Synthesis and structure elucidation of complexes of $\mathbf{C o}(\mathrm{III}), \mathrm{Mn}$ (III), and ($\mathrm{Cu}(\mathrm{II})$ from N, O donor ligand 2-[(2hydroxyethylimino)ethyl]phenol or 2-[(2hydroxyethylimino)methyl]phenol

Momath Kebe ${ }^{\text {a }}$, Amar Diop ${ }^{\text {a }}$, Ibrahima Elhadji Thiam ${ }^{\text {a }}$, Mbossé Ndiaye-Guéye ${ }^{\text {a }}$, Pascal Retailleau ${ }^{\text {b }}$, Simon Coles ${ }^{\text {c }}$, James Orton ${ }^{\text {d }}$, Mohamed Gaye ${ }^{\text {a, }, 1}$
${ }^{a}$ Department of Chemistry, University Cheikh Anta DIOP, Dakar, 10700, Senegal
${ }^{b}$ Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université, Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
${ }^{c}$ UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK

Abstract

Analogous ligands derived from salicylaldehyde, 2-[(2-hydroxyethylimino)ethyl]phenol $\left(\mathrm{H}_{2} \mathrm{~L}^{1}\right)$ and 2-[(2-hydroxyethylimino)methyl]phenol $\left(\mathrm{H}_{2} \mathrm{~L}^{2}\right)$, have been synthetized and used to prepare three complexes in which the ligands acts in different fashions. Complexes formulated as $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)(\mathrm{SCN})\right] \cdot\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)(1),\left\{\left[\mathrm{Mn}\left(\mathrm{HL}^{2}\right)_{2}\right] \cdot \mathrm{Cl} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{n}(\mathbf{2})$, and $\left\{\left[\mathrm{Cu}\left(\mathrm{L}^{2}\right)\left(\mathrm{NO}_{3}\right)\right]\right\}_{n}(\mathbf{3})$ were synthesized by mixing an equimolar amount of an ethanol solution containing $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and an ethanol solution containing the appropriate ligand $\mathrm{H}_{2} \mathrm{~L}^{1}$ or $\mathrm{H}_{2} \mathrm{~L}^{2}$. In the dinuclear cobalt(III) complex 1, each of the two metal ions is coordinated by one monodeprotonated ligand molecule through three set donors. Each of the ethanolate oxygen atom of the ligand molecules acts as bridge to connect the two metal centers yielding a dinuclear unit. Additionally, a third bridge is formed by an ethanolate oxygen atom of 2-aminoethanol which is present as co-ligand. For one of the Co(III) ion the sixth coordination site is occupied by an amino nitrogen atom while for the other one the sixth site is occupied by a nitrogen atom of a thiocyanate group. Each of the $\mathrm{Co}(\mathrm{III})$ is situated in $\mathrm{N}_{2} \mathrm{O}_{4}$ inner. For the Mn(III) complex 2, the cation is coordinated by two ligand molecules in bidentate fashion through the phenolate oxygen atom and the azomethine nitrogen atom, the ethanolic oxygen atom of each ligand molecule being linked to a Mn(III) ion of another complex thus forming a polymeric chain in which the $M n^{I I I} \ldots M n^{I I I}$ distance is 5.601 (2) \AA. The Mn(III) is situated in a $\mathrm{N}_{2} \mathrm{O}_{4}$ inner. The copper(II) ion of the complex $\mathbf{3}$ is coordinated by one monodeprotonated organic molecule through the phenolate oxygen atom, the azomethine nitrogen atom and the ethanolic oxygen atom and a bidentate nitrate anion. One of the oxygen atoms is coordinated to a Cu(II) ion of another complex molecule resulting in a $\eta^{I}: \eta^{2}: \mu_{2}-O_{3} N$. The complex is a polymer in which the $C u^{I I} \ldots C u^{I I}$ distance is 4.3486 (3) \AA. Each copper (II) ion is situated in a severely distorted octahedral environment.

Keywords: Crystal structure; cobalt; manganese; copper; polymeric; octahedral.

