
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

Volume 7, Issue 4, Ver. II (Jul. - Aug. 2017), PP 56-65

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197

www.iosrjournals.org

DOI: 10.9790/4200-0704025665 www.iosrjournals.org 56 | Page

Design and Estimation of Power, Delay and Area for Parallel

Adder in VLSI Circuits using 45nm Technology

*
Sudhakar Alluri

1
, M.Dasharatha

2
, B.Rajendra Naik

3
, N.S.S.Reddy

4

1
SUDHAKAR ALLURI is with the Electronics and Communication Engineering Department, Osmania

University, Hyderabad, Telangana State, India,
2
M.Dasharatha, is with the Electronics and Communication Engineering Department, Osmania University,

Hyderabad, Telangana State, India,
3
B.Rajendra Naik is with the Electronics and Communication Engineering Department, Osmania University,

Hyderabad, Telangana State, India,
4
N.S.S.REDDY is with the Electronics and Communication Engineering Department, VCE, Osmania University

, Hyderabad, Telangana State, India,

Corresponding Author: Sudhakar Alluri

Abstract: Adders are main component used in Digital signal processing (DSP) and are usually used in the

digital integrated circuits. In Very-large-scale integration (VLSI) application delay, power and area are the

necessary factors for any digital circuits. This paper presents 8 bit parallel adder mapped in Cadence

Encounter(R) RTL Compiler Version v14.20-s013_1. By efficiently mapping in cadence tool, area, power and

delay are decreased. The results of mapping are viewed using RTL synthesis tool in cadence VIRTUOSO at

45nm technology 0.7V. Based on digital signal processing (DSP) architectures, the code for low power is

generated using 8 bit Carry Look ahead adder.

Keywords: High-Level Synthesis, Power Optimization, low Area, High Speed, low voltage, parallel adder, DSP,

VLSI

--- ----------

Date of Submission: 04-09-2017 Date of acceptance: 20-09-2017

--- ----------

I. Introduction
Integrated circuit (IC) by combining thousands of transistors into a single chip an (VLSI) Very-large-

scale integration is the development of building. VLSI produced in the 1970s when complex semiconductor and

communication technologies were being developed. The microprocessor is a VLSI device. Before the

introduction of VLSI technology most ICs had a limited set of performs they could function. An electronic circuit

might consist of a central processing unit (CPU), read-only memory(ROM), Random-access memory (RAM) and

other glue logic. VLSI lets IC authors add all of these into one chip.

The system specifications are processor Intel (R) core (TM) i5-4570

CPU@3.20GHz.,3.20GHz.Installed memory (RAM) 4 GB (usable memory is 3.43GB) and system type: 32-bit

operating system (OS). This paper are formed as follows Section II presents the literature review on 4 bit carry

look ahead adder, ALU and DSP Section III presents the methodology for 4 bit carry look ahead adder and also

discussed the low power analysis. Section IV shows the synthesis and simulation results and they are discussed

clearly, finally the paper is concluded with Section V.

II. Literature Review
The issue show that Computation-in-memory (CIM) architecture in general and the Computation-in-

memory (CIM) parallel adder in particularize have a high scalability. CIM parallel adder achieves at least two

forms of magnitude improvement in energy and area in comparison with a multicore-based parallel adder.

Moreover, due to a wide array of memristor design methods (such as Boolean logic), tradeoffs can be made

between the area, delay and energy consumption[1]. We have designed and demonstrated two versions of an

ERSFQ 8-bit parallel adder. ERSFQ is a resistor-free approach to dc biasing of Single Flux Quantum circuits

that dissipates orders of magnitude less power than a traditional RSFQ logic while operating and has zero

dissipation in inactive mode. The adders were designed for and fabricated with various fabrication processes,

including HYPRES’s 1.0-μm 4-layer 4.5 kA/cm2 process, HYPRES’s 0.25-μm 4-layer 4.5 kA/cm2 process,

HYPRES’s 0.25-μm 6-layer 4.5 kA/cm2 planar zed process, and MIT Lincoln Lab’s 0.25-μm4-layer 10 kA/cm2

process. These circuits serve as a good LSI fabrication process benchmark. We describe design and report on

test results of all versions of the adder [2].Computer performance improvement has in the previous decades

http://www.thesaurus.com/browse/decreased
mailto:CPU@3.20GHz.,3.20GHz.Installed

Design and Estimation of Power, Delay and Area for Parallel Adder in VLSI Circuits using 45nm

DOI: 10.9790/4200-0704025665 www.iosrjournals.org 57 | Page

mostly been the result of CMOS downscaling [3]. In recent years, CMOS downscaling is reaching its end [4],

[5] due to many challenges such as leakage power consumption [6], reliability [7], fabrication process and

turnaround time [8], test complexity [9], cost for mask and design and yield [10].

