
Preparation of N-arylmaleimides with PPh₃-CBrCl₃ as reagent

Areej Hashim, Thies Thiemann*

Department of Chemistry, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates

Abstract: N-Arylmaleimides have been prepared from maleic acid monoaryl amides by the action of PPh_3 -CBrCl₃ in the presence of trimethylamine using acetonitrile as solvent. **Keywords:** Intramolecular imidation, modified Appel reagent, UV-VIS spectroscopy

Date of Submission: 17-09-2019

Date of Acceptance: 02-10-2019

I. Introduction

N-substituted maleimides **1** are versatile dienophiles in [4+2]-cycloaddition reactions [1,2] and reactive Michael acceptors [3,4]. Also, maleimides have been used as monomers in polymerization reactions to polyimides [5-8], which function as high temperature resins. The polymers are obtained through iterative cycloaddition reactions [9,10], Michael addition [11], or by free-radical mechanisms [12], where especially *ortho*-substituted maleimides can act as radical initiators under photoirradiation [13]. In addition, maleimides have been used as starting materials in tumour-drug research [4] and as linker units in further biochemical studies [14,15]. In their own right, *N*-aryImaleimides have been found to be fungicidal vs. *Candida albicans* and other *Candida* species [16].

N-Arylmaleimides 1 can be synthesized in a number of ways, where for many of the methods maleic anhydride (2) is the starting material. One of the most commonly used methods is a two step approach where anilines are reacted with maleic anhydride (2) first to give maleanilic acids 4 (see Scheme 1). In the next step maleanilic acid is reacted with NaOAc/Ac₂O, where acetic anhydride (Ac₂O) is also used as the solvent [17-19]. Other methods involve the ring closure of maleanilic acids 4 to N-arylmaleimides 1 utilizing the reagents acetyl chloride / triethylamine [20], trimethyl orthoacetate / triethylamine [21], or methanesulfonic acid in *n*-butanol [22]. Alternatively, there are limited ways to produce N-arylmaleimides 1 directly from maleic anhydride (2) via the reaction with anilines 3 such as when utilizing HMDS/ZnBr₂ [23] or $(NH_4)_2S_2O_8$ -DMSO [24] from the reaction of maleic acid with anilines 3 in the presence of phosphorus pentoxide [25]. In our previous interest to utilize N-arylmaleimides as dienophiles [2,26], we prepared the compounds via the more common method mentioned above, using NaOAc/Ac₂O, but noted that during the work-up the necessary hydrolysis and subsequent neutralization of the excess amount of Ac₂O with Na₂CO₃ produced a lot of CO₂. As we were submitting the final product mixtures to a rapid column chromatography to obtain highly pure N-arylmaleimides rather than relying on fractional crystallization, we were also open to develop any new synthetic method that would equally necessitate a chromatographic separation as the final purification step. At the same time we were looking at the possibility of using BrCCl₃-PPh₃ as reagent to prepare amides and esters from carboxylic acids [27], and it was a natural continuation of this study to investigate whether the preparation of imides from carboxylic acids using BrCCl₃-PPh₃ would also be possible. Here, we report on the preparation of Narylmaleimides 1 from maleanilic acids 4 with BrCCl₃-PPh₃ as reagent.

Fig. 1. Structure of *N*-arylmaleimide 1 as target structure.

II. Experimental

General. – General remarks. - Melting points were measured on a Stuart SMP 10 melting point apparatus and are uncorrected. Infrared spectra were measured with a Thermo/Nicolet Nexus 470 FT-IR ESP Spectrometer. ¹H and ¹³C NMR spectra were recorded with a Varian 400 NMR spectrometer (¹H at 395.7 MHz, ¹³C at 100.5 MHz). The assignments of the carbon signals were aided by DEPT 90 and DEPT 135 experiments (DEPT = Distortionless Enhancement by Polarisation Transfer). The chemical shifts are relative to TMS (solvent CDCl₃, unless otherwise noted). Mass spectra were measured with a JMS-01-SG-2 spectrometer, and with an Agilent QTOF 6540 UHD. Column chromatography was performed on recycled silica gel (S, 0.063 mm – 0.1 mm, Riedel de Haen and Merck grade 9385). All silica gel is re-used upon thermal recycling [28]. CHN-analysis was performed on a LECO TruSpec Micro instrument. Analytical thin layer chromatography (TLC) was carried out on silica on TLC Alu foils from Fluka (with fluorescent indicator at λ = 254 nm). Triethylamine was dried over solid KOH and distilled.