I. Introduction

Schiff bases prepared from salicylaldehyde are widely used in coordination chemistry for the synthesis of complexes with physical and biological properties [1-4]. Schiff bases obtained by condensation reaction between salicylaldehyde, and functionalized or non-functionalized amines are compounds having donor sites of the N, O, S, P... type [5-8]. When these compounds are reacted with salts of transition metals or lanthanides, compounds with various structures and properties were obtained [9-12]. The versatility of these compounds is observed with their different modes of coordination to metal ions. Several of these Schiff bases exhibit antimicrobial [13,14], antifungal [15,16], antitumor properties [17,18]. These properties can be improved or reduced after complexation with various metal ions [19-22]. Thus, the synthesis of new basic Schiff complexes and the study of the structure-activity relationship have become a major issue in coordination chemistry. Controlling the size of the ligand cavities and the type of donor sites makes it possible to make them specific.

[^0]Salicylaldehyde and its derivatives lead with the same amine, Schiff bases having different biological activities. Indeed, the type of substituent used and the position of the substitution on the aromatic nucleus have particularly important effects on the properties of the molecule [13,23-25]. On the other hand, 2 -aminoethanol has received great interest from coordination chemists because of the properties of the complexes formed with it. Certain complexes based on ethanolamine are used as buffer [26], catalysts [27], anti-cancer [28], antimicrobial [29], cytotoxic agent [23]. It is in this context that we report the synthesis, the spectroscopic characterization, and the crystal structure of three complexes (1-3) with the same tridentate Schiff base 2-((2hydroxyethylimino)methyl)phenol ($\mathrm{H}_{2} \mathrm{~L}$), identical to that used by several authors [23,30-33]. Single crystal Xray diffraction studies reveal that the ligand acts differently with the metal ions. In complex $\mathbf{1}$ a single Co (III) ion is coordinated with two $\mathrm{H}_{2} \mathrm{~L}$ molecules which act in a tridentate fashion. In complex 2, two ligand molecules act in a tridentate fashion, forming a bridge between two $\mathrm{Ni}(\mathrm{II})$ ions. For complex $\mathbf{3}$ the ligand acts in a tridentate manner on a single $\mathrm{Cu}(\mathrm{II})$ ion while the two copper(II) ions are bridged by two chloride ions.

II. Experimental section

2.1. Material and procedures

Salicylaldehyde, 2-aminoethanol, 2-acetylpyridine, cobalt chloride hexahydrate, nickel chloride hexahydrate and copper chloride dihydrate were commercial products (from Aldrich) and were used without further purifications. The solvents were reagent grade and were purified by usual methods. Elemental analyses were carried out using a VxRio EL Instrument. The IR spectra were recorded on a FTIR Spectrum Two of Perkin Elmer (4000-400 cm^{-1}). The UV-Vis spectra were run on a Perkin-Elmer UV/Visible spectrophotometer Lambda 365 ($1000-200 \mathrm{~nm}$). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the Schiff bases were recorded in DMSO- d_{6} on a BRUKER 500 MHz spectrometer at room temperature using TMS as an internal reference. The molar conductance of $10^{-3} \mathrm{M}$ solutions of the metal complexes in DMF was measured at $25^{\circ} \mathrm{C}$ using a WTW LF-330 conductivity meter with a WTW conductivity cell. Magnetic measurements for complexes were performed at room temperature by using a Johnson Mattey scientific magnetic susceptibility balance (Calibrant: $\left.\mathrm{Hg}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]\right)$.