As a result, increasing the clock frequency is no longer possible; performance gain has to be achieved

through parallelism using multi core/many cores architectures. However, these architectures suffer from an

inefficient programmability and high energy consumption [11] due to a gap between memory and processing

unit speed, the so-called memory bottleneck [12], [13]. This is the core problem of the von Neumann store-

program computer concept [14] used in today’s computing systems, which leads to performance and energy

inefficiency, especially for data intensive applications. Note that today supercomputers are used to deal with

very limited number of data intensive (or compute intensive) applications; they are expensive, power hungry,

and area inefficient [15],[16],[17]. Hence, there is a need for a novel architecture that significantly reduces the

memory bottleneck, massively supports parallelism, and is energy efficient. To alleviate the memory bottleneck

and provide practical and efficient solutions for data intensive applications, many architectural solutions have

been proposed. They can be classified into three categories. First, processor-in-memory (PIM) was introduced as

an architecture that consists of a host CPU, main memory, and a number of accelerators close to the main

memory to prevent intensive communication with the CPU [18],[19],[20],[21]. Many implementations of this

architecture have been proposed, e.g., EXECUBE [22], IRAM [23], Flex RAM [24], DIVA [25], and Gilgamesh

[26]. However, the effectiveness of this architecture strongly depends on the technology to fabricate the

accelerators and main memories, which is called merged-logic DRAM. Unfortunately, this merged technology

still suffers from a high cost and low density [27], [28]. Second, near data architectures [29], [30] were proposed

as a PIM architecture but using the emerging nonvolatile memory technology, either using traditional processor

approach [31] or using novel neural computing approach [32].

III. Design Methodology
1. Parallel Adder

The speed limitation in the ripple adder arises from specifying couti as a function of the carry-out from

the previous lower-order stage couti – 1. A considerable increase in speed can be realized by expressing the

carry-out couti of any stage i as a function of the two operand bits, ai and bi, and the carry-in cin–1 to the low-

order stage0 of the adder, where the adder is an n-bit adder n–1 n–2 . . . n1 n0. The Karnaugh map that

represents the carry-out from stagei is shown in Figure 1 , which yields Equation 1.

Figure 1 Karnaugh map for the carry-out of stagei of an n-bit adder

1

1

'

11

'

1

'

)(







iiiiii

iiiiiiiiiiiii

cinbabacout

cinbacinbacinbacinbacout
.........................(1)

Equation 1 states that a carry will be generated whenever ai = bi = 1, or when either ai = 1 or bi = 1 — but not

both — with ci – 1 = 1. Note that if ai = bi = 1, then this represents a generate function, not a propagate

function. Verilog requires a propagate function to be the exclusive-OR of ai and bi. A technique will now be

presented that increases the speed of the carry propagation in a parallel adder. The carries entering all the bit

positions of the adder can be generated simultaneously by a carry lookahead generator. This results in a

constant addition time that is independent of the length of the adder. Two auxiliary functions are defined as

follows:

iii

iii

baPpropagate

baGGenerate



 '

The carry generate function, Gi, reflects the condition where a carry is generated at the ith stage. The

carry propagate function, Pi, is true when the ith stage will pass through (or propagate) the incoming carry cini

– 1 to the next higher stage i + 1. Equation 1 can now be restated as Equation 2.

Design and Estimation of Power, Delay and Area for Parallel Adder in VLSI Circuits using 45nm

DOI: 10.9790/4200-0704025665 www.iosrjournals.org 58 | Page

1

1

')(









iiii

iiiiii

cinPGcout

cinbabacout

.....................(2)
Equation 2 indicates that the generate Gi and propagate Pi functions for any carry out couti can be

obtained independently and in parallel when the operand inputs are applied to the n-bit adder. The equation can

be applied recursively to obtain a set of carry-out equations in terms of the variables Gi, Pi, and cin–1 for a 4-bit

adder, where cin–1 is the carry-in to the low-order stage 0 of the adder. The equations are shown in Equation 3.