Chemicals. – Maleic anhydride (2) (Riedel de Haen), aniline (3a) (BDH), *o*-toluidine (3c) (Merck-Schuchardt), *p*-toluidine (3d) (Merck-Schuchardt), *p*-anisidine (3e) (Fluka), 2,4-dimethoxyaniline (3f) (Aldrich), 2,4-difluoroaniline (3g) (Aldrich), 2,6-difluoroaniline (3h) (Aldrich), 4-nitroaniline (3i) (Merck-Schuchardt), 2,6-dichloro-4-nitroaniline (Fluka), 4-chloroaniline (3j) (BDH), 4-cyanoaniline (4-aminobenzonitrile, 3k) (Aldrich), benzylamine (3L) (Fluka), triphenylphosphine (PPh₃) (Aldrich), bromotrichloromethane (Aldrich) were acquired commercially and were used without any further purification. 4-Bromoaniline (3b) was prepared by bromination of aniline with bromine-dioxane complex in aniline [29]. Maleic acid monoarylamides (maleanilic acids) 4a-4k were prepared by reaction of the corresponding anilines with maleic anhydride (2) in THF as solvent (rt, 24h, Scheme 1). Maleic acid benzylamide (4L) was synthesized from maleic anhydride (2) and benzylamine (3L) in THF (ambient temperature, 3h, Scheme 1). It was attempted to obtain maleic acid 2,6-dichloro-4-nitroanilide in the same way [30], i.e. by reaction of maleic anhydride (2) with 2,6-dichloro-4-nitroaniline in THF and in DMF at both rt and elevated temperatures (60 °C, up to 2 days), however, in our hands the reaction did not proceed to give the respective maleanilic acid.

General procedure: *N*-Phenylmaleimide (1a). - A solution of triphenylphosphine (1.89 g, 7.21 mmol) and bromotrichloromethane (BrCCl₃, 1.56 g. 7.86 mmol) in dry CH₃CN (20 mL) was stirred at rt for 30 min., during which in turned dark yellow. Then, maleanilic acid (4a) (1.10 g, 5.76 mmol) was added, and the resulting mixture was stirred at 70°C for 40 min. Thereafter, dry triethylamine (750 mg, 7.42 mmol) was added dropwise over 15 min., and the resulting mixture was stirred at 70°C for 8h. The cooled mixture was added to water (50 mL), and the ensuing mixture was extracted with CH₂Cl₂ (3 X 35 mL). The combined organic phase was dried over anhydrous MgSO₄ and evaporated *in vacuo*. The residue was subjected to rapid column chromatography on silica gel (CH₂Cl₂) to give **1a** (828 mg, 83%) a yellow, crystalline solid, mp. 88 – 89°C (85 - 87 °C [Aldrich Catalogue 2005/2006]); v_{max} (KBr/cm⁻¹) 3093, 1716, 1598, 1586, 1508, 1394, 1146, 1072, 1031,

1009, 832, 757, 695, 629, 586, 497, 466; $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.84 (2H, s), 7.31 – 7.39 (3H, m), 7.44 – 7.49 (2H, m); $\delta_{\rm C}$ (100.5 MHz, CDCl₃) 126.1 (2C, CH), 128.0 (CH), 129.2 (2C, CH), 131.2 (C_{quat}), 134.2 (2C, CH), 169.5 (2C, C_{quat}, CO).

N-(4-Bromophenyl)maleimide (1b). - pale yellow solid (1.59 g, 6.3 mmol, 58%), mp. 132 °C (Lit. 128 – 130 °C [31.32]); v_{max} (KBr/cm⁻¹) 3090, 1721, 1492, 1400, 1386, 1149, 1066, 831, 707, 686, 585, 501; δ_{H} (400 MHz, CDCl₃) 6.85 (2H, s), 7.24 (2H, d, ³*J* = 8.8 Hz), 7.58 (2H, d, ³*J* = 8.8 Hz); δ_{C} (100.5 MHz, CDCl₃) 121.6 (C_{quat}), 127.4 (2C, CH), 130.2 (C_{quat}), 132.3 (2C, CH), 134.3 (2C, CH), 169.1 (2C, C_{quat}, NCO).

N-(2-Methylphenyl)maleimide (1c). as a very pale yellow solid, mp. 76 – 78 °C (Lit. 76 – 77 °C [33]); v_{max} (KBr/cm⁻¹) 3093, 2929, 1716, 1496, 1458, 1391, 1150, 1116, 1065, 83, 823, 768, 688, 630, 588, 475; δ_{H} (400 MHz, CDCl₃) 2.16 (3H, s, CH₃), 6.87 (2H, s), 7.11 (1H, d, ³*J* = 7.6 Hz), 7.27 – 7.37 (3H, m); δ_{C} (100.5 MHz, CDCl₃) 17.9 (CH₃), 126.9 (CH), 128.7 (CH), 129.5 (CH), 129.9 (C_{quat}), 131.2 (CH), 134.4 (2C, CH), 136.5 (C_{quat}), 169.6 (C, C_{quat}, CO).

