
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

Volume 6, Issue 6, Ver. II (Nov. - Dec. 2016), PP 87-95

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197

www.iosrjournals.org

DOI: 10.9790/4200-0606028795 www.iosrjournals.org 87 | Page

Implementation of Optimal Encoder Architecture for Long Polar

Codes

K.Supriya, Dr.G.Mamatha
1
(ECE, GRIET/ JNTUH,INDIA)

2
(ECE, GRIET/ JNTUH, INDIA)

Abstract: The polar encoding is one among the most effective error correcting code attributable to the

channel achieving property. It finds its application in communication, information theory. This coding technique

proposed by Eardal Arikan is significant because of its zero errors and simple architecture designed for

hardware implementation. Although the fully parallel encoder is intuitive and easy to implement, but it is not

suitable for long polar codes because of its hardware complexity. In this brief, we analyze the encoding process

in the viewpoint of very-large-scale integration and implement a efficient encoder architecture that is suitable

for long polar codes and effective in the hardware complexity. It can be applicable to the design of any polar

code and at any level of parallelism.

Keywords: Partially parallel encoder, long polar codes, VLSI implementation.

I. Introduction
Polar code is also brand new class of error correcting codes that incontrovertibly achieves the potential

of the underlying channels [1]. As a result of the data rate achieving property, the polar code is presently thought

of as a significant breakthrough to writing theory, and additionally the relevance of the polar code is being

investigated in many applications, as well as information storage devices. The polar code achieves the

underlying channel capacity, the property is essential since a good error correcting performance is obtained once

the code length is sufficiently long. To be close to the information rate, the code length got to be a minimum of

220 bits, and many of literature works introduced polar codes ranging from 210 to 215 to achieve sensible error-

correcting performances in addition, to the dimensions of a message protected by associate error correcting code

in storage systems in mostly 4096 bytes i.e, thirty 2768 bits, and is predicted to be long to 8192 bytes or sixteen

384 bytes inside the close to future. Although the polar code has been thought about being with low Complexity,

but it suffers from severe hardware complexity and long inactivity. Therefore, architecture that which will

efficiently beware of long polar codes is necessary to make the VLSI implementation feasible. Successive

cancelation(SC), secret writing has been traditionally used, and advanced secret writing algorithms like belief

propagation secret writing, list secret writing, and simplified SC square measure recently utilized. On the other

side, hardware architectures for polar coding have rarely been mentioned. Among a several manuscripts

explaining the hardware implementation [1] presented a simple encoding architecture that processes all the

message bits in a completely parallel manner. The fully parallel architecture is intuitive and simple to implement

but it is not acceptable for long polar codes as a result of excessive hardware complexity. Proposed encoder is

efficient in implementing a long polar encoder, as it can achieve better throughput with a simple hardware

complexity. Hence we present the encoding process in viewpoint of VLSI implementation.

II. Polar Encoding
The polar code utilizes the channel polarization development that each channel approaches either a

superbly reliable or a completely screaming channel as the code length goes to eternity over a combined channel

constructed with set of N identical sub channel [1]. As the reliability of each sub channel is thought as priori, K

most reliable sub channels are used to transmit information and the remaining sub channels are set to

predetermined values to construct a polar (N,K)code. Since the polar code belongs to the category of linear

block codes, the encoding process can be characterized by the generator matrix. The generator matrix for

code length N or is obtained by applying the nth kronecker power to the kernel matrix F= [1].Given

the generator matrix, the codeword is computed by x=u ,where u represent information vector arranged in a

natural order, and x represents codeword vector arranged in bit reversed order.

Implementation of Optimal Encoder Architecture for Long Polar Codes

DOI: 10.9790/4200-0606028795 www.iosrjournals.org 88 | Page

The encoding complexity of 0(NlogN) for a polar code of length N and take n stages when N= . For

instance a polar code with a length of 16 bits is enforced with 32 XOR gates and processed with 4 stages

within a total parallel encoder as shown in Fig1. The totally parallel encoder is intuitively designed and

supported on the generator matrix, however implementing such associate encoder becomes a significant burden

once an extended polar code is employed to achieve a good error correcting performance. The memory size and

also range of XOR gates increase as the code length increases in implementations.

Figure 1.Fully parallel architecture for 16 bit polar code

III. Proposed Polar Encoder

To design partially parallel encoder first the parallel encoding architecture is transformed to a folded form

[15],[18], after that the lifetime analysis[16] and register allocation unit[17] are applied to the folded

architecture. Lastly, the proposed parallel architecture for long polar codes is potrayed.