1010111

100111

0111

1000

)(















cinPPGPGcout

cinPGPGcout

coutPGcout

cinPGcout

10120121222

101011222

1222

)(











cinPPPGPPGPGcout

cinPPGPGPGcout

coutPGcout

 (3)

1012301231232333

1012012122333

2333

)(











cinPPPPGPPPGPPGPGcout

cinPPPGPPGPGPGcout

coutPGcout

 (3)
Examples of the generate and propagate functions are shown in Figure 2 for two 8-bit operands in 2s

complement notation.

Figure 2 Examples of generate and propagate functions.

Design and Estimation of Power, Delay and Area for Parallel Adder in VLSI Circuits using 45nm

DOI: 10.9790/4200-0704025665 www.iosrjournals.org 59 | Page

Consider the expression for cout2 in Equation3 to further explain the generate and propagate functions to

produce a carry-out. Each of the product terms shown below will produce a carry-out of 1 for cout2.

It can be seen from Equation 3 that each carry is now an expression consisting of only three gate

delays: one delay each for the generate and propagate functions, one delay to AND the generate and propagate

functions, and one delay to OR all of the product terms. If a high-speed full adder is used in the implementation,

then the sum bits can be generated with only two gate delays, providing a maximum of only five delays for an

add operation. This technique provides an extremely fast addition of two n-bit operands. Equation 3 can be

restated more compactly as shown in Equation 4.

)4.......(....................)(
0

1

1

0 1

 






 


i

k

k

i

j

j

i

jk

kii cinPGPGCout

Group generate and propagate As n becomes large, the number of inputs to the high-order gates also becomes

large, which may be a problem for some technologies. The problem can be alleviated to some degree by

partitioning the adder stages into 4-bit groups. Additional auxiliary functions can then be defined for group

generate and group propagate, as shown in Equation 5 for group j, which consists of individual adder stages i

+ 3 through i. In this method, each group of four adders is considered as a unit with its individual group carry

sent to the next higher-order group.

)5.......(....................123

123233233

iiiij

iiiiiiiiiij

GPPPGPpropagateGroup

GPPPGPPGPGGGgenerateGroup









The group generate GGj signifies a carry that is generated out of the high-order (i + 3) bit position that

originated from within the group. The group propagate GPj indicates that a carry was propagated through the

group. The group carry can now be written in terms of the group generate and group propagate functions, as

shown in Equation 6. The term GCj – 1 is the carry-in to the group from the previous lowerorder group. If

groupj is the low-order group, then GCj – 1 = cin–1.

)6....(..........123 iiiij GPPPGPCarryGroup 

Section generate and propagate If the fan-in limitation is still a problem for very large operands, then the

group generate and group propagate concept can be extended to partition four groups into one section. For a 64-

bit adder, there would be four sections with four groups per section, with four full adders per group. Two

additional auxiliary functions can now be defined as section generate and section

propagate for section k , as shown in Equation7 .

)7.......(....................123

123123233

jjjjk

jjjjjjjjjjk

GGGPGPGPSPpropagateSection

GGGPGPGPGGGPGPGGGPGGSGgenerateSection









The section generate SGk signifies a carry that is generated out of the high-order (j + 3) position that

originated from within the section. The section propagate SPk indicates that a carry was propagated through the

section. The section carry can now be written in terms of the section generate and section propagate functions,

as shown in Equation 8. The term SCk – 1 is the carry-in to the section from the previous lower-order section. If

sectionk is the low-order section, then SCk – 1 = cin–1.

Design and Estimation of Power, Delay and Area for Parallel Adder in VLSI Circuits using 45nm

DOI: 10.9790/4200-0704025665 www.iosrjournals.org 60 | Page

)8....(..........1 Kkkk SCSPSGSCCarrySection

The carry-out of the high-order section SCk + 3 is also the carry-out of the adder and can be written as coutn –

1. This section has presented a method to increase the speed of addition by partitioning the adder into sections

and groups and developing carry lookahead logic within individual groups and within individual sections.