N-(4-Methylphenyl)maleimide (1d). – a yellow crystalline solid, mp. 159 – 160°C (Lit. mp. 158 – 160 °C [31,32]); v_{max} (KBr/cm⁻¹) 3454 (w), 3093, 1708, 1518, 1408, 1391, 1153, 834, 710, 685, 503; δ_{H} (400 MHz, CDCl₃) 2.38 (3H, s, CH₃), 6.83 (2H, s), 7.19 (2H, d, ³*J* = 8.8 Hz), 7.26 (2H, d, ³*J* = 8.8 Hz); δ_{C} (100.5 MHz, CDCl₃) 21.2 (CH₃), 126.0 (2C, CH), 128.4 (C_{quat}), 129.8 (2C, CH), 134.2 (2C, CH), 138.1 (C_{quat}), 169.7 (2C, C_{quat}, CO); Found: C, 70.33; H, 4.95; N, 7.48%. Calcd. for C₁₁H₉NO₂ (187.19) C, 70.58; H, 4.85; N, 7.48%.

N-(4-Methoxyphenyl)maleimide (1e). – - a yellow crystalline solid, mp. 157 – 158°C (Lit. 157°C [34]); v_{max} (KBr/cm⁻¹) 3467, 3173, 3110, 3079, 3011, 2965, 2939, 2914, 2836, 1701, 1507, 1445, 1400, 1303, 1251, 1156, 1106, 1055, 828, 721, 687, 604, 582, 527, 431; δ_{H} (400 MHz, CDCl₃) 3.81 (3H, s, OCH₃), 6.82 (2H, s), 6.97 (2H, d, ³*J* = 8.4 Hz), 7.21 (2H, d, ³*J* = 8.4 Hz); δ_{C} (100.5 MHz, CDCl₃) 55.5 (OCH₃), 114.5 (2C, CH), 123.7 (C_{quat}), 127.6 (2C, CH), 134.1 (2C, CH), 159.2 (C_{quat}), 169.8 (2C, C_{quat}, CO); Found: C, 65.02; H, 4.46; N, 6.89%. Calcd. for C₁₁H₉NO₃ (203.19) C, 65.65; H, 4.45; N, 6.79%.

N-(2,5-Dimethoxyphenyl)maleimide (1f). – - a yellow crystalline solid, mp. 132 – 134 °C (Lit. 122 °C [35]); v_{max} (KBr/cm⁻¹) 3117, 3007, 2964, 2942, 2832, 1708, 1515, 1455, 1388, 1284, 1232, 1193, 1155, 1043, 1014, 822, 724, 692; δ_{H} (400 MHz, CDCl₃) 3.73 (3H, s, OCH₃), 3.75 (3H, s, OCH₃), 6.73 (1H, bs), 6.82 (2H, bs), 6.93 (2H, s); δ_{C} (100.5 MHz, CDCl₃) 55.8 (OCH₃), 56.3 (OCH₃), 113.1 (CH), 115.7 (CH), 115.8 (CH), 120.1 (C_{quat}), 134.4 (2C, CH), 149.6 (C_{quat}), 153.5 (C_{quat}), 169.6 (2C, C_{quat}, CO). Found: C, 61.62; H, 4.84; N, 6.01%. Calcd. for C₁₂H₁₁NO₄ (203.19) C, 61.80; H, 4.75; H, 6.01%.

N-(2,4-Difluorophenyl)maleimide (1g). –as a colorless, crystalline solid, mp. 92 °C; (Lit. 92 °C [36]); v_{max} (KBr/cm⁻¹) 3097, 1719, 1519, 1414, 1397, 1275, 1146, 975, 865, 831, 719, 689, 600, 439; δ_{H} (400 MHz, CDCl₃) 6.91 (2H, s), 6.97 – 7.02 (2H, m), 7.23 – 7.29 (1H, m); δ_{C} (100.5 MHz, CDCl₃) 105.3 (CH, dd, ²*J*_{CF} 26.9 Hz, ²*J*_{CF} 23.9 Hz), 112.0 (CH, dd, ²*J*_{CF} 22.4 Hz, ⁴*J*_{CF} 3.7 Hz), 114.9 (C_{quat}, dd, ²*J*_{CF} 13.5 Hz, ⁴*J*_{CF} 3.7 Hz), 130.7 (CH, dd, ³*J*_{CF} 9.6 Hz, ³*J*_{CF} 1.6 Hz), 134.7 (2C, CH), 158.1 (dd, ¹*J*_{CF} 255.0 Hz, ³*J*_{CF} 12.8 Hz), 162.9 (C_{quat}, ¹*J*_{CF} 251.4 Hz, ³*J*_{CF} 11.3 Hz), 168.6 (C_{quat}, CO).

