are implemented using FPGA implementation tools. The 

combined results are discussed in order to give a concise view of how each design performs against the other 

related designs. Finally Section V discusses the conclusion and ideas for future work. 

 

II. Related Works 
The related works discussed in this paper are Finite State Machine (FSM) based approaches that utilize FPGA 

technology. The NFA logic described in [15] produces an output in form of a binary tree. A placed and routed 

netlist was built before generating configuration bits (bitstreams) at runtime in [17]. The bitstream file is what is 

needed to finally program the FPGA device. Sidhu and Prasanna [15] while implementing NFAs as logic, 

realized that if all the source input Flip-Flops (FFs) to the destination input FFs are on –transitions (epsilon 

transition), then the FFs can be eliminated without being implemented at all, and that could reduce the overall 

logic circuit size.  

The design described in [15] has set the pace for several other approaches that consider building 

reconfigurable [18][12]. A Java-based design tool called Java-based Hardware Description Language (JHDL) 

[19] was proposed. The JHDL tool is capable of extracting regexps from the popular Snort rulesets database 

[20] and then generates the needed Electronic Data Interchange Format (EDIF) files [21] which is replaced by 
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the Native Generic Circuit (NGC) file. The NGC file contains both the logical design data and the associated 

design constraints file. The file then is processed by the Xilinx ISE Proprietary Project Navigator application 

version P.49d, volume 14.4 (nt64) Software. The software is bundled with the Xilinx Synthesis Tool (XST) 

place and route (PAR) software and is used to produce the required FPGA bitstreams. The bitstreams are used to 

configure the target Virtex-6 FPGA device. Hutchings, Franklin and Carver [18] extended the work in [15] to 

include additional functionality for the metacharacter: optionality (?). The operation for the optionality [18] is 

used to match zero or one input character per clock cycle, which enables faster matching. Tripp [22] proposed 

an FSM design that operates on a single byte wide data input, while providing a separate FSM for each byte 

wide data path from a multi-byte input data word. Combining the outputs from the separate FSMs in a given 

way ensures that string matching is performed across multiple FSMs per clock cycle. A design was also 

implemented in [23] that resolved the problem attributed to directly sharing infix and postfix sub-patterns. Infix 

and postfix sub-patterns share similar matching characters that occur either at the start for infix or end for 

postfix that occur in a given regexp pattern. The design in [23] memorizes the path that the trigger signal 

emanates from, based on specific constraints suitable for both exact string matching and complex regexp 

matching.  

A Perl Compatible Regular Expression (PCRE) compiler that converts regexps from the Snort ruleset 

into PCRE opcodes was implemented in [24]. The opcodes are instructions for the software based PCRE engine 

defined in a file called pcre_internal.h which is part of the PCRE Package. The compiler translated the PCRE 

opcodes into VHSIC Hardware Description Language (VHDL) codes necessary for parallel implementation in 

the FPGA. Mitra et al. [24] in their design used a wider input bus through an SRAM interface, which helped to 

increase the overall matching throughput. An automatic architectural optimisation approach was implemented 

by Yang et al. [7] which spatially stack regexps matching circuits called REMs to form multiple character 

matching (MCMs) circuits. The MCMs are then grouped into clusters and marshaled onto a two dimensional 

staged and pipelined structure. The structure is aimed at improving the overall design clock rate. 

However, the problem with the architecture designed in [7] is that the process of distributing and 

buffering the character matching signals was error prone and difficult to implement when done manually. To 

address the problem, the approach proposed in [25] used a heuristic that automatically marshaled k-REMs with 

total N-states into p-pipelines. The process calls a function that compares every character class within each REM 

with those previously collected in the BRAM, whenever a REM is to be added to an existing pipeline. The 

matching outputs [25] of each of the REMs are prioritized. The REM with higher priority is given to the lower-

indexed pipelines and stages for the sake of efficiency.  