Figure 3 shows a block diagram of a 64-bit adder consisting of four sections, with four groups per section, and

four full adders per group.

Figure 3 Block diagram of a 64-bit parallel adder.

An 8-bit parallel adder will be designed using dataflow modeling..

Figure 4 An 8-bit parallel adder.

The block diagram of the adder is shown in Figure 4. The adder has two groups of four bits per group. The

high-order group has operands a[7:4] and b[7:4] that produce a sum of sum[7:4]; the low-order group has

operands a[3:0] and b[3:0] that produce a sum of sum[3:0]. The carry-in is cin; the carry-out is cout, which is

the carry-out of bit 7.

2. Low Power analysis

2.1 Dynamic Power

The total power of System on Chip design consists of dynamic power and static power [12].

Figure 5: Dynamic Power [12].

Design and Estimation of Power, Delay and Area for Parallel Adder in VLSI Circuits using 45nm

DOI: 10.9790/4200-0704025665 www.iosrjournals.org 61 | Page

Dynamic power is the power consumed when the material is in active mode. Whenever the device is in active

mode the power dissipated in the device is called as Static power, but the signal values are unchanged.

Figure 6: Short Circuit (Crow Bar) Power

vscIPSC *
……………………… (9)

2.2 Static Power

.

Figure 7: Leakage Power

Mainly the leakage currents are of four types. (Figure 7)

• Sub-threshold Leakage (ISUB): it is the current flows from drain to source which operates in inverse region.

• Gate Leakage (IGATE): it is the current flows from gate through oxide to the substrate .

• Gate Induced Drain Leakage (IGIDL): it is the current flows from drain to substrate caused by high voltage

effect in MOSFET due to VDG.

• Reverse Bias Junction Leakage (IREV): it is the current caused because of minor drift and creation of electron

hole pairs in the immobile region

ddStaticStatic vIP *
 (10)

fvcP ddLDynamic *** 2
 (11)

vIP SCitShortcircu *
 (12)

)*(DGSddLeakage IIIVP 
 (13)

LeakageDynamicTotal PPP 
 (14)

)*()***(2

DGSddddlTotal IIIVfvcP  
 (15)

Where  is a switching activity factor, Lc
 is a load capacitance, Vdd is a voltage (drain to drain), f is a

frequency, IS (source current), IG (Gate current) and ID (Drain current) .

IV. Synthesis And Simulation Results
This paper presents 8 bit parallel adder is mapped in Cadence Encounter(R) RTL Compiler Version

v14.20-s013_1.By efficiently mapping in cadence tool, area, power and delay are decreased. The results of

mapping are viewed using RTL synthesis tool in cadence VIRTUOSO at 45nm technology and 0.7V. Based on

DSP architectures, the code for low power is generated using 8bit parallel adder.

http://www.thesaurus.com/browse/decreased

Design and Estimation of Power, Delay and Area for Parallel Adder in VLSI Circuits using 45nm

DOI: 10.9790/4200-0704025665 www.iosrjournals.org 62 | Page

Figure 8 8bit parallel adder at 45nm technology

The proposed 8 bit parallel adder code is mapped in the cadence tool for simulation result of schematic

diagram figure 8.

Figure 9 8 bit parallel adder of Simulation Result at 45nm technology

In Figure 9, the design 8bit parallel adder simulation is observed after mapping into the cadence tool at 45nm

technology. The output of the 8bit parallel adder waveform has the frequency of 0.2 MHz

Figure 10 8 bit parallel adder of power attributes.

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder by observing the figure 10 8 bit

parallel adder of power attributes.

Design and Estimation of Power, Delay and Area for Parallel Adder in VLSI Circuits using 45nm

DOI: 10.9790/4200-0704025665 www.iosrjournals.org 63 | Page

Figure 118 bit parallel adder of net power usages

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the figure 11,

8 bit parallel adder of net power usage.

Figure 12 8 bit Parallel adder of instance power

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the figure 12, 8 bit

parallel adder of instance power.

Table 1 Area of 8 bit parallel adder using cadence tool at 45nm technology

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the table 1, area of 8

bit parallel adder.

Table 2 Power Dissipation of 8 bit parallel adder using cadence tool 45nm Technology

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the table 2, power

dissipation of 8 bit parallel adder.