N-(2,6-Difluorophenyl)maleimide (1h). –a colorless, crystalline solid, mp. 108 °C (Lit. 91-93 °C [37]); v_{max} (KBr/cm⁻¹) 3492, 3123, 1724, 1596, 1514, 1475, 1387, 1243, 1220, 1161, 1136, 1048, 990, 825, 781, 691, 584; $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.92 (2H, s), 7.04 (2H, m), 7.40 (1H, m); $\delta_{\rm C}$ (100.5 MHz, CDCl₃) 108.4 (dd, $C_{\rm quat}$, $^{2}J_{\rm CF}$ = 16.0 Hz, $^{2}J_{\rm CF}$ = 16.0 Hz), 112.1 (2C, CH, md, $^{2}J_{\rm CF}$ = 18.6 Hz), 131.0 (2C, CH, dd, $^{3}J_{\rm CF}$ = 9.7 Hz, $^{3}J_{\rm CF}$ = 9.7 Hz), 135.0 (2C, CH), 158.9 (2C, C_{quat}, dd, $^{1}J_{\rm CF}$ = 253.0 Hz, $^{4}J_{\rm CF}$ = 3.7 Hz), 169.0 (C_{quat}, CO).

N-(4-Nitrophenyl)maleimide (1i). – as a solid, mp. 168 °C (Lit. 168-170 °C [38]); v_{max} (KBr/cm⁻¹) 3120, 3105, 1717, 1522, 1505, 1387, 1349, 1145, 1058, 849, 826, 699; δ_{H} (400 MHz, DMSO-d⁶) 7.28 (2H, s), 7.70 (2H, d, ${}^{3}J = 9.0$ Hz), 8.37 (2H, d, ${}^{3}J = 9.0$ Hz); δ_{C} (100.5 MHz, DMSO-d⁶) 124.2 (2C, CH), 126.7 (2C, CH), 135.0 (2C, CH), 137.5 (C_{quat}), 145.7 (C_{quat}), 169.1 (2C, C_{quat}, CO);

N-(4-Chlorophenyl)maleimide (1j). – pale yellow, crystalline solid, mp. 115 °C (Lit. 114-115 °C [32]); v_{max} (KBr/cm⁻¹) 3085, 1713, 1498, 1462, 1388, 1149, 1097, 1070, 836, 709, 685, 586, 504, 418; δ_{H} (400 MHz, CDCl₃) 6.86 (s, 2H), 7.25 (d, 2H, ³*J* = 8.4 Hz), 7.59 (d, 2H, ³*J* = 8.4 Hz); δ_{C} (100.5 MHz, CDCl₃) 119.2, 125.0, 128.1, 130.0, 132.1, 169.8.

N-(4-Cyanophenyl)maleimide (1k). – colorless solid; mp. 128 °C (Lit. 129 – 130 °C [38]); v_{max} (KBr/cm⁻¹) 3168, 3103, 3093, 2238, 1726, 1515, 1393, 1375, 1145, 843, 830, 691, 589, 543; δ_{H} (400 MHz, CDCl₃) 6.85 (2H, s), 7.52 (2H, d, ³*J* = 8.8 Hz), 7.67 (2H, d, ³*J* = 8.8 Hz), 7.40 (1H, m); δ_{C} (100.5 MHz, CDCl₃) 111.0, 118.8, 125.4, 132.8, 134.4, 135.5, 168.7.

III. Results and Discussion

Synthesis.

The reaction of alkanols to alkyl chlorides with CCl₄-PPh₃ is called the Appel reaction [39]. CCl₄-PPh₃ can also be used as a dehydrating agent, eg., to furnish alkyl nitriles from alkanamides and thus is also useful in the preparation of esters and amides from the corresponding acids [39]. Tetrachloromethane (CCl_4) is an ozone depletory; therefore it is being phased out. We have looked at bromotrichloromethane (BrCCl₃) as a substitute for CCl₄. BrCCl₃ has a higher boiling point than CCl₄ (105 °C vs. 76.7 °C), but also has a larger dipole moment (0.40 D), which reduces the average residence time of the compound in the atmosphere, once released. The combination BrCCl₃-PPh₃ can replace CCl₄-PPh₃ in many reactions such as in the dehydration of amides and aldoximes to nitriles [40] and in the esterification and amidation of carboxylic acids [27]. The actual transformations may in fact take a number of simultaneously running mechanisms. Thus, the reaction of carboxylic acids with CCl_4 or $BrCCl_3$ -PPh₃ can initially lead acyl halides, which partly can convert to acid anhydrides under the conditions. Both acyl halides and anhydrides can react with the subsequently added amines or alkanols to amides and esters, respectively. As the amidation of carboxylic acids proceeds facilely with BrCCl₃-PPh₃ [27], even with the less nucleophilic anilines [41], it was envisaged that under the conditions perhaps even an amide function would be nucleophilic enough to undergo an intramolecular reaction with an activated carboxyl function to the corresponding imide, such as in our case the amide function of a maleanilic acid.

