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Abstract: The main aim of this project is to design a low-power Content-Addressable Memory (CAM) by 

applying an  algorithm for associativity between the input tag and the address of the corresponding output data. 

This architecture is based on a recently developed sparse clustered networks using binary connections that on-

average eliminates most of the parallel comparisons which are performed during a search. Therefore, the 

dynamic energy consumption of this design will be less compared to conventional low-power CAM design. 

Given an input tag, this architecture will compute a minimum number of possibilities for the location of the 

matched tag and it will perform the comparisons on them to locate a single valid match. 
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I. Introduction 
Content Addressable Memory (CAM) is a type of memory which can be accessed using its contents 

rather than the explicit address. To access a particular entry in such memories, comparison between the search 

data word and previously stored entries is performed in parallel to find a match. Each stored entry is associated 

with a tag which is used in the comparison process. Once the search data word is applied to the input of a CAM, 

the matched data word will be retrieved within a single clock cycle if it exists. This great feature makes CAM a 

promising candidate for applications which require frequent and fast look-up operations, such as in translation 

look-aside buffers, database accelerators, network routers, image processing, parametric curve extraction, 

Hough transformation, Huffman encoding/decoding, virus detection Lempel–Ziv compression, and image 

coding. Due to the frequent and parallel search operations, CAMs require a significant amount of energy. CAM 

architectures typically make use of highly capacitive search lines (SLs), not causing them to be energy efficient 

when scaled. For example, this power inefficiency has constrained TLBs to be limited to not more than 512 

entries in current processors. The fully associative TLBs consume about 15% and 17% of the total chip power, 

in Hitachi SH-3 and Strong ARM embedded processors respectively. Consequently, the main research objective 

has been focused on minimizing the energy utilization without compromising the throughput. Energy saving 

opportunities have been discovered by applying either circuit-level techniques, architectural-level techniques, or 

the co-design of the two, some of which have been surveyed in [1]. 

A family of associative memories based on Sparse Clustered Networks has been recently introduced 

and is describes in [2]. These memories make it possible to store many short messages instead of few long 

messages as in the conventional Hopfield networks with significantly less computational complexity. 

Furthermore, a considerable amount of improvement is achieved in terms of efficiency (the number of 

information bits stored per memory bit). In this paper, a variation of this approach and the corresponding 

architecture are introduced to construct a classifier that will be trained with the association between a small 

portion of the input tags and the addresses of the corresponding output data. In this paper the term CAM refers 

to binary CAM (BCAM). The proposed architecture (SCN-CAM) consists of an SCN-based classifier coupled 

to an array of CAMs. The CAM-array is divided into several equally sized sub-blocks and each sub-block can 

be activated independently. Providing an input tag for a previously trained network, the classifier uses only a 

small portion of the tag (sub-tag) and predicts very few sub-blocks to be activated. Once the sub-blocks are 

activated, the tag is compared with few entries in them while keeping the rest deactivated and thus decreases the 

dynamic energy dissipation. 

 

II. Cam Review 
In a conventional CAM array, each entry consists of a tag that, if matched with the input, points to the 

location of the required data word in the static random access memory (SRAM) block. The actual data of 

interest is stored in the SRAM and a tag is just a reference to it. Therefore, when it is required to search for a 

data in the SRAM, it is sufficient to search for its corresponding tag. Consequently, the tag may be shorter than 

the SRAM-data and it requires fewer bit comparisons. An example of typical CAM array, having four entries of 

4 bits each, is shown in Fig. 1. A search data register is used to store the input data bits, this register applies the 
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search data on the differential search lines s (SLs), which are shared among the entries. Then, the search data is 

compared against all of the CAM entries. Every CAM-word is attached to a common match line (ML) among its 

constituent bits, which indicates, whether they match with the input bits or not. Since the MLs have high 

capacitance, a sense amplifier is typically considered for each ML to improve the performance of the search 

operation. 

The CAM can be configured using one of the two memory implementations: 1) SRL16E based CAM 

with a 16 clock cycle write operation and a one clock cycle search operation.2) Block RAM-based CAM with 

only  two clock cycles for write operation and one clock cycle for search operation [3]. Any of these two 

techniques can be used depending upon the application. 

 
 

 

 

 
 
 

Implementing a CAM using SRL16s makes use of many components found within each FPGA slice. 