Design and Estimation of Power, Delay and Area for Parallel Adder in VLSI Circuits using 45nm

DOI: 10.9790/4200-0704025665 www.iosrjournals.org 64 | Page

Table 3 Delay of 8 bit parallel adder using cadence tool 45nm technology

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the table 3, delays of

8 bit parallel adder.

Table 4:Comparison of Power, Delay and Area of 8 Bit Parallel adder Using Cadence 45nm
S.NO Leakage

Power(nW)

Dynamic

Power(nW)

Total Power(nW) Delay(ps) Area(nm2)

8bit Parallel adder 4.216 2293.053 2297.269 44 64

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the table 4,

Comparison of Power, Delay and Area of 8 Bit Parallel adder Using Cadence 45nm.

Figure 13 Comparison of Power, Delay and Area8 Bit Parallel adder Using Cadence 45nm Technology

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the figure 13,

Comparison of Power, Delay and Area of 8 Bit Parallel adder Using Cadence 45nm Technology.

V. Conclusion

In this paper, we proposed mapping style in cadence tool using 8 Bit Parallel adder. Table 1 gives 8 Bit

Parallel adder of area, table 2 represents 8 Bit Parallel adder of power dissipation, table 3 represents 8 Bit

Parallel adder of delay, table 4 gives Comparison of Power, Delay and Area of 8 Bit Parallel adder Using Cadence 45nm

Technology and power given is 0.7V. With the help of DSP architectures, the code is generated which results in low power.

Acknowledgements
We acknowledge the University Grants Commission (UGC) for its economic support in the form of

Rajiv Gandhi National Fellowship (RGNF) for the year 2015-16. We thank all the faculties in the Department of

(ECE) Electronics and Communications Engineering and the lab staff for their support.

Design and Estimation of Power, Delay and Area for Parallel Adder in VLSI Circuits using 45nm

DOI: 10.9790/4200-0704025665 www.iosrjournals.org 65 | Page

References
[1] Hoang Anh Du Nguyen, Lei Xie,Mottaqiallah Taouil, Razvan Nane,Said Hamdioui, and Koen Bertels,"On the Implementation of

Computation-in-Memory Parallel Adder",IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)

YSTEMS,1063-8210 © 2017 IEEE, www.ieee.org.

[2] Alex F. Kirichenko, Igor V. Vernik,John A. Vivalda, Rick T. Hunt, and Daniel T. Yohannes,"ERSFQ 8-Bit Parallel Adders as a
Process Benchmark",IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 25, NO. 3, JUNE

2015,http://www.ieee.org.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark silicon and the end of multicore scaling,” in Proc.
38th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2011, pp. 365–376.

[4] S. Kaxiras, Architecture at the End of Moore (Advances in Atom and Single Molecule Machines). Berlin, Germany: Springer-Verlag, 2013.

[5] Y. Taur, “CMOS design near the limit of scaling,” IBM J. Res. Develop., vol. 46, nos. 2–3, pp. 213–222, Mar. 2002.
[6] L. Rocks and R. P. Runyon, Chapter 20: The Energy Crisis (The Frontiers Collection). Berlin, Germany: Springer-Verlag, 2012.

[7] J. W. McPherson, “Reliability trends with advanced CMOS scaling and the implications for design,” in Proc. IEEE Custom Integr.

Circuits Conf. (CICC), Sep. 2007, pp. 405–412.
[8] S. Borkar, “Design perspectives on 22 nm CMOS and beyond,” in Proc. Design Autom. Conf. (DAC), Jul. 2009, pp. 93–94.

[9] G. Gielen et al., “Emerging yield and reliability challenges in nanometer CMOS technologies,” in Proc. Conf. Design, Autom. Test

Eur. (DATE), Mar. 2008, pp. 1322–1327.
[10] J. W. Janneck, “Computing in the age of parallelism: Challenges and opportunities,” Computer Science Department, Lund

University, in Multicore Day, 23 Sep 2013.

[11] K. Lahiri and A. Raghunathan, “Power analysis of system-level onchip communication architectures,” in Proc. Int. Conf.
Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS), Sep. 2004, pp. 236–241.

[12] S. A. McKee, “Reflections on the memory wall,” in Proc. Comput. Front., 2004, pp. 1–6.