3.1. Folding Transformation

The folding transformation is widely used to save hardware resources by time multiplexing various

operations on functional unit. A data low graph corresponding to the fully parallel encoding process is shown in

Fig 2. Where node represents the kernel matrix operation F, and denotes the jth edge at the ith stage. Data

flow graph (DFG) of the all parallel polar encoder is comparable to that of the Fast Fourier transform [18], [19]

except that the polar encoder works on the kernel matrix in place of the butterfly operation. Given the 16 bit

DFG, the 4-parallel folded architecture that processes 4 bits at a time can be accomplished with two functional

Implementation of Optimal Encoder Architecture for Long Polar Codes

DOI: 10.9790/4200-0606028795 www.iosrjournals.org 89 | Page

units in each stage. Thus the functional unit computes 2 bits at a time. In the folding transformation finding

folding sets, that represents the order of operations to be executed in a functional unit, is the most crucial design

factor [15]. To construct folding sets, all operations in the fully parallel encoding are initially classified as

separate folding sets. Since the input is in natural order, it is reasonable to alternatively distribute the operations

in the consecutive order. Hence each stage consists of two folding sets, each of that entirely odd or even

operation to be performed by a separate unit.

Figure 2. DFG of 16-bitpolar encoding

Taking the four parallel input sequence in a natural order, stage 1 has two folding sets

of{A0,A2,A4,A6} and {A1,A3,A5,A7}.Each folding sets contains four elements, and the position of an

element represents the operational order in the respective functional unit. At the beginning two functional units

for stage one execute A0 and A1 simultaneously, A2 and A3 next cycle, so forth. The folding sets of stage two

have the same order as those of stage 1,i.e.,{B0,B2,B4,B6}and {B1,B3,B5,B5},since the four parallel input

sequence of stage two is same as stage one .To determine the folding sets of another stage the functional unit

perform on a pair of inputs those indices differ by . In case of stage 3 two data inputs whose indices differ

by 4 are processed together, which means that operational distance of the corresponding data is two i,e the

functional unit computes two data inputs at a time. For instance, and that come from B0 and B2 are

inputs to C0.Both inputs should be valid for functional unit for processing the operations in stage 3 and to be are

aligned to the late input data. Cyclic shifting the folding sets right by one can be done by inserting one unit

delay time, it gives the full utilization of the functional units by overlapping next iterations .As a result, folding

sets{C6,C0,C2,C4}and {C7,C1,C3,C5}, of stage 3 are determined, where C6 is overlapped with A0 and B0 in

the next iteration. Likewise, the functional unit processes a pair of inputs whose indices differ by 8 in stage 4.

The folding sets of stage 4 are {D2, D4, D6, D0} and {D3, D5, D7, D1}.These are obtained by cyclic shifting

the previous stage 3 folding sets by two. Generally speaking, a stage whose index s is less than or equal to

Implementation of Optimal Encoder Architecture for Long Polar Codes

DOI: 10.9790/4200-0606028795 www.iosrjournals.org 90 | Page

P, where P is the level of parallelism, has the same folding sets determined by evenly interleaving the

operations in the consecutive order, and another stage whose index s is larger than P has the folding sets

obtained by cyclic shifting the previous folding sets of stage s-1 right by P.

 Consider the case with accurate delay when an edge from functional unit T to functional unit S has a

delay of d, the delay requirements for in the F-folded architecture can be calculated as

 Where t and s denote the position in the folding set corresponding to T and S, respectively. Equation

(1) is a simplified delay equation [15] derived by assuming that the kernel functional unit is not pipelined. For

the 4-folded architecture, the delay requirements, i.e., for 1≤ i≤ 3 and 0≤ j≤ 15 are review in Fig. 3. For

example, from B0 to C0 requires one delay so d = 0, t = 1, and s = 0. Some edges indicated by circles have

negative delays. For the folded architecture to be practical, the delay must be equal or larger than to zero for all

the edges. Retiming or Pipelining techniques can be applied to the fully parallel DFG in order to ensure that its

folded hardware has non negative delays. Negative delay of every edge should be adjusted by inserting at least

one delay element to make the value of equation (1) non negative. We have to make sure that the two inputs of

an operation pass through the same number of delay elements from the starting points If delay elements are

different, additional delays are inserted to make the paths have the same delay elements. In Fig. 3, for example,

four edges with zero delays are specially marked with negative zeros so additional delays are required due to the

mismatch of the number of delay elements. By inserting delay elements the DFG is pipelined, as shown in Fig.