Scheme 2. Preparation of N-arylmaleimides 1 from maleanilic acids 4 with BrCCl₃/PPh₃ as reagent.

First, the maleanilic acids had to be prepared by the reaction of anilines with maleic anhydride. For the most part, anilines readily react with maleic anhydride under ring opening to maleic acid monoarylamides (maleanilic acids, **4**) at room temperature. The more nucleophilic benzylamine (**3L**) undergoes the reaction exothermally. Although described in the literature [30], the reaction of 2,6-dichloro-4-nitroaniline with maleic anhydride posed a problem for us, no reaction occurring in either THF or DMF at rt (12h), and no reaction occurring in DMF at 67 °C (12h). This may be due to the withdrawing character of the substituents, making the aniline nitrogen little nucleophilic. However, it must be noted that 2,6-difluoroaniline does react readily under the conditions, so that steric hindrance of the chloro substituents in 2,6-dichloro-4-nitroaniline may also contribute.

For the Appel reaction, acetonitrile (CH₃CN) and dichloromethane (CH₂Cl₂) are usually the solvents of choice. Because of the sparing solubility of maleanilic acids in CH₂Cl₂, CH₃CN was used as solvent. Previously, we had realized that acids can be converted to esters even in the absence of a HX-scavenging base. When running the reaction of maleanilic acids in CH₃CN with BrCCl₃-PPh₃ in the absence of a base, *N*-arylmaleimides are formed, but the reactions do not complete. Therefore, triethylamine as base has to be introduced dropwise as the reaction proceeds. Overall, the transformation of maleanilic acids with BrCCl₃-PPh₃ in the presence of triethylamine leads to *N*-arylmaleimides in acceptable yields (Scheme 2). The products were purified by rapid column chromatography on silica gel. It must be noted that the maleamic acid **4L** did not cyclize to the corresponding *N*-benzylmaleimide under the conditions above.

UV-VIS spectroscopy.

As N-arylmaleimides are important enes in cycloaddition reactions and are used as radical initiators for the preparation of thermally or photolytically cured polymers [42], there has always been an interest to probe the higher-lying molecular orbitals of the molecules. This can be done, in part, by UV-VIS spectroscopy. A larger number of authors have reported on the spectroscopic behavior of maleimide and its derivatives [43,44], including the computational analysis of the photochemical transitions involved [45-48]. One of the first authors who examined the nature of the UV-VIS absorption bands is T. Matsuo, who investigated the spectra of Nphenylmaleimide (1a), N-(4-methoxyphenyl)maleimide (1e), N-(4-chlorophenyl)maleimide (1j), and N-(4tolyl)maleimide (1d) in addition to N-alkylmaleimide as well as N-maleimide itself [49]. Also, C. W. Miller et al. tabulated the UV-VIS spectra of a number of other 2- and 4-substituted N-phenylmaleimides [42]. Tables 1 and 2, below, show the maxima in the UV spectra of the prepared N-arylmaleimides 1a-1k as measured by the authors. Many N-phenylmaleimides 1 were noted, as in the reported in the literature, to have two main absorption bands between $\lambda = 350$ nm and $\lambda = 260$ nm, where the higher energy absorption band shows less solvent effect than the longest wavelength absorption band [49]. The absorption at the longest wavelength has been noted to be an $n \to \pi^*$ transition of the carbonyl groups [49] of the imide with some perturbation from a π $\rightarrow \pi^*$ transition. Intensity values of the band are between $\varepsilon = 250$ for **1h** in pentane and $\varepsilon = 550$ for **1j** in acetonitrile, with most other values between $\varepsilon = 350$ and $\varepsilon = 450$.