2.1.1. Synthesis of 2-((2-hydroxyethylimino)methyl)phenol $\left(\mathbf{H}_{2} \mathrm{~L}\right)$

Method from literature [23] was used with slight modification. In a 250 mL flask containing 30 mL of methanol, $2.5 \mathrm{~g}(20.471 \mathrm{mmol})$ of salicylaldehyde, $1.25 \mathrm{~g}(20.471 \mathrm{mmol})$ of 2 -aminoethanol in 10 mL of methanol was added. The resulting mixture was refluxed for two hours. The methanol was removed, and a viscous red oil was recovered. Yield 75.2 \%. M.p. $92^{\circ} \mathrm{C}$. Anal. Calc for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$: C, 65.44; H, 6.71; N, 8.48. Found: C, 65.46; H, 6.68; N, 8.45. (300 MHz, DMSO-d $)^{\text {) }}(\delta, \mathrm{ppm})$: $13.56(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; 8.51(\mathrm{~s}, \mathbf{H C = N}, 1 \mathrm{H})$; $4.77\left(\mathrm{~s},-\mathrm{CH}_{2}-\mathrm{OH}, 1 \mathrm{H}\right) ; 6.87-7.44(\mathrm{~m}, \mathrm{H}-\mathrm{Ar}, 4 \mathrm{H}) ; 3.54\left(\mathrm{t},-\mathrm{CH}_{2}-\mathrm{N}, 2 \mathrm{H}\right) ; 3.74\left(\mathrm{t},-\mathrm{CH}_{2}-\mathrm{OH}, 2 \mathrm{H}\right) . \mathrm{NMR}{ }^{13} \mathrm{C}$ [DMSO, $300 \mathrm{MHz},(\delta, \mathrm{ppm})]: 118.61\left(\mathbf{C}_{\mathrm{Ar}}-\mathrm{C}\right) ; 161.06\left(\mathbf{C}_{\mathrm{Ar}}-\mathrm{OH}\right) ; 118.05\left(\mathbf{C}_{\mathrm{Ar}}\right) ; 132.12\left(\mathbf{C}_{\mathrm{Ar}}\right) ; 118.24$ $\left(\mathbf{C}_{\text {Ar }}\right) ; 131.99\left(\mathbf{C}_{\text {Ar }}\right) ; 166.60(\mathbf{C}=\mathrm{N}) ; 60.24\left(-\mathbf{C H}_{2}-\right) ; 60.90(\mathbf{C}-\mathrm{OH})$.

2.1.2. Synthesis of the complexes $\left\{\left[\mathrm{Co}(\mathrm{L})_{2}\right] \cdot\left[\mathrm{Co}(\mathrm{HL})_{2}\right] \cdot \mathbf{4} \mathbf{H}_{2} \mathrm{O}\right\}(\mathbf{1})$

To a methanolic solution (10 mL) of the ligand $\mathrm{H}_{2} \mathrm{~L} 0.1 \mathrm{~g}(1 \mathrm{mmol})$ a solution of the $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ salt $0.2379 \mathrm{~g}(1 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was added. The solution was stirred at room temperature for one hour and then filtered. The filtrate was left to slow evaporation and yellow crystals suitable for X-ray analyze were formed after 3 days. Yield 55%. Anal. Calc for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{Co}_{2}$: C, 51.07; H, 5.71; N, 6.62. Found: C, 51.03; H, 5.68; N, 6.59. IR (cm^{-1}): 3722, 1644, 1597, 1572, 1492, 1467, 1299, 1197, 1106, 942, 836, 781. Magnetic moment: diamagnetic. Conductance $\Lambda\left(\mathrm{S} . \mathrm{cm}^{2} . \mathrm{mol}^{-1}\right): 9$.

2.1.3. Synthesis of the complexes $\left[\mathrm{Ni}_{2}(\mathbf{H L})_{2}\left(\mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}(\mathbf{2})\right.$

The procedure used for the synthesis of (1) was used: $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} 0.2369 \mathrm{~g}$ (1 mmol) instead $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Yield 61%. Anal. Calc for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Cl}_{2} \mathrm{Ni}_{2}$: C, $40.61 ; \mathrm{H}, 3.61 ; \mathrm{N}, 21.92$; S, 7.17. Found: C, $40.59 ; \mathrm{H}, 3.59 ; \mathrm{N}, 21.89 ; \mathrm{S}, 7.15$. IR (cm^{-1}): 3737, 1646, 1585, 1545, 1466, 1305, 1197, 1077, 925, 858, 776. $\mu_{\text {eff }}$ $=3.7 \mu_{\mathrm{B}}$ per nickel ion. Conductance $\Lambda\left(\mathrm{S} . \mathrm{cm}^{2} . \mathrm{mol}^{-1}\right): 8$.

