Investigation of The Relationship between Groups and Subgroups in C3S's Structure Transition

TLAMSAMANI.Dounia ${ }^{\text {a }}$, AIT MOUHA. Mbark ${ }^{\text {a }}$, SLASSI Siham ${ }^{\text {b }}$, LONDONO ZULUAGA Diana ${ }^{\text {c }}$,YAMNI. Khalid ${ }^{\text {a }}$
a : Materials, Molecular Engineering Environment Laboratory, Moulay Ismail University, Meknes,Morocco b: LCBAE Laboratory, Moulay Ismail University, Meknes, Morocco
c: Construction Materials Laboratory, Federal Polytechnic School of Lausanne, Lausanne, Switzland

Abstract

In recent years, many studies have been carried out on cement and its phase's tounderstand the morphology, and to control the mineralogy of this material; due to the greatposition it has become globally occupied. This material is formed from a synthetic rock calledclinker; tricalcium silicate (Ca3SiO5 or C3S) its major constituent present a concentrationfrom 40% to 70%, and its solid solution with various impurities is called alite. Impure C3Sexhibits seven polymorphs from ambient temperature to $1500^{\circ} \mathrm{C}$; three forms triclinic (T1, T2, T3), three monoclinic (M1, M2, M3) and one shape rhombohedral (R). At room temperature, impurities stabilize some of the high temperature forms of the pure compound. Those formsare related by transformation matrix determined in this article. The aim of the present paper isto investigate the structural modulations of alite.

Key words: Cement, clinker Portland, Polymorph, crystal structure, alite, space group, sub-group,matrix and coordinates system.

Date of Submission: 02-03-2021
Date of Acceptance: 16-03-2021

I. Introduction

Alite is the most important phase in cement Portland, it forms 60 to 70% of clinkerPortland, and it is a solid solution of C3S, modified by substitution or insertion of foreign ionsin its crystal structure. In a high temperature, the thermal agitation factor of atomic positionwill increase and with the effect of atomic interaction, some atoms live their position, and leta hole, which will be occupied by another atom came from impurities which has the same sizeof the lifted one; those substitution and/or insertion may be the key of structure transitions.In kiln, using a combination of differential thermal analysis (ATD), optic microscopy and X-ray diffraction (XRD), several transformations were observed of alite polymorphism [1].

It is usually found in clinkers in a monoclinic form (M1, M3 or a mixture of both), and rarely in T2 shape[2]. Among those structures, just 4 polymorphs have a structural model, which are T1, T2, M3 and R; Recently De Noirfontaine has presented M1 form based on group and sub-group relationship[3].

The first study of alite was done by Jeffery [4]on a single crystal, he showed that the threepolymorphs T1, R and M3 have a similar structure, and he gives a pseudo one common forthe true of the three forms, this structure was confirmed by O'Daniel on single crystal sample. The cell parameters with hexagonal axis $\left(a_{H}=b_{H}\right.$ $=7 \AA \& c_{\mathrm{H}}=25 \AA$) and space group (R3m)were determined for the composition of alite: $54(\mathrm{CaO}) \cdot 16\left(\mathrm{SiO}_{2}\right) \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{MgO}$ with $\mathrm{Z}=9$ formulas by cell (81 atom per cell). The tree structures are very close; they are different by thecalcium ions and oxygen's atoms of SiO_{4} tetrahedra, they are different by the disorder oforientation in tetrahedra $\mathrm{SiO}_{4}{ }^{4}$.

II. Space group transformations

Nishi and Takéuchi were solved at the same way the rhombohedral R[5] and the monoclinicM3[6]polymorphs, this M3 structure characterized by a big number of atoms (228 per cell,table 1) with different and complicated disordered orientation of SiO_{4} tetrahedra. In 1995,Mumme determined the substructure of M3 polymorph, similar to that presented by Nishiwith an average structure
$\mathrm{M} 3_{\text {Nishi }}=<3 \times 1 \times 2>\mathrm{M} 3_{\text {Mumme }}($ table 1$)[7]$. In 2012, using the structuralrelationship between triclinic T 1 and monoclinic M3 polymorphs, M1 was solved by DeNoirfontaine and a structural model was given in table 1[2], [3]. In 2005, Maria Angeles De LaTorre modified Nishi structure or M3 with reducing the number of atomic position based ondisorder orientation[8].