2, where the dashed line indicates the pipeline cut set associated with 12 delay elements. For the pipelined DFG

D’ the delay requirements are recalculated based on equation (1) and shown at the below Fig. 3. As a

result, 8 functional units and 48 delay elements are enough to implement the 4-folded 4-parallel encoding

architecture based on the folding sets.

Figure 1. Original delay requirements D(wij) and recalculated delay requirements D’(wij)

Figure 2. Linear lifetime chart for w2j and w3j .

3.2. Lifetime Analysis and Register Allocation:

Although a folded architecture for 16-bit polar encoding is presented in the previous section, there is

room for minimizing the number of delay elements. The lifetime analysis [16] is applied to find the minimum

number of delay elements required to implementing the folded architecture. The lifetime of every variable is

Implementation of Optimal Encoder Architecture for Long Polar Codes

DOI: 10.9790/4200-0606028795 www.iosrjournals.org 91 | Page

represented in the linear lifetime chart illustrated in Fig. 4. The edges in stage 1has no delay elements, only

and are presented in Fig. 4. For instance, will live for two cycles as it is build at cycle 1 and consumed

at cycle 3. The number of variables live in each cycle is shown in the chart. According to lifetime chart the

number of live variables at the fourth or after clock cycles takes into account the next iteration and the current

iterations are overlapped. Thus, the number of live variables is 12, by using this 12 delay elements the folded

architecture can be implemented. After determination of the number of delay elements, each variable is

allocated to a register. For the above example, the register allocation is tabularized in Fig.5. In the register

allocation table [17], first row shows the all registers and every row report how the registers are allocated at the

corresponding cycle. According to 4-parallel processing, variables are carefully allocated to registers in a

forward manner. In Fig. 5, an arrow dictates that a variable stored in a register is migrated to another register,

and the variable with circle indicates that it remains same cycle. For example, and are propagated to

functional unit to execute operation that produces and At the same time, and are

propagated to another functional unit to execute operation that gives and . The moving of the

other variables can be find by following the register allocation table (Fig5).

Figure5. Register allocation table for w2j and w3j.

Finally, the following 4-parallel pipelined structure that consists of 8 functional units and 12 delay

elements projected to encrypt the 16-bit polar code is illustrated in Fig.6. A trial of 2 functional units takes in

place of one stage and thus the delay elements area unit to store variables in line with the register allocation

table. The hardware structures for stages 1 and 2 can be accomplished as no delay elements are present whereas

for stages 3 and 4 several multiplexers are placed before the functional units to configure the inputs of the

functional units. The present architecture constantly processes four samples per cycle in line with the folding

sets and the register allocation table. Note that proposed encoder takes an attempt of inputs in a natural order

and generates an attempt of outputs in bit reversed order as shown in Fig2. As a result the functional unit in the

proposed architecture processes an attempt of 2 bits at a time and pair of consecutive bits is regarded as a single

entity.

Figure 6. Proposed 4-parallel folded architecture for encoding the polar (16, K) codes.

Implementation of Optimal Encoder Architecture for Long Polar Codes

DOI: 10.9790/4200-0606028795 www.iosrjournals.org 92 | Page

IV. Analysis And Comparison
In the present architecture, the number of functional units required in the implementation depends on

the code length N and level of parallelism P. Since a functional unit representing the kernel matrix F processes

two bits at a time, each stage necessitates [P/2] functional units and the whole structure requires [P/2]

functional units in total.

Furthermore, the minimal number of delay elements required in the proposed architecture is N- P , as

explained below. The stages whose indices s are larger than require P delay blocks of length

whereas the other stages can be implemented with no delay elements. The total number of delay elements is

 +()

 = P ()

 = N – P (2)

 Given the hardware resources, the proposed partially parallel architecture can encode P bits per cycle.

V. Results
5.1. Techonology schematic of fully parallel encoder:

Implementation of Optimal Encoder Architecture for Long Polar Codes

DOI: 10.9790/4200-0606028795 www.iosrjournals.org 93 | Page

5.2 RTL schematic for Partially Parallel Encoder:

5.3. Simulation results:

Here, u[15:0] is input vector x[15:0]is output vector, clk signal, Input vector takes 6 cycles to produce the

output vector based on the register allocation table. Reset signal clears the any pending errors or events.

Implementation of Optimal Encoder Architecture for Long Polar Codes

DOI: 10.9790/4200-0606028795 www.iosrjournals.org 94 | Page

5.4. RTL schematic:

VI. Conclusion
This brief has conferred a new partially parallel encoder style developed for long polar codes. Many

improved techniques have been unit applied to derive the current style. Experimental results show that the

current style can save the hardware compared with that of fully parallel style. Therefore, the current style

provides a practical solution for encoding a long polar code.

