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Abstract: Adders are main component used in Digital signal processing (DSP) and are usually used in the 

digital integrated circuits. In Very-large-scale integration (VLSI) application delay, power and area are the 

necessary factors for any digital circuits. This paper presents 8 bit parallel adder mapped in Cadence 

Encounter(R) RTL Compiler Version v14.20-s013_1. By efficiently mapping in cadence tool, area, power and 

delay are decreased. The results of mapping are viewed using RTL synthesis tool in cadence VIRTUOSO at  

45nm technology 0.7V. Based on digital signal processing (DSP) architectures, the code for low power is 

generated using 8 bit Carry Look ahead adder.   
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I. Introduction 
Integrated circuit (IC) by combining thousands of transistors into a single chip an (VLSI) Very-large-

scale integration is the development of building. VLSI produced in the 1970s when  complex semiconductor and 

communication technologies were being developed. The microprocessor is a VLSI device. Before the 

introduction of VLSI technology most ICs had a limited set of performs they could function. An electronic circuit 

might consist of a central processing unit (CPU), read-only memory(ROM), Random-access memory (RAM)  and 

other glue logic. VLSI lets IC authors  add all of these into one chip. 

The system specifications are processor Intel (R) core (TM) i5-4570 

CPU@3.20GHz.,3.20GHz.Installed memory (RAM) 4 GB (usable memory is 3.43GB) and system type: 32-bit 

operating system (OS). This paper are formed as follows Section II presents the literature review on 4 bit carry 

look ahead adder, ALU and DSP Section III presents the methodology for 4 bit carry look ahead adder and  also 

discussed the low power analysis. Section IV shows the synthesis and simulation results and they are discussed 

clearly, finally the paper is concluded with Section V. 

 

II. Literature Review 
The issue show that Computation-in-memory (CIM) architecture in general and the Computation-in-

memory (CIM) parallel adder in particularize have a high scalability. CIM parallel adder achieves at least two 

forms of magnitude improvement in energy and area in comparison with a multicore-based parallel adder. 

Moreover, due to a wide array of memristor design methods (such as Boolean logic), tradeoffs can be made 

between the area, delay and energy consumption[1]. We have designed and demonstrated two versions of an 

ERSFQ 8-bit parallel adder. ERSFQ is a resistor-free approach to dc biasing of Single Flux Quantum circuits 

that dissipates orders of magnitude less power than a traditional RSFQ logic  while operating and has zero 

dissipation in inactive mode. The adders were designed for and fabricated with various fabrication processes, 

including HYPRES’s 1.0-μm 4-layer 4.5 kA/cm2 process, HYPRES’s 0.25-μm 4-layer 4.5 kA/cm2 process, 

HYPRES’s 0.25-μm 6-layer 4.5 kA/cm2 planar zed process, and MIT Lincoln Lab’s 0.25-μm4-layer 10 kA/cm2 

process. These circuits serve as a good LSI fabrication process benchmark. We describe design and report on 

test results of all versions of the adder [2].Computer performance improvement has in the previous decades 
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mostly been the result of CMOS downscaling  [3]. In recent years, CMOS downscaling is reaching  its end [4], 

[5] due to many challenges such as leakage power consumption [6], reliability [7], fabrication process and 

turnaround time [8], test complexity [9], cost for mask and design  and yield [10].  

As a result, increasing the clock  frequency is no longer possible; performance gain has to be achieved 

through parallelism using multi core/many cores architectures. However, these architectures suffer from an 

inefficient  programmability and high energy consumption  [11]  due to a gap between memory and processing 

unit speed, the so-called memory bottleneck  [12], [13]. This is the core problem of the von Neumann store-

program computer  concept [14] used in today’s computing systems, which leads to performance and energy 

inefficiency, especially for data intensive applications. Note that today supercomputers are  used to deal with 

very limited number of data intensive (or compute intensive) applications; they are expensive, power hungry, 

and area inefficient [15],[16],[17]. Hence, there is a need for a novel architecture that significantly reduces the 

memory bottleneck, massively supports parallelism, and is energy efficient. To alleviate the memory bottleneck 

and provide practical and efficient solutions for data intensive applications, many architectural solutions have 

been proposed. They can be classified into three categories. First, processor-in-memory (PIM) was introduced as 

an architecture that consists of a host CPU, main memory, and a number of accelerators close to the main 

memory to prevent intensive communication with the CPU [18],[19],[20],[21]. Many implementations of this 

architecture have been proposed, e.g., EXECUBE [22], IRAM [23], Flex RAM [24], DIVA [25], and Gilgamesh 

[26]. However, the effectiveness of this architecture strongly depends on the technology to fabricate the 

accelerators and main memories, which is called merged-logic DRAM. Unfortunately, this merged technology 

still suffers from a high cost and low density [27], [28]. Second, near data architectures [29], [30] were proposed 

as a PIM architecture but using the emerging nonvolatile memory technology, either using traditional processor 

approach [31] or using novel neural computing approach [32]. 