The triclinic shape was studied by Golovastikov for T1 and he proposed a P-1 space group[9]as mentioned in De Noirfontaine thesis[2]. In 2004, Peterson gives the structure of T2 based onGolovastikov model and using Synchrotron powder diffraction, the cell metrics are noted intable 1[10]. In 2008, De La Torre has been solved the structure T3 by combined the X-ray powder diffraction (XRPD), Neutron powder diffraction (NPD) and Synchrotron powder diffraction (SPD) using Rietveld method[1].

Since 1952, uncountable studies are worked on cement and clinker's phases, tounderstand the reactions of their constituents and the arrangement of atomic positions, but thestructure of the main phase of clinker which is alite is still misunderstood. A structuralpresentation will be given to explain the transitions between all the models of C3S structure.

2.1 Rhombohedra supergroup

All trigonal space groups with secondary or tertiary symmetry elements havemonoclinic C-centered maximal translationengleiche subgroups of index [3]. The figure 1,samurais the relationship between all polymorphs found in literature; R3m space group isconsidered as the super-group of Cm (space group of M3 polymorph), which is related to thesub-groups Pc and Pm (space groups of M1 polymorph) with the same index (figure 2). Alltrigonal space groups without secondary or tertiary symmetry elements have triclinic maximal subgroups of index [3]. In this study we will try to give the matrix transformation of R 3 m toCm and from Cm to Pc, Pm and to P1 which is the Golovastikov model.

Figure 1: Subgroups Graph of rhombohedra system [11]
To start we have first to identify the index, and how to calculate it. The index is the factor bywhich the number of symmetry operations has been reduced; it is the number of symmetricelements which are not changed passing from the group G to the subgroup H with the matrixof transformation (P, p). It is equal to the number of stable symmetric element in G devise bythe symmetric elements of the sub-group H .

$$
\begin{aligned}
& {[i]=\frac{\text { order of group } G}{\text { order of subgroup } H}=\frac{\text { number of position } \text { in } G}{\text { number of position in } H} \times \frac{1}{Z}} \\
& {[i]=\frac{\text { number of symetric element in } G}{\text { number of symetric element in } H}}
\end{aligned}
$$

The number of general positions equivalent for a space group, is the number of positionsgenerated by Bravais letter multiply by the number of position corresponding to crystallineclass.

Number of general position= Bravais letter \times Class number

For R3m group, we have a primitive lattice presents (with rhombohedral axis) rotation axisorder 3 along [111], gives 3 positions and the mirror gives 2 , so we have six different generalpositions are: $(x, y, z)(-y$, $x-y, z)(-x+y,-x, z)(-y,-x, z)(-x+y, y, z)$ and (x, x-y,z):
And for Rhombohedra system which are (in obverse R) tree sites of symmetry are : $(0,0,0) ;(2 / 3,1 / 3,1 / 3)$; (1/3,2/3,2/3).

Figure 2: Monoclinic transformations
From Jeffery and Nishi model, The rhombohedral structure R3m has the multiplicityZ=9, so for alite (Ca3SiO5) we have 72 crystallographically independent sites: 18 Ca atomsall in general position [site $3 \times 9 \mathrm{~b}$]; 9 Si atoms in special position SP $(00 \mathrm{z})$ [site of $3 \times 3 \mathrm{a}$]; and45 Oxygen atom: 6 in special position (00 z) [site $6 \times 3 \mathrm{a}$] and 3 in general position [$3 \times 9 \mathrm{~b}$](Figure 4).

(a)

(d)

4.b.