References
[1]. E. Arikan, “Channel polarization: A method for constructing capacity achieving codes for symmetric binary-input memoryless

channels,” IEEETrans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2]. R.Mori and T. Tanaka, “Performance of polar codes with the construction using density evolution,” IEEE Commun. Lett., vol. 13,
no. 7, pp. 519– , Jul. 2009.

[3]. S. B. Korada, E. Sasoglu, and R. Urbanke, “Polar codes: Characterization of exponent, bounds, constructions,” IEEE Trans. Inf.

Theory, vol. 56, no. 12, pp. 6253–6264, Dec. 2010.
[4]. I. Tal and A. Vardy, “List decoding of polar codes,” in Proc. IEEE ISIT, 2011, pp. 1–5.

[5]. K. Chen, K. Niu, and J. Lin, “Improved successive cancellation decoding of polar codes,” IEEE Trans. Commun., vol. 61, no. 8, pp.

3100–3107, Aug. 2013.
[6]. G. Sarkis and W. J. Gross, “Polar codes for data storage applications,” in Proc. ICNC, 2013, pp. 840–844.

[7]. G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar decoders: Algorithm and implementation,” IEEE J. Sel.

Areas Commun., vol. 32, no. 5, pp. 946–957, May 2014.

[8]. G. Berhault, C. Leroux, C. Jego, and D. Dallet, “Partial sums generation architecture for successive cancellation decoding of polar

codes,” in Proc.IEEE Workshop SiPS, Oct. 2013, pp. 407–412.

[9]. B. Yuan and K. K. Parhi, “Low-latency successive-cancellation polar decoder architectures using 2-bit decoding,” IEEE Trans.
Circuits Syst.I, Reg. Papers, vol. 61, no. 4, pp. 1241–1254, Apr. 2014.

[10]. C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-cancellation decoder for polar codes,” IEEE

Trans. SignalProcess., vol. 61, no. 2, pp. 289–299, Jan. 2013.
[11]. A. J. Raymond and W. J. Gross, “Scalable successive-cancellation hardware decoder for polar codes,” in Proc. IEEE GlobalSIP,

Dec. 2013, pp. 1282–1285.

[12]. U. U. Fayyaz and J. R. Barry, “Low-complexity soft-output decoding of polar codes,” IEEE J. Sel. Areas Commun., vol. 32, no. 5,
pp. 958–966, May 2014.

[13]. B. Yuan and K. K. Parhi, “Low-latency successive-cancellation list decoders for polar codes with multibit decision,” IEEE Trans.

Very LargeScale Integr. (VLSI) Syst., DOI: 10.1109/TVLSI.2014.2359793, to be published.
[14]. C. Zhang and K. K. Parhi, “Latency analysis and architecture design of simplified SC polar decoders,” IEEE Trans. Circuits Syst. II,

Exp. Briefs, vol. 61, no. 2, pp. 115–119, Feb. 2014.

[15]. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation.Hoboken, NJ, USA: Wiley, 1999.
[16]. K. K. Parhi, “Calculation of minimum number of registers in arbitrary life time chart,” IEEE Trans. Circuits Syst. II, Analog Digit.

Signal Process., vol. 41, no. 6, pp. 434–436, Jun. 1995.

Implementation of Optimal Encoder Architecture for Long Polar Codes

DOI: 10.9790/4200-0606028795 www.iosrjournals.org 95 | Page

[17]. C. Wang and K. K. Parhi, “High-level DSP synthesis using concurrent transformations, scheduling, allocation,” IEEE Trans.

Comput.- Aided Design Integr. Circuits Syst., vol. 14, no. 3, pp. 274–295, Mar. 1995.

[18]. M. Ayinala, M. J. Brown, and K. K. Parhi, “Pipelined parallel FFT architectures via folding transformation,” IEEE Trans. Very
Large Scale Integr.(VLSI) Syst., vol. 20, no. 6, pp. 1068–1081, Jun. 2012.

[19]. C. Y. Wang, “MARS: A high-level synthesis tool for digital signal processing architecture design,” M.S. thesis, Dept. Elect. Eng.,

University of Minnesota, Minneapolis, MN, USA, 1992.
[20]. Hoyoung and In cheol park, ”partially parallel encoder architecture for long polar codes” IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 62, NO. 3, MARCH 2015.