 

III. Design Methodology 
1. Parallel Adder 

The speed limitation in the ripple adder arises from specifying couti as a function of  the carry-out from 

the previous lower-order stage couti – 1. A considerable increase in speed can be realized by expressing the 

carry-out couti of any stage i as a function of  the two operand bits, ai and bi, and the carry-in cin–1 to the low-

order stage0 of the  adder, where the adder is an n-bit adder n–1 n–2 . . . n1 n0. The Karnaugh map that  

represents the carry-out from stagei is shown in Figure 1 , which yields Equation 1. 

 
Figure 1 Karnaugh map for the carry-out of stagei of an n-bit adder 
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Equation 1 states that a carry will be generated whenever ai = bi = 1, or when either ai = 1 or bi = 1 — but not 

both — with ci – 1 = 1. Note that if ai = bi = 1, then this represents a generate function, not a propagate 

function. Verilog requires a propagate  function to be the exclusive-OR of ai and bi. A  technique will now be 

presented that  increases the speed of the carry propagation in a parallel adder. The carries entering all  the bit 

positions of the adder can be generated simultaneously by a carry lookahead  generator. This results in a 

constant addition time that is independent of the length of the adder. Two auxiliary functions are defined as 

follows: 
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The carry generate function, Gi, reflects the condition where a carry is generated at the ith stage. The 

carry propagate function, Pi, is true when the ith stage will pass through (or propagate) the incoming carry cini 

– 1 to the next higher stage i + 1. Equation 1 can now be restated as Equation 2.  
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Equation 2 indicates that the generate Gi and propagate Pi functions for any carry out couti can be 

obtained independently and in parallel when the operand inputs are applied to the n-bit adder. The equation can 

be applied recursively to obtain a set of carry-out equations in terms of the variables Gi, Pi, and cin–1 for a 4-bit 

adder, where cin–1 is the carry-in to the low-order stage 0 of the adder. The equations are shown in Equation 3. 
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Examples of the generate and propagate functions are shown in Figure 2 for two 8-bit operands in 2s 

complement notation. 

 
Figure 2 Examples of generate and propagate functions. 
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Consider the expression for cout2 in Equation3  to further explain the generate and propagate functions to 

produce a carry-out. Each of the product terms shown below will produce a carry-out of 1 for cout2. 

 

 
It can be seen from Equation 3 that each carry is now an expression consisting of  only three gate 

delays: one delay each for the generate and propagate functions, one delay to AND the generate and propagate 

functions, and one delay to OR all of the product terms. If a high-speed full adder is used in the implementation, 

then the sum bits can be generated with only two gate delays, providing a maximum of only five delays for an 

add operation. This technique provides an extremely fast addition of two n-bit operands. Equation 3  can be 

restated more compactly as shown in Equation 4. 
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Group generate and propagate As n becomes large, the number of inputs to the high-order gates also becomes 

large, which may be a problem for some technologies. The problem can be alleviated to some degree by 

partitioning the adder stages into 4-bit groups. Additional auxiliary functions can then be defined for group 

generate and group propagate, as shown in Equation 5  for group j, which consists of  individual adder stages i 

+ 3 through i. In this method, each group of four adders is considered as a unit with its individual group carry 

sent to the next higher-order group. 
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The group generate GGj signifies a carry that is generated out of the high-order (i + 3) bit position that 

originated from within the group. The group propagate GPj indicates that a carry was propagated through the 

group. The group carry can now be written in terms of the group generate and group propagate  functions, as 

shown in Equation 6. The term GCj – 1 is the carry-in to the group from the previous lowerorder group. If 

groupj is the low-order group, then GCj – 1 = cin–1. 

)6....(..........123 iiiij GPPPGPCarryGroup   

Section generate and propagate If the fan-in limitation is still a problem for very large operands, then the 

group generate and group propagate concept can be extended to partition four groups into one section. For a 64-

bit adder, there would be four sections with four groups per section, with four full   adders per group. Two 

additional auxiliary functions can now be defined as section generate and section 

propagate for section k , as shown in Equation7 . 
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The section generate SGk signifies a carry that is generated out of the high-order (j + 3) position that 

originated from within the section. The section propagate SPk  indicates that a carry was propagated through the 

section. The section carry can now be written in terms of the section generate and section propagate functions, 

as shown in Equation 8. The term SCk – 1 is the carry-in to the section from the previous lower-order section. If 

sectionk is the low-order section, then SCk – 1 = cin–1. 
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The carry-out of the high-order section SCk + 3 is also the carry-out of the adder  and can be written as coutn – 

1. This section has presented a method to increase the speed of addition by partitioning the adder into sections 

and groups and developing  carry lookahead logic within individual groups and within individual sections. 

Figure 3 shows a block diagram of a 64-bit adder consisting of four sections, with four groups per section, and 

four full adders per group. 

 
Figure 3 Block diagram of a 64-bit parallel adder. 

An 8-bit parallel adder will be designed using dataflow modeling.. 

 
Figure 4 An 8-bit parallel adder. 