Figure 3: Rhombohedral Hexagonal transformation in ITC [12]

2.2 Rhombohedral-monoclinic transformation

There are two main considered transformations in phase transition and group-subgrouprelationship, are Transformation of the coordinate system and symmetry operations. The matrix of transformation is written as follow:

$$
\begin{gathered}
{\left[\begin{array}{lll}
a^{\prime} & b^{\prime} & c^{\prime}
\end{array}\right]_{R}=\left[\begin{array}{lll}
a & b & c
\end{array}\right] \times P(1)} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]_{R}=P^{-1} \times\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right](2)}
\end{gathered}
$$

To study the transformation from R3m to Cm, we have first to change the basis ofrhombohedral system to hexagonal axis to facilitate the calculation. According to figure 3 and figure 5a, the transformation can be written as:

$$
\left.\begin{array}{l}
a_{R}=\frac{2}{3} a_{H}+\frac{1}{3} b_{H}+\frac{1}{3} c_{H} \\
b_{R}=\frac{-1}{3} a_{H}+\frac{1}{3} b_{H}+\frac{1}{3} c_{H} \\
c_{R}=\frac{-1}{3} a_{H}-\frac{2}{3} b_{H}+\frac{1}{3} c_{H} \\
{\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{R}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{H} \times\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{R}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{H} \times P(3)} \\
\frac{1}{3}
\end{array} \frac{\frac{1}{3}}{} \frac{\frac{-2}{3}}{\frac{1}{3}} \frac{\frac{-1}{3}}{} \frac{-1}{3}\right]\left[\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3}
\end{array}\right] .
$$

With

$$
P=\left[\begin{array}{ccc}
\frac{2}{3} & \frac{-1}{3} & \frac{-1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{-2}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right]
$$

We can calculate even the inverse transformation Q using the identity matrix by:

$$
\Rightarrow Q=P^{-1}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 1 \\
0 & -1 & 1
\end{array}\right] \text { (5) }
$$

Equations (3) and (5) give the matrix of transformation P from the old basis, where the inverse matrix Q transforms the coordinates. So we can say that after defining the matrix P of rhombohedral ----> hexagonal transformation, calculation or finding all parameters information became easier. For atomic position, we have the Equation (6) below[11]:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{R}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{H} \times Q=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{H} \times\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 1 \\
0 & -1 & 1
\end{array}\right](6)
$$

So based on those calculations, we can calculate or find metric unit cell (equation 3), millerindices (Equation 7) and atomic positions (equation 6), just from the matrix oftransformation[11]:

$$
\begin{gathered}
{\left[\begin{array}{lll}
h & k & l
\end{array}\right]_{R}=\left[\begin{array}{lll}
h & k & l
\end{array}\right]_{H} \times P} \\
{\left[\begin{array}{lll}
h & k & l
\end{array}\right]_{R}=\left[\begin{array}{lll}
h & k & l
\end{array}\right]_{H} \times\left[\begin{array}{ccc}
\frac{2}{3} & \frac{-1}{3} & \frac{-1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{-2}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right](7)}
\end{gathered}
$$

The same as before for hexagonal-Monoclinic transformation, all matrixes are confirmedby ITC after calculated;

Fig. 5.1.3.10. Rhombohedral lattice with primitive rhombohedral cell a, b, c and the three centred monoclinic cells. (a) C-centred cells C_{1} with $a_{1}, b_{1}, c^{\prime} ; C_{2}$ with a_{2}, b_{2}, c^{\prime}; and C_{3} with a_{3}, b_{3}, c^{\prime}. The unique monoclinic axes are b_{1}, b_{2} and b_{3}, respectively. Origin for all four cells is the same. (b) A-centred cells A_{1} with $a^{\prime}, b_{1}, c_{1} ; A_{2}$ with a^{\prime}, b_{2}, c_{2}; and A_{3} with a^{\prime}, b_{3}, c_{3}. The unique monoclinic axes are c_{1}, c_{2} and c_{3},
Figure 4:Rhombohedral monoclinic transformation in ITC [12]
From the figure 4 we can write:

$$
\begin{aligned}
& a_{H}=\frac{3}{2} a_{M}-\frac{1}{2} b_{M}+c_{M} \\
& b_{H}=b_{M} \\
& c_{H}=c_{M}
\end{aligned}
$$

So :

$$
\begin{gathered}
{\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{H}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{M} \times P^{\prime}} \\
\\
{\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{H}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{M} \times\left[\begin{array}{ccc}
3 / 2 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

In this way from equation (3) and (8) we can calculate:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{R}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{H} \times P=\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{M} \times P^{\prime} \times P } \\
& {\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{R}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{M} \times\left[\begin{array}{ccc}
3 / 2 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \times\left[\begin{array}{ccc}
\frac{2}{3} & \frac{-1}{3} & \frac{-1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{-2}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right](9) }
\end{aligned}
$$