The design in this paper combines many of the strategies reviewed into a single design. Such strategies 

include: character classification and creation of REMs to form MCMs. The concept of classification of character 

input strings for driving the ECD-NFA-based automata at a more appreciable clock rate is what the approach is 

mostly concerned with. The ECD-NFA-based design is targeted at utilizing and exploiting the advantage of the 

parallelism provided by the current FPGA technology. The designs in [26], [27], [28] and [22] utilized a similar 

concept but implemented it for a DFA approach instead.  

The ECD-NFA design is constructed into blocks of MCMs, aimed at implementing a classification 

based approach that works with NFAs. The design is then staged and pipelined in a stacked formation. The 

formation helps perform a matching process that favorably competes with the rival approaches. The ECD-NFA 

design much like the one in [28] is able to take on a given number of regexps and generate the equivalent VHDL 

codes, ready for logic synthesis. The automatic generation of VHDL codes is paramount to the ease of re-

configurability of ECD-NFA design. This is because changes could easily be carried out speedily in the software 

parser more accurately than in the hardware design environment. Moreover, the delay attributed to the process 

of re-syntheses before the PAR process of the whole design is greatly reduced on the target FPGA platform. 

 

III. The ECD-NFA Classification Algorithm 
The concept of equivalence classification can best be understood based on the definitions discussed in [29] and 

as discussed herewith. 

A. Definitions 

i. Relation: A relation ( ) on a set S is a subset of S xS. Given any two elements a, b ∈ S, we have the 

relation a ≈ b, which shows that „a‟ is related to „b‟. It then follows that if „≈‟ is a relation of the given set 

X, then „≈‟ can be said to be: 

a. Reflexive, given that  a ∈ X, a ≈ a. 

b. Symmetric, given that  a, b ∈ X, if a ≈ b, then b ≈ a. 

c. Transitive, given that  a, b, c ∈ X, if  a ≈ b and b ≈ c, then a ≈ c. 

ii. Equivalence relation : A relation  on the set S is said to be an equivalence relation if all three 

conditions in III.i holds. 
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iii. Equivalence class: Given that  is an equivalence relation on a set S. Then  a ∈ S, an equivalence class 

of a is represented by  [a] to be the set: [a] = . 

______________________________________________________________________________________ 

Algorithm 1: Construction of an n-ECD vectors of next states  

_____________________________________________________________________________ 

INPUT: An n-state m-character class ECDs. The input state is s. 

OUTPUT: An n-state ECD-NFA with the associated multi-byte table of compressed ECDs. 

BEGIN 

i. Read and parse the regexps to be constructed into the equivalent ECDRTS-NFA. 

ii. For  i < n, where i = 0,1,2,3....n-1, and n is the total number of states in the NFA. If the transition (link) 

from state si is a self-transition from state si to itself upon consuming a non-empty character, remove all 

such self-transitions  

iii. For  i < n, j < n and k < n, if the output of state si connects to the state inputs of some state sj upon 

consuming an empty string ( ), remove all such transitions ti,j linking state si to sj. Create a new transition 

that connects state si to states sj and sk where sk > sj on a non-empty input. 

iv. For  i < n, j < n and for each transition ti,j from a state si  to a state sj, scan through. Store all next states 

transited to on the same input, into a set of next states. Store all the different sets of next states into a single 

vector of sets of next states and assign a single input character class descriptor to them. 

v. Assign to each classified inputs created in (iv) ECDs, which are the class descriptors. The ECDs now 

represent the sets of vectors of next states for all character classes that trigger transitions from a state si to a 

state sj, where i < n, j < n. 

vi. Repeat steps (i) - (v) for  si, i < n and store all the sets of vectors of next states in a list of state vectors for 

 states si in the ECDRTS-NFA. 

vii. Once step (vi) is completed, the process of building the compressed table of ECDs begins. The process first 

performs the cross product computation of any two sets of vectors of next states vi and vj  i < n, j < n 

contained within the list of state vectors stored in (vi). Subsequently, all the similar vectors are merged to 

become a single vector. Recursively performing step (vi) – (vii) generates a 4-byte table of ECDs two 2-

byte tables. 

viii. Finally, exit the process after step (vii) and generate the VHDL file for the ECDRTS-NFA. The file is then 

uploaded to the XST VHDL synthesis tool for synthesis and implementation. 