 Table 1. Longest wavelength absorptions of the N-arylmaleimides 1

The longest wavelength absorption in 2-substituted N-arylmaleimides such as in 1c, 1f, 1g, and 1h is shifted to higher energy as compared to the 4-substituted systems. This is due to the higher energy of the rotational barrier of N-C between the phenyl group and maleimide moiety, which forces the 2-substituted molecules out of planarity. This has been reported in the literature for other 2-substituted N-arylmaleimides, also [50]. There is not a clear-cut dependence of the energy of the longest wavelength absorption on the electronic character of the *p*-substituent of aryl group. Thus, non-substituted 1a and chloro-substituted 1j essentially show the band at the same wavelength in most solvents. Only for the 4-methoxy-substituted 1e does one find a shift of the transition to higher wavelength. Then, again substituents that have an appreciable electronic interaction with

the phenyl group such as in **1i**, **1k** and **1f** may lead to HOMO and LUMO being of a different character than in **1b** or **1j**. This is currently under investigation in our group.

 Table 2. Shortest wavelength absorption measured with UV-VIS spectroscopy for *N*-arylmaleimides 1 within the solvent window.

IV. Conclusion

A number of substituted *N*-arylmaleimides **1** were prepared from the respective maleanilic acids by the action of the Appel-type reagent triphenylphosphine (PPh₃) and bromotrichloromethane (BrCCl₃) in acetonitrile, circumventing the CO_2 production occurring during work-up when using the established synthesis of *N*-arylmaleimides **1** with $CH_3CO_2H/NaOAc$. The UV-spectra of the *N*-arylmaleimides **1** were recorded in different solvents.

References

- S. A. Khattab, M. A. Kilalifa, and S. A. Mahgoub, Diels-Alder reactions with some N-substituted maleimides, Journal f
 ür Praktische Chemie, 319, 1977, 432-438.
- [2]. S. Mataka, J. Ma, T. Thiemann, T. Mimura, T. Sawada, and M. Tashiro, Substituent Effect on the Selectivity of [3.3]-Orthoanthracenophanes in the Diels-Alder reaction with N(p-substituted phenyl)maleimides. Tetrahedron, *53*, 1997, 6817–6824.
- [3]. S. Cunha, W. Rodovalho, N. R. Azevedo, M. de. O. Mendonça, C. Lariucci, and I. Vencato, The Michael reaction of enaminones with N-(-p-tolyl)-maleimide: synthesis and structural analysis of succinimide-enaminones, Journal of the Brazilian Chemical Society, 13, 2002, 629-634.
- [4]. C. Antczak, B. Baubois, C. Monneret, and J. Florent, A new Acivicin prodrug designed for tumor-targeted delivery, Bioorganic Medicinal Chemistry, 9, 2001, 2843.
- [5]. K.-F. Lin, J.-S. Lin, and C.-H. Cheng, High temperature resins on allylamine/bismaleimides, Polymer, 37, 1996, 4729-4737.
- [6]. R. H. Pater, Thermosetting polyimides: a review, SAMPE Jounral, 30, 1994, 29-38.
- [7]. A. Matsumoto, T. Kubota, and T. Otsu, Radical polymerization of N-(alkyl-substituted phenyl)maleimides: synthesis of thermally stable polymers soluble in nonpolar solvents, Macromolecules, 23, 1990, 4508-4513.
- [8]. E. Dolci, V. Froidevaux, C. Joly-Duhamel, R. Auvergne, B. Boutevin, and S. Caillol, Maleimides as a building block for the synthesis of high performance polymers, Polymer Reviews, 56, 2016, 512-556.
- [9]. H. Satoh, A. Mineshima, T. Nakamura, N. Teramoto, and M. Shibata, Thermo-reversible Diels Alder polymerization of difurfurylidene diglycerol and bismaleimide, Reactional and Functional Polymers, 76, 2014, 49–56.