These calculations give the matrix of Rhombohedra- monoclinic transformation P".

$$
\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{R}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]_{M} \times\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & 1 / 2 & -1 / 2 \\
1 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& P^{\prime \prime}= {\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & 1 / 2 & -1 / 2 \\
1 & 0 & 0
\end{array}\right] \Rightarrow Q^{\prime \prime}=P^{\prime \prime-1}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right](11) } \\
& {\left[\begin{array}{lll}
h^{\prime} & k^{\prime} & l^{\prime}
\end{array}\right]_{R}=\left[\begin{array}{lll}
h & k & l
\end{array}\right] \times P^{\prime \prime} } \\
& {\left[\begin{array}{lll}
h^{\prime} & k^{\prime} & l^{\prime}
\end{array}\right]_{R}=\left[\begin{array}{lll}
h & k & l
\end{array}\right]_{M} \times\left[\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right] } \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{R}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{M} \times Q^{\prime \prime}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{M} \times\left[\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right] }
\end{aligned}
$$

Figure 5: Unit cell parameters transformation
Those matrixes are confirmed by International Tables of Crystallography VA[12] for the choice1 in obverse setting (figure 6);

Primitive thombohedral cell \rightarrow triple hexagonal cell R_{1}, obverse setting (Fig. 5.1.3.6c)	$\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$	$\left(\begin{array}{lll}\frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{3}{3} & \\ 4 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4}\end{array}\right)$	Rbombohedral space groups (cf. Section 4.3.5)
Triple hexagonal cell R, obverse setting $\rightarrow C$-centred monoclinic cell, unique axis b, cell choice ! (Fig. 5,1.3.9a) \mathbf{c} and \mathbf{b} axes invariant	$\left(\begin{array}{ccc}\frac{2}{3} & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ \frac{2}{3} & 0 & 1\end{array}\right)$	$\left(\begin{array}{lll}\frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$	Rhombohedral space groups (cf. Section 4.3.5)
Primitive rhombohedral cell - C-centred monoclinic cell, unique axis b, cell choice 1 (Fig. 5.1.3.10a) $[111]_{h} \rightarrow c_{w}$	$\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$	$\left(\begin{array}{ccc}1 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0\end{array}\right)$	Rhombohedral space groups (ff. Section 4.3.5)

Figure 6: Selected $\mathbf{3 \times 3}$ transformation matrices \mathbf{P} and $\mathbf{Q}=\mathbf{P}-\mathbf{1}[12]$
Taking the graph below (Figure 7), the $\mathrm{C} 1 \mathrm{m1}$ is considered as non-isomorphic subgroup ofR 3 m which is a special kind of klassengleiche subgroups (subgroup belongs to the samecrystal class; it has lost translation symmetry; its primitive cell larger than that of G) andbelong to the same space group type (Hermann-Mauguin symbol) [12]; type "I", it preserve theposition 1 and number 4 plus those obtained by centering translation.

Figure 7: Rhombohedral space group in ITC [12]

2.3 Monoclinic transformation

Monoclinic system for C3S has 3 forms, M1, M2, and M3; the known structures are forM3 and M1, we will study one form which is M3 superstructure of Angeles De La Torre[8], themultiplicity is equal to 36, so it found:
$\mathrm{M} 3-\mathrm{Ca} 3 \mathrm{SiO} 57 \rightarrow$ the monoclinic structural description has 155 crystallographicallyindependent sites: 54Calcium atoms [18 atom in special position (x0z) and 36 in generalposition]; 18 Silicon atoms all are in special position; and 83 Oxygen atoms [56 atoms inspecial position (x 0 z) and 27 in general positions].

The graph thereafter (figure 8), and the figure 2, shows the relation between Cm (M3 space group) and Pc, the space group of M1 superstructure proposed by De Noirfontaine [2].