As an example, a 4 x 1 CAM which is built using an SRL16E primitive and the MUXCY is shown in Fig.2. 

Adding more SRL16E/MUXCY pairs allows for extension of the CAM width and depth. 

 Energy reduction of CAMs by applying circuit level techniques are mostly based on the following 

strategies: 1) Decreasing the energy consumption of SL by disabling the precharge process of SLs when not 

necessary [5], [5]–[8] and 2) Decreasing the ML precharging, for example, by segmenting the ML, selectively 

precharging the first few segments and then propagating the precharge process for the next segments if and only 

if those first segments match [9]. This segmentation technique increases the delay as the number of segments is 

increased. A hybrid-type CAM integrates the low-power feature and high-performance of NAND and NOR type 

[10] respectively.  In the bank-selection architecture [11], [12], the CAM array is divided into B equally 

partitioned banks and are activated based on the value of extra bits of length log2(B) which are added to the 
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Figure 1. 4X4 CAM array 

Figure 2. Example of 4x1 CAM using SRL16E 
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search data word. These extra bits are decoded in order to determine the banks which must be selected. The 

drawback of this design is that the banks may overflow since the length of the words remains same for all the 

banks. For example, a 128k-entry CAM that incorporates 60-bit words and one additional bank-selection bit 

such that two banks result with 64k entries each. Therefore, each bank can have 260 possibilities causing an 

overflow probability that is higher compared with when not banked. This overflow would require additional 

circuitry that reduces the power saving opportunity since as a result multiple banks are activated concurrently 

[1]. The precomputation-based CAM (PBCAM) architecture (also known as one’s count) was introduced in 

[13]. PB-CAM divides the circuitry and the comparison process into two stages. First, it counts the number of 

ones in an input and then compares the result with that of entries using an additional CAM circuit that has the 

number of ones in the previously stored CAM-data. This activates a few MLs and deactivates the others. In the 

second stage, a modified hierarchy of CAM is used, which has reduced complexity, and has only one pull-down 

path instead of two compared with the conventional design. The modified architecture only considers 0 

mismatches instead of full comparison since the 1s have already been compared. The number of comparisons 

can be reduced to M ×log (N+2)+(M × N)/(N +1)bits, where M is the number of entries in the CAM and N is 

the number of bits per entry. In the proposed design, the possibility of reducing the number of comparisons to 

only N bits is demonstrated. Furthermore, in PB-CAM, the increase of the tag length affects the energy 

consumption, the delay, and also complicates the precomputation stage. 

 

III. SCN-CAM 
As shown in Fig. 3, the proposed architecture (SCN-CAM) consists of an SCN-based classifier, which 

is connected to a special-purpose CAM array. The classifier is at first trained with the association between the 

tags and the address of the data to be retrieved later. The proposed CAM array is based on a typical architecture, 

but is divided into several sub-blocks which can be activated independently. Therefore, it is also possible to train 

the network with the associativity between the tag and each CAM sub-block, if the number of desired sub-

blocks is known. However, in this paper, the focus is on a generic architecture that can be easily optimized for 

any number of CAM sub-blocks. 

Once an input tag is given to the SCN-based classifier, it predicts which CAM sub-block(s) need to be 

activated and thus saves the dynamic power by disabling the remaining sub-blocks. In this paper the possibility 

of reducing the number of comparisons to only one in average is shown. SCN-CAM uses only a portion of the 

actual tag to create or recover the association with the corresponding output. The operation of the CAM, on 

average, allows this reduction in the tag length. 

 
 
 

A large enough tag length permits SCN-CAM to always point to a single sub-block. However, the 

length of reduced-length tag affects the hardware complexity of the SCN-based classifier. The length of the 

reduced-length tag is not dependent on the length of the original tag but rather dependent on the number of 

CAM entries. 

 

3.1. SCN-CAM ALGORITHM 

As shown in Fig. 4, the SCN-based classifier consists of two parts: 1) PI and 2) PII. The neurons of PI 

are binary and correspond to the input tags. These neurons are grouped into c equally sized clusters of l neurons 

each. Processing of an input tag in the SCN-based classifier is either for training or decoding. In this paper, both 

for training and decoding purposes, the tag is reduced in length to q bits, then it is divided into c equally sized 

partitions of length κ bits each. Then each partition is mapped to the index of a neuron in its corresponding 
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Figure 3. Top level block diagram of SCN-CAM 
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cluster in PI, using a technique called direct binary-to-integer mapping from the tag portion to the index of the 

neuron to be activated. Therefore, l = 2
κ
. If l is the given parameter, the number of clusters is calculated as 

c=q/log2(l). 