The block diagram of the adder is shown in Figure 4. The adder has two groups of four  bits per group. The 

high-order group has operands a[7:4] and b[7:4] that produce a sum of sum[7:4]; the low-order group has 

operands a[3:0] and b[3:0] that produce a sum of sum[3:0]. The carry-in is cin; the carry-out is cout, which is 

the carry-out of bit 7. 

2. Low Power analysis 

2.1 Dynamic Power 

The total power of System on Chip design consists of dynamic power and static power [12].  

 

 
 

Figure 5: Dynamic Power [12]. 
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Dynamic power is the power consumed when the material is in active mode. Whenever the device is in active 

mode the power dissipated in the device is called as Static power, but the signal values are unchanged. 

 
Figure 6: Short Circuit (Crow Bar) Power 

 

vscIPSC *
……………………… (9) 

2.2 Static Power 

.  

Figure 7: Leakage Power 

Mainly the leakage currents are of four types.  (Figure 7) 

• Sub-threshold Leakage (ISUB): it is the current flows from drain to source which operates in inverse region. 

• Gate Leakage (IGATE): it is the current flows from gate through oxide to the substrate . 

• Gate Induced Drain Leakage (IGIDL): it is the current flows from drain to substrate caused by high voltage 

effect in MOSFET due to VDG. 

• Reverse Bias Junction Leakage (IREV): it is the current caused because of minor drift and creation of electron 

hole pairs in the immobile region 

ddStaticStatic vIP *
                                                       (10) 

fvcP ddLDynamic *** 2
                                         (11) 

vIP SCitShortcircu *
                                                 (12) 

)*( DGSddLeakage IIIVP 
                                (13) 

LeakageDynamicTotal PPP 
                                       (14) 

)*()***( 2

DGSddddlTotal IIIVfvcP  
         (15) 

Where  is a switching activity factor, Lc
 is a load capacitance, Vdd is a voltage (drain to drain), f is a 

frequency, IS (source current), IG (Gate current) and ID (Drain current) . 

 

IV. Synthesis And Simulation Results 
This paper presents 8 bit parallel adder is mapped in Cadence Encounter(R) RTL Compiler Version 

v14.20-s013_1.By efficiently mapping in cadence tool, area, power and delay are decreased. The results of 

mapping are viewed using RTL synthesis tool in cadence VIRTUOSO at 45nm technology and 0.7V. Based on 

DSP architectures, the code for low power is generated using 8bit parallel adder. 
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Figure 8 8bit parallel adder at 45nm technology 

 

The proposed  8 bit parallel adder  code is mapped in the cadence tool for simulation result of  schematic 

diagram figure 8. 

 
Figure 9 8 bit parallel adder of  Simulation Result at 45nm technology 

 

In Figure 9, the design 8bit parallel adder simulation is observed after mapping into the cadence tool at 45nm 

technology. The output of the 8bit parallel adder waveform has the frequency of 0.2 MHz  

 

 
Figure 10 8 bit parallel adder of  power attributes.  

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder by observing the figure 10 8 bit 

parallel adder of  power attributes. 
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Figure 118 bit parallel adder of  net power usages  

 

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the figure 11,  

8 bit parallel adder of  net power usage. 

 
Figure   12 8 bit Parallel adder of  instance power  

 

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the figure 12, 8 bit 

parallel adder of  instance power. 

 

Table 1 Area of  8 bit parallel adder using cadence tool at 45nm technology 

 
We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the table 1, area of 8 

bit parallel adder. 

Table 2 Power Dissipation of  8 bit parallel adder using cadence tool 45nm Technology 

 

 
We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the table 2, power 

dissipation of 8 bit parallel adder. 
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Table 3 Delay of  8 bit parallel adder  using cadence tool 45nm technology 

 
 

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the table 3, delays of  

8 bit parallel adder. 
 

Table 4:Comparison of Power, Delay and Area of  8 Bit Parallel adder Using Cadence 45nm 
S.NO Leakage 

Power(nW) 

Dynamic 

Power(nW) 

Total Power(nW) Delay(ps) Area(nm2) 

8bit Parallel adder 4.216 2293.053 2297.269 44 64 
 

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the table 4, 

Comparison of Power, Delay and Area of  8 Bit Parallel adder Using Cadence 45nm. 
 

 
Figure 13 Comparison of Power, Delay and Area8 Bit Parallel adder Using Cadence 45nm Technology 

 

We proposed mapping style in cadence tool 45nm using 8 bit parallel adder. By observing the figure 13, 

Comparison of Power, Delay and Area of  8 Bit Parallel adder Using Cadence 45nm Technology. 

 

V. Conclusion 

In this paper, we proposed mapping style in cadence tool using 8 Bit Parallel adder. Table 1 gives 8 Bit 

Parallel adder of area, table 2 represents 8 Bit Parallel adder of power dissipation, table 3 represents 8 Bit 

Parallel adder of delay, table 4 gives  Comparison of Power, Delay and Area of  8 Bit Parallel adder Using Cadence 45nm 

Technology and power given is 0.7V. With the help of DSP architectures, the code is generated which results in low power. 
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