First, before talking about matrix transformation, we need to take a look on ITC for Cm space group (Figure 8):

Figure 8: Monoclinic space group in ITCA [12]
The present section gives a brief summary, of the sub- and supergroup data in the space group Cm ; the select subgroup P1a1 (conventional group is P1c1) has been classed in non-isomorphic subgroup of C1m1; type II which is a klassengleiche transformation or called " k subgroup"; that means that the transformation is accompanied with preserve of the same crystalline class and losing all centric translation; and the letter "a" means that C 1 m 1 and P1c1 have the same conventional cells. We keep the positions: (x y z) and ($\mathrm{x}+1 / 2,-\mathrm{y}+1 / 2$, z) (Figure 8).

Figure 9: Monoclinic space group in ITC A1[13]
Figure 9, present the same space group Cm in International tables for crystallography volume A1 [13], this edition of tables are specify for symmetry relations between space groups, from this figure and figure 5 b we can extract the relation between P1a1 and C1m1, where we have:

$$
\begin{align*}
& { }^{a_{P c}}=-a_{C m}-{ }^{-} C m \\
& b_{P c}=b_{C m} \tag{14}\\
& { }^{c_{P c}}={ }^{a} C m
\end{align*}
$$

So the matrix P here and the inverse Q could be written as:

$$
P=\left[\begin{array}{ccc}
-1 & 0 & 1 \tag{15}\\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right] \Rightarrow Q=P^{-1}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & -1
\end{array}\right]
$$

For general transformation of coordinate system, both the basis and the origin have to betransformed; with p, which is the translation matrix or coordinate system of the new origin O'in the old one[14].

$$
P=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right] \Rightarrow p=\left[\begin{array}{c}
0 \\
1 / 4 \\
0
\end{array}\right]
$$

$$
[P, p]=\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \tag{16}\\
0 & 1 & 0 & 1 / 4 \\
-1 & 0 & 0 & 0
\end{array}\right]
$$

$$
p^{\prime}=-P^{-1} \times p=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \times\left[\begin{array}{c}
0 \\
1 / 4 \\
0
\end{array}\right]
$$

p' corresponds to the position of the old origin in the new coordinate system[15].
Combined with the origin shift, the new coordinates result from the old ones according to:

$$
\begin{array}{r}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{P c}=\left[P^{-1}, p^{\prime}\right] \times\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{C m}} \\
\qquad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{P c}=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 / 4 \\
1 & 0 & 1 & 0
\end{array}\right] \times\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]_{C m} \tag{19}
\end{array}
$$

So from equation (14) and (18) we find the atomic position and unit cell parameterstransformed from Cm to Pc space group.

$$
\begin{aligned}
& x_{P c}=z_{C m} \\
& y_{P c}=y_{C m}-\frac{1}{4} \\
& { }^{z_{P c}}=x_{C m}-z_{C m}
\end{aligned}
$$

Those calculations are explained in ITC Vol A [12]and using the same calculations ofrhombohedralmonoclinic transformation, we can confirm the result mentioned above infigure 10 and figure 11:

Figure 10: Selected 3×3 transformation matrices P and $Q=P-1[12]$

60

(t)

6

(4) theque and t	(i) Uowiger atis ef	(o) tivipe atio a
Call shane i Commed all ank	Cill ctroar i: Avaned nall ahut	
Cell cheve 2 A wrund call en heq.	Call chive 2: B-amed all enth2	
		citt tuker $2 f$-umnt uttich,o

Figure 11: Monoclinic transformation equivalent[12]

2.4 Triclinic structure

To find the metric and positions relationship between known polymorphs is not easy,especially for triclinic structure which is characterized by its low symmetry, it has one axisorder 1 rotated in the inverse direction; the triclinic structure which is likely found incommercial clinker is the shape T 2 [13]; this structure was solved by Peterson who gives 83crystallographic sites:29 Calcium atom [25 atoms in general position and 4 in special position (000); $(01 / 20) ;(1 / 201 / 2)$ and $(1 / 21 / 21 / 2)]$; 9 Silicon atom in general positions; and 45 Oxygenall are occupied general positions.

And for structural description of De La Torre [1]model for T3 form, he has the same 83crystallographically independent sites: 29 Calcium [4 in special position (x 0 z) and 25 ingeneral position]; 9 Silicon all in general position; and 45 Oxygen in general position.