 

END 

B. Creating the Vector of Next States for ECDs 

Once the design compiler extracts the regexps from the Snort rulesets, the parser then constructs the ECD-NFA. It 

then goes through the ECD-NFA and begins to create the equivalent classes of all the inputs (ECDs) that have 

similar effect on the automata. The parser first creates a vector of next states for each current state and then 

assigns ECDs to each set of next states found throughout the entire NFA. In order to properly explain how 

Algorithm 1 creates its ECDs when converting a regexp into an ECD-NFA, let us consider the regexp: 

“/(a|b)*(cd)/”. 

The various column vectors of next states represent transitions from a given current state to all the 

various next states to which a given class of inputs have the same effect on the automata. The top rows of Figure 

1 are the various classes of inputs used to represent the sets of vectors of next states on the ECD-NFA, while the 

columns are the vectors of next states transited to from each given current state to the various next states. We 

present an illustration of the sets of vectors of next states generated by Algorithm 1 when implemented for the 

regexp “/(a|b)*(cd)/”. 

Figure 1 shows the various sets of vectors of next states that are transited to for each current state 0-4. 

The classes of inputs have designated ECDs associated to each one. The NFA with their transitions labeled with 

ECDs is as shown in 0, while the NFA with transition labeled with sets of input classes is shown in 0. It then 

follows that a string of inputs such as: “caaacd” will be rejected by the ECD-NFA, while a string such as “aacd” 

or “bacd” will be accepted by the ECD-NFA as a matching string. 
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Figure 1: ECD-NFA transitions based on each input of the various ECDs. The    letter z represent all those 

characters in the ASCII character set that are not a,b,c, or d (or simply [^abcd]. 

 

C. The ECD-NFA Construction Process 

Based on the regexp “/(a|b)*(cd)/” and the ECDs used to represent the various vectors of next states as seen in 

Section III.A, the NFA shown in 0 is first constructed before minimizing it using a simpler process to create the 

more compact ECD-NFA as shown in 0 and seen in Algorithm 1. 0 shows the constructed ECD-NFA with 

ECDs assigned as the new inputs for the transitions.  

It is interesting to know that 0-4 all perform the same matching process, but in different reduced forms. 

The total number of states and transitions on the original NFA as seen in 0 have now been reduced from 11 

states to a mere 5 states as seen in 0-4. The number of transitions has also reduced from 13 transitions to as little 

as 7 transitions. This reduction shows that while minimizing an original non-ECD-NFA to the ECD-NFA, about 

45% of the original NFA states have been eliminated, while about 53% of the transitions in the original NFA 

have also been eliminated. This creates a more compressed and compact ECD-NFA driven by ECDs rather than 

the unclassified raw characters of the incoming strings of inputs. 

 
Figure 2: NFA for the regexp (a|b)*(cd) [15]. 

 
Figure 3: Minimized classified ECD-NFA with epsilon and self-transitions    

eliminated from 0 The letter z represent all those characters in the ASCII 

character set that are not a,b,c, or d (or simply put [^abcd]. 

 
Figure 4: ECD-NFA now with assigned ECDs. 

 

D. The Structure of the ECD-NFA     

The block diagram as seen in 0 summarizes the flow of the entire ECD-NFA design. The design phase 1 which is 

the software phase of the execution process is made up of blocks labelled as: Snort rulesets, PCRE regexps 

extractor, Parser, ECD-NFA constructor and optimizer, which is connected to units (a), (b), and (c). The last 

phase 2 which is the hardware phase is made up of the block labelled as the Hardware ECD-NFA (FPGA) 

builder. The regexps are first extracted from the community Snort rulesets database [30] by the regexp extractor 
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and automatically fed into the parser for automation. During the process of constructing the ECD-NFA, an n-byte 

class table function is called to create the ECDs, where n=2
k
, with k=1, and 2. The preliminary design generates 

results for a 1-byte ECD matching design. Each of the matching units contain a single regexp. The structure as 

seen in 0 represents the overall ECD-NFA approach. 