 
 
 

Therefore, for simplicity in hardware implementation, we can choose q to be a multiple of κ. It is 

important to note that there are no connections between the neurons in PI. PII is a single cluster consisting of M 

neurons, which is equal to the number of CAM entries. Every neuron in PII, ni', is connected to each neuron in 

PI via a connection whose binary value is w(i,j)(i'), and thus equal to either 0 or 1. The value of w(i,j)(i') 

determines whether there exists an association between the j
th
 neuron in the i

th
 cluster in PI, and the i'

th
 neuron in 

PII. 

 

3.1.1. Network Training 

The binary values of the connections in the SCN-based classifier indicate associativity between the 

input tags and the corresponding outputs. During the process of training, the connection values are set, and these 

values are stored in a memory module such that they can be used to retrieve the address of the target data 

whenever it is required. A connection has a value 1 if there is associativity between the corresponding neuron in 

PI and a CAM entry, represented as a neuron in PII. For example, let us assume c = 2 and q = 6. For a reduced-

length input tag 101110 associated to the fourth entry in the CAM, first, we split this input into two parts: 101 

and 110. Then, each part is associated with a neuron in the corresponding cluster in PI:5 for 101 and 6 for 110. 

Finally, the connections from these neurons toward the target neuron, 4, in PII are added. That is, w(1,5)(4), and 

w(2,6)(4) is equal to 1. 

 

3.1.2. Network Update  

When an update is requested in SCN-CAM, retraining the entire SCN-based classifier with all the 

entries is not required. The reason lies in the fact that the output neurons of PII are independent from each other. 

Therefore, by deleting the connections from a neuron PII to the corresponding connections in PI, a tag can be 

deleted. In other words, to delete an entry, c connections are removed, one for each cluster. Adding new 

connections to the same neuron in PII, but to different neurons in PI, adds a new entry to the SCN-based 

classifier. Therefore the new entry can be added by adding new connections while keeping the previous 

connections for other entries in the network. 

 

3.1.3. Tag Decoding 

Once the SCN-based classifier has been trained, the ultimate objective after receiving the tag is to find 

out which neuron(s) in PII should be activated based on the given q bits of the tag. This process is called 

decoding in which the connection values are recalled from the memory. The decoding process is divided into 

four steps. 

1. An input tag is reduced in length to q bits and divided into c equally sized partitions. The q bits of the entire 

tag can be selected in such a way to reduce the correlation. 

2. Local Decoding (LD): A single neuron per cluster in PI is activated by using a direct binary-to-integer 

mapping from the tag portion to the index of the neuron to be activated. 

3. Global Decoding (GD): GD determines which neuron(s) in PII must be activated based on the results from 

LD and the stored connection values. If there is at least one active connection from each cluster in PI 

toward a neuron in PII, that neuron is activated. GD can be expressed as: 
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Figure 4. Representation of SCN-CAM with M entries and a reduced length tag of c x log_2 (l) 
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Where  and  represent logical OR and AND operations, respectively. v(i, j) is the value of the j

th
 neuron in the 

i
th 

cluster in PI, whereas vni’ is the value of the i’
th

 neuron in PII. 

4. If more than one neuron is activated in PII, then, the same number of word comparisons is required to 

detect the correct match. A single activated neuron means no further comparisons are required. Because we 

may not afford (in terms of the silicon area) to implement only one independently controlled CAM-row per 

neuron, the neurons in PII are grouped into ζ -neurons. Each group of neurons generates a single activation 

signal to enable parallel comparison operations in its corresponding CAM sub-block. A logical OR 

operation is thus performed on the value of each group of neurons resulting generation of M/ζ bits, which is 

also equal to the number of CAM sub-blocks. 

The number of compare-enabled sub-blocks (ψ) can be estimated by multiplying the probability that a sub-block 

can be enabled by the total number of sub-blocks: 

                                                       

     Below table describes all the Design parameters which are used to implement the CAM architecture. 