CONTINUED

No. 2
$P \overline{1}$

Generators selected (1): $r(1,0,0)=t(0,1,0): t(0,0,1) ;$ (2)
Positions
Multiplicity.
Wyckote lether.
Site symunctry
$\begin{array}{llll}2 i & \text { (1) } x, y, z & \text { (2) } \bar{x}, \bar{y}, z\end{array}$

Coordinates

Reflection cooditions
General:
no conditions
Special: no extra conditions

Figure 12: Triclinic space group in ITC[12]

III. Conclusions

This article is a bibliographic review on the polymorphism of C3S; it discusses the matrixtransformations based on group sub-groups relationship. This work reports a study of thecrystallographic structure of alite polymorphs and involves information concerning themechanism of transitions between all forms. The calculation and determination of matrixtransformation in C3S transitions will facilitate solving structures. This work will besupported after; by another article whish applied those matrixes to find atomic positions ofalite in industrial samples.

References

[1] Á. G. De la Torre, R. N. De Vera, A. J. M. Cuberos, and M. A. G. Aranda, "Crystal structure of low magnesium-content alite: Application to Rietveld quantitative phase analysis," Cem. Concr. Res., vol. 38, no. 11, pp. 1261-1269, 2008.
[2] M.-N. de Noirfontaine, "Étude Structurale Et Cristallographie Du Composé Majoritaire Du Ciment Anhydre : Le Silicate Tricalcique," École Polytechnique, 2000.
[3] M. N. De Noirfontaine, M. Courtial, M. De Noirfontaine, F. Dunstetter, G. Gasecki, and M. Signes-Frehel, "Tricalcium silicate Ca3SiO5 superstructure analysis: a route towards the structure of the M1 polymorph," Zeitschrift für Krist., vol. 227, no. 2, pp. 102-112, 2012.
[4] J. W. Jeffery, "The crystal structure of tricalcium silicate," Acta Crystallogr., vol. 5, no. 1, pp. 26-35, 1952.
[5] F. Nishi and Y. Takeuchi, "The rhombohedral structure of tricalcium silicate at $1200{ }^{\circ} \mathrm{C}$," Zeitschrift fur Krist., vol. 168, no. 1-4, pp. 197-212, 1984.
[6] F. Nishi and Y. Takéuchi, "Tricalcium silicate $\mathrm{Ca} 3 \mathrm{O}[\mathrm{SiO} 4]$: The monoclinic superstructure," Zeitschrift für Krist., vol. 172, pp. 297-314, 1985.
[7] W. G. Mumme, "Crystal Structure of Tricalcium Silicate from a Portland Cement Clinker and its Application to Quantitative XRD Analysis," Neues Jahrb. Fur Mineral., vol. 4, no. 4, pp. 145-160, 1995.
[8] A. G. De La Torre; S. Bruque; J. Campo; M. A. G. Aranda, "The superstructure of C3S from synchrotron and neutron powder

解
［9］N．I．Golovastikov，R．G．Matveeva，and N．V Belov，＂Crystal Structure of the Tricalcium Silicate 3CaO．SiO2＝C3S，＂Sov． physics，Crystallogr．，vol．4，no．441，p．20， 1975.
［10］V．K．Peterson，B．a Hunter，and A．Ray，＂Tricalcium Silicate T1 and T2 Polymorphic Investigations：Rietveld Refinement at Various Temperatures Using Synchrotron Powder Diffraction，＂J．Am．Ceram．Soc．，vol．87，no．9，pp．1625－1634， 2004. U．Müller，Symmetry Relationships between Crystal Structures．Oxford University Press， 2013.
T．Hahn，International tables for crystallography Volume A，Fifth edit．the international union of crystallography， 2002.
U．M．H．Wondratschek，International tables for crystallography Volume A1，First edit．Boston，London：Kluwer Academic Publishers， 2004.
H．F．W．Taylor，Cement chemistry，2nd editio．，vol．20，no．4．London：Thomas Telford Publishing， 1997.
J．M．P．－M．and M．I．A．S．Ivantchev，E．Kroumova，G．Madariaga，＂Bilbao Crystallographic Serve，＂Group－Subgroup Lattice and Chains of Maximal Subgroups．Departamentos de Física de la Materia Condensada y Física Aplicada II，Universidad del País Vasco，Spain， 2000.