- [10]. G. C. Tesoro and V. R. Sastri, Synthesis of siloxane-containing bis(furans) and polymerization with bis(maleimides), Industrial & Engineering Product Research, 25, 1986, 444–448
- [11]. Y. Fu and W. J. Kao, In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition, Journal of Biomedical Materials Research Part A, 98, 2011, 201–211.
- [12]. S. Nagase, K. Miyama, and A. Matsumoto, Control of thermal, mechanical, and optical properties of three-component maleimide copolymers by steric bulkiness and hydrogen bonding, Journal of Polymer Science, Part A, 57, 2019, 1569-1579.
- [13]. C. W. Miller, C. E. Hoyle, E. J. Valente, D. H. Magers, and E. S. Jónsson, Inter-ring torsions in N-phenylmaleimide and its o-halo derivatives: an experimental and computational study, Journal of Physical Chemistry A, 103, 1999, 6406-6412.
- [14]. M. Sortino, V. C. Filho, R. Corrêa, and S. Zacchino, N-Phenyland N-phenylalkyl-maleimides acting against Candida spp.: time-tokill, stability, interactions with maleamic acids, Bioorganic & Medicinal Chemistry, 16, 2008, 560-568.
- [15]. X. H. Liu, H. K. Wang, J. N. Herron, and G. D. Prestwich, Photopatterning of antibodies on biosensors, Bioconjugate Chemistry 11, 2000, 755-761.
- [16]. L. M. Schopfer and J. M. Salhany, Spectroscopic and kinetic characterization of eosin-5-maleimide, Analytical Biochemistry, 257, 1998, 139-148.
- [17]. J. V. Crivello, Polyimidothioethers, Journal of Polymer Science, Polymer Chemistry Edition., 14, 1976, 159-182.
- [18]. W. J. Leigh, D. W. Hughes, and D. S. Mitchell, Competitive Diels-Alder and Ene addition of N-arylmaleimides to 7dehydrocholesteryl acetate, Canadian Journal of Chemistry, 70, 1992, 2730-2744.
- [19]. J. Patrick and R. Ragunathan, Studies of phthalazine-5,8-quinone, A ring contraction, and some novel and potentially useful fluorescent phthalimides, Journal of the Chemical Society, Perkin Transactions 1, 1993, 211-216.
- [20]. H. J. Harwood and T. M. Pyriadi, Use of acetyl chloride trimethylamine and acetic anhydride trimethylamine mixtures in te synthesis of isomaleimides from maleamic acids, The Journal of Organic Chemistry, 36, 1971, 821-823.
- [21]. P. Mison and B. Sillion, Advances in Polymer Science, Springer Science & Business Media, New York, 1997.
- [22]. F. Mizori, Methods for the preparation of imides, maleimides and maleimide-terminated polyimide compounds, US Pat. 20080262191, 2008.
- [23]. P. Y. Reddy, S. Kondo, T. Toru, and Y. Ueno, Lewis acid and hexamethyldisilazane-promoted efficient synthesis of N-alkyl- and N-rylimide derivatives, The Journal of Organic Chemistry, 62, 1997, 2652-2654.
- [24]. D. N. Garad, S. D. Tanpure, S. B. Mhaske, Radical-mediated dehydrative preparation of cyclic imides using (NH₄)₂S₂O₈ DMSO: application to the synthesis of vernakalant, Beilstein J. Org. Chem., 11, 2015, 1008-1016.
- [25]. A. Alagic, A. Koprianiuk, and R. Kluger, Hemoglobin-superoxide dismutase-chemical linkages that create a dual-function protein, Journal of the American Chemical Society, 127, 2005, 8036-8043.
- [26]. H. Sadeq, T. Thiemann, J. P. Graham, Y. Al Jasem, B. Bugenhagen, N. al Rawashdeh, and M. al Sulaibi, Preparation of 3-(9anthryl)acrylates and 9-aroylethenylanthracenes as pi-extended anthracenes and their Diels Alder type adducts with electron-poor dienophiles, Polycyclic Aromatic Compounds, 37, 2017, 148-160.
- [27]. M. Al-Azani, M. al-Sulaibi, N. al Soom, Y.Al Jasem, B. Bugenhagen, B. Al Hindawi, and T. Thiemann, The use of BrCCl₃-PPh₃ in Appel type transformations to esters, O-acyloximes, amides, and acid anhydrides, Compte Rend. Chimie, 19, 2016, 921-932.
- [28]. F. S. Wahshi, M. D. Alqahtani, M. Abdulla, A. Al-Hemyari, M. Bufaroosha, T. Ramachandran, F. Hamed, and T. Thiemann, Our experience of using thermally recycled silica gel in a teaching and small research laboratory setting, MDPI Proceedings, 9, 2019, 28-36; doi:10.3390/ecsoc-22-05696.
- [29]. G. M. Kosolapoff, Direct halogenation of some aromatic amines, Journal of the American Chemical Society, 75, 1953, 3596-3597.
- [30]. B. lal Hiran, D. Singh, and S. Bapna, Homopolymer synthesis by free radical polymerization-characterization and thermal study of 2,6-dichloro-nitro(phenyl)maleimide, Der Pharma Chemica, 3, 2011, 209-216.