[13] A. W. Burks, H. H. Goldstine, and J. von Neumann, “Preliminary discussion of the logical design of an electronic computing
instrument (1946),” in Perspectives on the Computer Revolution,Z. W. Pylyshyn and L. J. Bannon, Eds. Norwood, NJ, USA: Ablex

Publishing Corp., 1989, pp. 39–48. [Online]. Available: http://dl.acm.org/citation.cfm?id=98326.98337

[14] W. Xue et al., “Enabling and scaling a global shallow-water atmospheric model on Tianhe-2,” in Proc. IEEE 28th Int. Parallel
Distrib. Process. Symp., May 2014, pp. 745–754.

[15] X. Zhang et al., “Optimizing and scaling HPCG on tianhe-2: Early experience,” in Proc. 14th Int. Conf. Algorithms Archit. Parallel

Process. (ICA3PP), Dalian, China, Aug. 2014, pp. 28–41.
[16] G. Bell and J. Gray, “What’s next in high-performance computing?” Commun. ACM, vol. 45, no. 2, pp. 91–95, 2002.

[17] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. Mckenzie, “Computational RAM: Implementing processors in

memory,” IEEE Des. Test Comput., vol. 16, no. 1, pp. 32–41, Jan./Mar. 1999.
[18] J. Draper et al., “A prototype processing-in-memory (PIM) chip for the data-intensive architecture (DIVA) system,” J. VLSI Signal

Process. Syst. signal, Image Video Technol., vol. 40, no. 1, pp. 73–84, 2005.

[19] B. J. Jasionowski, M. K. Lay, and M. Margala, “A processor-in-memory architecture for multimedia compression,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 4, pp. 478–483, Apr. 2007.

[20] E. Upchurch, T. Sterling, and J. B. Brockman, “Analysis and modeling of advanced PIM architecture design tradeoffs,” in Proc.

Innov. Archit. Future Generat. High-Perform. Process. Syst., Jul. 2003, pp. 66–75.

[21] P. M. Kogge, “EXECUBE—A new architecture for scaleable MPPs,” in Proc. Int. Conf. Parallel Process. (ICPP), vol. 1. Aug. 1994,

pp. 77–84.

[22] D. Patterson et al., “A case for intelligent RAM,” IEEE Micro, vol. 17, no. 2, pp. 34–44, Mar./Apr. 1997.
[23] J. Torrellas, “FlexRAM: Toward an advanced intelligent memory system: A retrospective paper,” in Proc. IEEE Int. Conf. Comput.

Design (ICCD), Sep./Oct. 2012, pp. 3–4.

[24] J. Draper et al., “The architecture of the DIVA processing-in-memory chip,” in Proc. Int. Conf. Supercomput., 2002, pp. 1–12.
[25] T. L. Sterling and H. P. Zima, “Gilgamesh: A multithreaded processorin- memory architecture for petaflops computing,” in Proc.

ACM/IEEE Conf. Supercomput., Nov. 2002, p. 48.

[26] D. Keitel-Schulz and N. Wehn, “Issues in embedded DRAM development and applications,” in Proc. 11th Int. Symp. Syst. Synth.,
Dec. 1998, pp. 23–28.

[27] D. Keitel-Schulz and N. Wehn, “Embedded DRAM development: Technology, physical design, and application issues,” IEEE

Design Test Comput., vol. 18, no. 3, pp. 7–15, May 2001.
[28] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA: Near-DRAM acceleration architecture leveraging commodity

DRAM devices and standard memory modules,” in Proc. IEEE 21st Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2015,
pp. 283–295.

[29] S. H. Pugsley et al., “NDC: Analyzing the impact of 3D-stacked memory+logic devices on MapReduce workloads,” in Proc. IEEE

Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2014, pp. 190–200.
[30] R. Balasubramonian et al., “Near-data processing: Insights from a MICRO-46 workshop,” IEEE Micro, vol. 34, no. 4, pp. 36–42,

Jul./Aug. 2014.

[31] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars,” in Proc. ISCA,
Jun. 2016, pp. 14–26.

IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) is UGC approved Journal with Sl.

No. 5081, Journal no. 49363.

Sudhakar Alluri. “Design and Estimation of Power, Delay and Area for Parallel Adder in VLSI

Circuits using 45nm Technology.” IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

, vol. 7, no. 4, 2017, pp. 56–65.