Tableau 1：Cell parameters of known polymorphs of C3S

E			$\stackrel{\text { ® }}{\substack{4}}$		$\stackrel{\varangle}{〔}$	$\underset{\sim}{\underset{O}{\circ}}$	$\underset{\sim}{\risingdotseq}$	$\underset{\sim}{\bigodot}$	N	$\stackrel{\overparen{S}}{\stackrel{4}{4}}$	
\sum^{m}		E	$\begin{aligned} & \tilde{n} \\ & \underset{\sim}{n} \end{aligned}$	气㐅⿸⿻一丿口子乚㇒	$\begin{gathered} \infty \\ \underset{\sigma}{\circ} \end{gathered}$	8	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{2} \end{aligned}$	8	\bigcirc	$\stackrel{\mathrm{m}}{\underset{\lambda}{2}}$	Σ
		E	$\begin{aligned} & \mathscr{O} \\ & \underset{\sim}{8} \end{aligned}$	츠장	$\begin{aligned} & \stackrel{\rightharpoonup}{g} \\ & \underset{\sim}{\infty} \end{aligned}$	8	$\overline{\text { G }}$	8	¢	$\stackrel{\text { ¢ }}{\text { ¢ }}$	\checkmark
		E	$\stackrel{\infty}{\stackrel{\infty}{0}}$	$\begin{aligned} & \text { ñ } \\ & \text { م̀ } \end{aligned}$	$\begin{aligned} & \overline{\mathrm{I}} \\ & \underset{\sim}{\infty} \end{aligned}$	8	$\frac{\hat{m}}{\dot{G}}$	8	\cdots		$\underset{\sim}{\infty}$
\sum	＇	2			$\begin{aligned} & \stackrel{\infty}{\grave{N}} \\ & \underset{\sim}{\mathrm{I}} \end{aligned}$	8		8	$\stackrel{\infty}{\sim}$	$\frac{\stackrel{\rightharpoonup}{N}}{N}$	$\underset{\sim}{\infty}$
\approx		$\underset{\sim}{\approx}$	$\stackrel{n}{\underset{\sim}{n}}$	$\stackrel{n}{n}$	$\begin{aligned} & \circ \\ & \stackrel{\sim}{n} \\ & \sim \end{aligned}$	8	8	윽	a	$\stackrel{\infty}{\beth}$	\sqrt{n}
		$\underset{\sim}{\approx}$	\sim	\wedge	๙	8	8	윽	a	$\begin{aligned} & \text { O} \\ & \stackrel{\theta}{0} \end{aligned}$	モ
F		$\stackrel{7}{2}$	$\begin{aligned} & \stackrel{0}{0} \\ & = \end{aligned}$	$\begin{aligned} & \text { む } \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\underset{\sim}{N}}{\underset{\sim}{n}}$	$\begin{aligned} & n \\ & \stackrel{n}{0} \end{aligned}$	$\underset{\text { qu }}{\substack{2}}$	8	$\stackrel{\infty}{\sim}$	$\frac{\stackrel{\circ}{4}}{}$	$\bar{\sigma}$
§		$\stackrel{\square}{2}$	$\begin{aligned} & \stackrel{0}{\ddagger} \\ & \underset{=}{ \pm} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{J}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{\mathrm{j}} \end{gathered}$	$\begin{aligned} & \frac{\mathrm{a}}{1} \\ & \stackrel{3}{6} \end{aligned}$	$\begin{aligned} & n \\ & \underset{\sigma}{\dot{d}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \underset{\infty}{0} \end{aligned}$	$\stackrel{\infty}{\sim}$	N	즐
$\stackrel{\sim}{f}$		$\stackrel{\square}{2}$	$\begin{aligned} & \text { on } \\ & \stackrel{\substack{4 \\ =}}{ } \end{aligned}$	$\stackrel{\bigcirc}{\underset{\square}{ \pm}}$	$\begin{aligned} & \underset{G}{\stackrel{G}{0}} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\circ} \\ & \underset{\partial}{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \text { त्ढु } \\ & \dot{G} \end{aligned}$	$\frac{5}{6}$	$\stackrel{\infty}{\sim}$		Ξ