 

Table 1: Reference Design Parameters 
Parameter Value 

M 512 

N 128 

ζ 8 

 
64 

 
1 

q 9 

c 3 

l 8 

 

Where M is the number of CAM entries, N is the number of input bits, the neurons in PII are grouped 

into ζ- neurons, represents the number of CAM subblocks.  is the expected value of  where  is the 

random variable. q represents the reduced length tag, c is the number of clusters in PI and l represents the the 

number of neurons in each cluster. 

 

3.2. SCN-CAM Architecture 

In order to exploit the major feature of the SCN-based associative memory in the classification of the 

search data, a CAM array is divided into adequate number of compare-enabled sub-blocks such that, the number 

of subblocks are not too many to complicate the interconnections and are not too few to exploit to energy-saving 

opportunity of the SCN-based classifier. 

 

 
Figure 5. SCN Classifier 
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Consequently, the neurons in PII are grouped and ORed as shown in Fig. 5 to construct the compare-

enable signal(s) for the CAM array. Even the conventional CAM arrays need to be divided into multiple sub-

blocks since long bit lines and SLs can slow down the read, write, and search operations due to the presence of 

drain, gate, and wire capacitances. The number of sub-blocks, β, is equal to M/ζ, where M is the total number 

CAM entries, and ζ is the number of CAM-rows per sub-block. 

 

IV. Circuit implementation 
A top-level block diagram of the implementation of SCN-CAM is shown in Fig. 3. The optimum 

design parameters of any design depend on the speed, energy consumption, and area requirements. If the area 

budget is limited, smaller values of ζ is preferred with the cost of higher number of comparisons and thus the 

energy consumption. If the energy consumption is a critical design parameter, and the budget for the silicon area 

is more relaxed, a balance between a large enough q and a small ζ needs to be considered. A preferred set of 

design choices based on the experimental simulations on a 512-entry CAM is summarized in Table I. In SCN-

CAM, SRL16E based CAM structure is used. A complete circuit for SCN-CAM was implemented and 

simulated using Xilinx ISE simulator according to Table I parameters, including full dimensions of CAM arrays, 

SRAM arrays, logic gates. Two signals clk1 and clk2 are used in Fig. 5 to integrate the operation of SCN-based 

classifier and the CAM sub-blocks. 

 

V. Result analysis 
Simulation results of SCN-Classifier, and SCN-CAM are provided below. 

 
Figure 6. Simulation result of SCN classifier 

 
Here inputs are q1[8:0], q2[8:0], clk, we, and outputs are en[63:0]. When clk is high, only one en signal 

is high depending upon the input signal, so that only one sub block can be compare enabled disabling the rest, 

thus the comparison process becomes simpler. In Fig.6, LSB of en[63:0] is “1” which represents that the 

subblock-1 must be compare enabled and all other subbolcks must be disabled for comparison process. 

 

 
Figure 7. Simulation result of SCN CAM 

 
Here inputs are clk, clk_speed, input_data[127_0],  input_addr[5:0] and output is addr_out[5:0]. For a 

given input tag, address of the corresponding subblock is generated. In Fig.7, addr_out is “000000”, represents 

that the subblock-1 is active. Here two clock signals are used which are clk and clk_speed. clk is the delayed 

signal of clk_speed. 
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Figure 8. RTL Schematic of SCN CAM 

 

 
Figure 9. RTL Schematic of CAM using SRL16E 

 

Table 2: Synthesis reports of CAM and SCN-CAM 
S.No Parameter CAM SCN CAM 

1. 
2. 

3. 

4. 

Delay 
Memory 

No. of slice LUTs 

No. of fully used LUT FF pairs 

10.923ns 
275124Kb 

569 

79 

2.617ns 
258096Kb 

69 

24 

 
VI. Conclusion 

In this paper, the algorithm and the architecture of a low-power CAM are introduced. The proposed 

architecture (SCN-CAM) employs an associativity mechanism based on a recently developed family of 

associative memories based on SCNs. SCN-CAM is suitable for low-power applications, which require frequent 

and parallel look-up operations. SCN-CAM employs an SCN-based classifier, which is connected to several 

independently compare-enabled CAM sub-blocks, some of which are activated once a tag is presented to the 

SCN-based classifier. By using independent nodes in the output part of SCN-CAM’s training network, simple 

and fast updates can be generated without retraining the network entirely. With optimized lengths of the 

reduced-length tags, SCN-CAM removes most of the comparison operations given a uniform distribution of the 

reduced-length inputs. 
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