In order to optimize the ECD-NFA, the generated ECDs are used to drive the automata as seen in 0, 

which are now a compressed inputs. The unit labelled (b) in 0 performs the construction of the ECDs tables. The 

tables are later synthesized into a small piece of memory to perform table look-up operations against the 

compressed inputs of the unit labelled (a) seen in 0. The compressed ECDs are in BRAM format consisting of 

256x8 bit inputs.  These tables map each 1-byte input against the corresponding ECD value. 

Lastly, the BRAM module containing the ECDs together with the ECD-NFA are then translated from 

their Java-based code format to their equivalent VHDL codes by the VHDL function generator. The generated 

VHDL codes are saved and transferred into the hardware phase 2 for synthesis. In phase 2, the process of VHDL 

code synthesis and translation into circuit descriptions or netlists takes place. Afterwards, the process of PAR 

converts the circuit design into actual bitstreams for loading into a target FPGA for configuration. 

 

E. ECD-NFA Regular Expression Matching  Circuit Block 

The parser creates blocks of REMs used for matching regexps at once as earlier explained in Section II. Each 

REM block is made up of three sub-blocks. The first sub-block contains the ECDs in block labelled as (a) as 

seen in 0, while the second sub-block contains the decoding module used to decode the ECDs fetched from the 

BRAM. Once the ECDs are successfully identified, they are then released for onward passage in the form of 

equivalent bit-vector outputs. Each position in the bit-vector represents the required streamed ECDs. The bit-

vector serves as inputs necessary to drive the third sub-blocks. The third sub-block consists of the ECD-NFAs 

generated as seen in 0. 

Furthermore, 1-byte of character input is fetched from the testbench module as seen in 0. The input is 

then used to look-up the equivalent ECDs from the BRAM block. Only the 7-bit value equivalent of the input is 

required to be decoded in the decoding module. The decoding module decodes the input using a simple 

decoding process and circuits. The output of the module is then released as a 127 bit vector, with each bit 

position representing each of the matched 128 ECDs fetched from the BRAM block. 

 
Figure 5: An inner look at the software and hardware toolchain flow for ECD-NFA design. 

  

 
Figure 6: Block diagram of a 1-byte input ECD-NFA REME matching block. 
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The bit-vector output from the decoding module is then passed unto the NFA module labelled as ECD-

NFA to drive the automata for possible matching of the input strings. Each of the modular blocks in 0 is 

executed per clock cycle. The final output of the ECD-NFA module block is then encoded. To perform a 

matching across several REM blocks like the ones seen in Figure 6. The outputs stored as an encoded vectors of 

1-bit outputs are logically ANDed together. Table 1 contains the result of our preliminary tests. The acronym 

ECD-NFAnRE, where n = 1 as seen in Table 1 simply refers to “an ECD-NFA compiled with n regexps”, while 

the non-ECD-NFA is simply a naïve NFA design. 

 

F. Evaluation 

The ECD-NFA design is implemented using the Xilinx Vixtex-6 device synthesis tool. The ECD-NFA design 

requires only O(n) storage space for the ECDs and O(n
2
m) time to process each of the ECDs extracted from 

each given regexp. It takes the design O(nm) time to search through a text of length m. A data bus width of 8-

bits is used to compute the throughput measured in Gigabits per second (Gbps). But creating a design that 

generates high throughput while incurring minimal logic circuit cost has been a trade-off, and remains a 

challenge to REM-based designs. However, with clever algorithms, a balance can be achieved and the method 

for computing the throughput of matching is given as seen in Equation 1. 
 

Equation 1: Computation for Throughput of Matching. 