- [31]. R. N. Butler, A. G. Coyne, and E. M. Moloney, Organic synthesis in water: 1,3-dipolar cycloaddition reactions at ambient temperature with aqueous suspensions of solid reactants, Tetrahedron Letters, 48, 2007, 3501-3503.
- [32]. N. Matuszak, G. G. Muccioli, G. Labar, and D. M. Lambert, Synthesis and in vitro evaluation of N-substituted N-maleimide derivatives as selective monoglyceride lipase inhibitors Journal of Medicinal Chemistry, 52, 2009, 7410-7420.
- [33]. T. Fujita, T. Irie, Y. Takanayagi, T. Narita, and Y. Yano (Nisso Chem. Ind., Mitsubishi Rayon Co., Ltd.), Preparation of Nsubstituted maleimides (Verfahren zur Herstellung von n-substituiertem Maleimid), DE 3905872, 1989.
- [34]. S. R. Deshpande, S. R. Maybhate, A. P. Likhite, and P. M. Chaudhary, Facile synthesis of N-substituted maleimides, Indian Journal of Chemistry, Section B, 49, 2010, 487-488.
- [35]. A. Mustafa, S. Zayed, and S. Khattab, Reactions of diazoalkanes. V. Action of diazoalkanes and of aryl azides with Narylmaleimides, Journal of the American Chemical Society, 78, 1956, 145-149.
- [36]. H. A. Sadeq, Studies of the preparation of pi-extended anthracenes and their reactivity with an emphasis on their photoreactivity, MSc thesis, UAEU, 2015.
- [37]. A. Schwarzer and E. Weber, Influence of fluorine substitution on the crystal packing of N-phenylmaleimides and corresponding phthalimides, Crystal Growth and Design, 8, 2008, 2862-2874.
- [38]. M. Roth (Ciba Geigy AG, Switzerland), Maleimides, DE 2715435, 1977.
- [39]. R. Appel, Tertiary phosphane/tetrachloromethane, a versatile reagent for chlorination, dehydration and P-N linkage, Angew. Chem. Int. Ed. Engl., 14, 1975, 801-811.
- [40]. Y. Al Jasen, M. Barkhad, M. Al Khazali, H. Pervez Butt, N. Ashraf El-Khwass, M. AlAzani, B. al Hindawi, and T. Thiemann, Two ways of preparing benzonitriles using BrCCl3-PPh3 as the reagent, J. Chem. Res., 38, 2014, 80 – 84.
- [41]. A. Al Hemyari, M. Bufaroosha, and T. Thiemann, Use of PPh₃-BrCCl₃ in the preparation of acyl azides, acyl hydrazines, N-methylamides, anilides and thioesters from carboxylic acids, submitted for publication.
- [42]. C. W. Miller, E. S. Jönsson, C. E. Hoyle, K. Viswanathan, and E. J. Valente, Evaluation of N-aromatic maleimides as free radical photoinitiators: a photophysical and photopolymerization characterization, Journal of Physical Chemistry B, 105, 2001, 2707-2717.
- [43]. W. R. Roderick, The isomerism of N-substituted maleimides, Journal of the American Chemical Society, 79, 1710-1712.
- [44]. H.-D. Scharf and H. Leismann, Substituenteneffekt im spektrskopischen Verhalten von Maleinsäurederivaten und 4-Cyclopenten-1,3-dionen, Zeitschrift für Naturforschung 28b, 1973, 662-681.
- [45]. C. J. Seliskar and S. P. McGlynn, Eelctronic spectroscopy of maleimide and its isoelectronic molecules. I. Maleimide and Nalkylmaleimides, The Journal of Chemical Physics, 55, 1971, 4337-4342.
- [46]. C. J. Seliskar and S. P. McGlynn, Electronic spectroscopy of maleimide and its isoelectronic molecules. III. Quantum chemical calculations, The Journal of Chemical Physics, 56, 1972, 1417-1422.
- [47]. D. H. A. ter Steege and W. J. Buma, Spectroscopy and dynamics of excited states in maleimide and N-methyl maleimide: ionic projection and ab initio calculations. The Journal of Chemical Physics, 118, 2003, 10944-10955.
- [48]. E. M. Kosower and J. R. de Souza, n_{π} -ct- π^* transitions: $n\pi^*$ transitions of the second kind, Chemical Physics 324 (2006) 3-7.

- [49]. T. Matsuo, Nature of the longest wavelength absorption bands of N-substituted maleimides, Bulletin of the Chemical Society of Japan, 38, 1965, 557-562.
- [50]. C. W. Miller, C. E. Hoyle, E. J. Valente, D. H. Magers, and E. S. Jónsson, Inter-ring torsions in N-phenylmaleimide and its o-halo derivatives: an experimental ad computational study, Journal of Physical Chemistry A, 103, 1999, 6406-6412.

IOSR Journal of Applied Chemistry (IOSR-JAC) is UGC approved Journal with Sl. No. 4031, Journal no. 44190.

Thies Thiemann. " Preparation of N-aryImaleimides with PPh3-CBrCl3 as reagent." IOSR Journal of Applied Chemistry (IOSR-JAC) 12.9 (2019): 31-38.

DOI: 10.9790/5736-1209013138