Throughput = (clock rate * data bus width)/1024  [7]   (1) 

 

The column labelled design as seen in Table 1 represents the type of design approach. Also, the table column 

heading labelled clock rate (MHz) as also seen in Equation 1 represents the maximum clock frequency that each 

design attained. Lastly, the column labelled as throughput is the rate at which 1-byte characters are matched per 

clock cycle and is measured in Gigabits per second (Gbps). The throughput represents the speed at which some 

workload is accomplished. The data bus width as seen in Equation 1 is measured as 8-bit wide character. The 

product of the clock rate (MHz) and the data bus width (8-bits) divided by 1024 bits produces the throughput of 

matching in Gbps. 

 

IV. Discussion 
We shall quickly compare and contrast between the various designs as seen in Table 1, in order to have a 

diagrammatic view of how they compare against one another. There are two charts in this section, with each 

representing the relationship between the various designs and their respective reported clock rates and 

throughput as seen in Table 1. Figure 7 shows the various results for the clock rates reported against each 

design. Our ECD-NFA1RE design‟s clock rate is about 22% higher than the next highest reported clock rate by 

[28], and about 78% higher than the least reported clock rate by [24] as seen in Figure 7. The throughput of the 

ECD-NFA design is also about 22% better than the next highest throughput reported by [28] and as seen in 

Figure 8. This indicates that the ECD-NFA design shows some promise especially if it is properly developed. 

The results from Table 1 are used to generate the two charts in Section IV.  

There is an explanation for the small throughput value 0.8 reported against their [24] design. The value 

of the throughput reported in [24] is the average throughput of each of the 16 separate 8-bit matching units that 

operate in unison. An 8-bit input is supplied to all the 16 matching units, which produce 1-bit output each or 16-

bit output altogether. Preliminary results obtained for the non-ECD-NFA, ECD-NFA and the other related 

approaches needed to perform the comparative analysis in Section IV is reported in Table 1. 

i. Table of Results 

Table 1: Table of Design Results [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design Clock Rate (MHz) Throughput (Gbps) 

Non-ECD-NFA1RE 312.50 2.50 

ECD-NFA1RE 460.00 3.68 

Bispo et al. [28] 362.50 2.9 

Clark and Schimmel [11] 250.00 2.00 

Mitra, Najjar and Bhuyan  [24] 100.78 0.8 
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ii. Chart for the Clock Rate 

 
Figure 7: Designs against the clock rate (MHz). 

 

iii. Chart for the Throughput 

 
Figure 8: Designs against the throughput (Gbps). 

 

V. Conclusion 
Figure 7 and Figure 8 show some promise for the novel ECD-NFA approach. However, the biggest challenge 

with the current ECD-NFA matching circuit is that, the decoding module process described in Section III.E 

consumes too many BRAMs, shift registers and other logic circuits. The other challenge with the design is that 

it takes too long to synthesize and PAR. Notwithstanding, the ability to successfully compress inputs and 

synthesize their respective tables into a small piece of memory to perform table look-up operations is indeed a 

great breakthrough for the design. Furthermore, research is still ongoing to extend this work, by creating a multi-

byte matching version of the design. The proposed newer version is to represent the more complex version of the 

ECD-NFA design. It is expected that the newer design will be capable of performing multi-character and multi-

pattern matching in parallel.  

As for the future work, there is a work in progress to be completed soon. The work seeks to address the 

complexity of the current ECD-NFA approach. The proposed approach will also create a design, capable 

carrying out parallel multiple-character and multiple-pattern matching. However, the issue of memory 

utilization will have to be addressed first to ensure efficiency in a separate work to be published. The general 

optimism is that the proposed multi-character and multi-pattern ECD-NFA design should be able to increase the 

current margin of the ECD-NFA design throughput by a scale of 4.  

Furthermore, there is still the challenge of having to reduce the processing, synthesis and PAR time of 

the entire design. This will be necessary as the design becomes more complex. In order to achieve that, some 

optimisation technique need to be developed further by totally re-writing the current algorithm. However, the 

positive aspect is that the current design is able to generate a throughput of 3.68 at a clock rate of 460.00 MHz, 

which shows a great potential and promise. The design was written and implemented using the Java 

programming language for the software phase 1, and synthesized and PAR on a Xilinx FPGA Virtex-6 device 

synthesis tool for the hardware phase 2 of the design. 
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