2.1.4. Synthesis of the complexes $\left\{\left[\mathrm{Cu}_{2}(\mathrm{HL})_{2}(\mathrm{Cl})_{2}\right] \cdot\left[\mathrm{Cu}_{2}(\mathrm{HL})_{2}(\mathrm{Cl})_{2}\right] \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}(3)$ and $\left[\mathrm{Cu}_{2}(\mathrm{HL})_{2}(\mathrm{Cl})_{2}\right](4)$

The procedure used for the synthesis of (1) was used: $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} 0.1705 \mathrm{~g}(1 \mathrm{mmol})$ instead $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The black filtrate was left to slow evaporation and green crystals suitable for X-ray analyze were formed after 5 days. (3) : Yield 58%. Anal. Calc for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Cl}_{4} \mathrm{Cu}_{4}$: C, 40.38; H, 3.95; N, 5.28; Cl, 13.24. Found: C, 40.35; H, 3.93; N, 5.26; Cl, 13.21. IR (cm^{-1}): 3784, 1635, 1579, 1568, 1465, 1332, 1194, 1071, 928, 892 , 751. $\mu_{\text {eff }}=2.49 \mu_{\mathrm{B}}$ per dimer. Conductance $\Lambda\left(\mathrm{S}_{\mathrm{cm}}{ }^{2} . \mathrm{mol}^{-1}\right): 12$. On continuing the slow evaporation blue
crystals suitable for X-ray analyze were formed after three weeks. (4) : Yield 25%. Anal. Calc for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cu}_{2}$: C, 41.07; H, 3.83; N, 5.32. Found: C, 41.01; H, 3.80; N, 5.33. IR (cm^{-1}): 3501, 1650, 1597, $1540,1470,1195,1150,1064,964,8976,751 . \mu_{\text {eff }}=1.75 \mu_{\mathrm{B}}$ per copper ion. Conductance $\Lambda\left(\mathrm{S}_{\mathrm{cm}}{ }^{2} . \mathrm{mol}^{-1}\right): 5$. When methanol solvent was used instead ethanol, compounds (3) and (4) were isolated again.

2.2. Crystal structure determination of complexes $1,2,3$ and 4

The details of the crystal structure solution and refinement are given in Table 1. Measurements were made on a Rigaku Oxford Diffraction Dual source diffractometer at the $\mathrm{CuK} \alpha$ radiation ($1.54184 \AA$ A). All data were corrected for Lorentz and polarization effects. Empirical absorption correction was applied. Complex scattering factors were taken from the program package SHELXTL [34]. The structures were solved by intrinsic phasing, which revealed the position of all non-hydrogen atoms. All the structures were refined on F^{2} by a fullmatrix least-squares procedure using anisotropic displacement parameters for all non-hydrogen atoms [35]. All hydrogen atoms were located in their calculated positions and refined using a riding model. Molecular graphics were generated using $O R T E P-3$ [36].

Table-1. Crystal data and details of the structure determination of 1, 2, $\mathbf{3}$ and 4.

Complex	1	2	3	4
Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{Co}_{2} \mathrm{~N}_{4} \mathrm{O}_{12}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{Ni}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{Cu}_{4} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{9}$	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$
Formula weight	846.65	552.69	1070.74	526.37
Temperature (K)	293	295	295	293
Radiation type (A)	1.54184	1.54184	1.54184	0.71073
Crystal system	Trigonal	Monoclinic	Triclinic	Monoclinic
space group	R3	Pc	$P-\overline{1}$	$P 2_{1} / c$
$a(\mathrm{~A})$	29.9090(4)	9.8449(1)	12.4033(4)	17.1076(3)
b (A)	29.9090(4)	9.0046(1)	12.4521(4)	8.94199(19)
$c(\mathrm{~A})$	10.9643(2)	11.9809(1)	15.3409(4)	13.0010(3)
$\alpha\left({ }^{\circ}\right)$	90	90	77.979(3)	90
$\beta\left({ }^{\circ}\right)$	90	93.139(1)	86.543(2)	97.1106(18)
$\gamma\left({ }^{\circ}\right)$	120	90	66.209(3)	90
$V\left({ }_{\text {A }}{ }^{3}\right)$	8494.1(3)	1060.51(2)	2119.73(12)	1973.55(7)
Z	32	4	2	4
$D_{\text {cal }}\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.486	1.731	1.618	1.5999
$\mu\left(\mathrm{mm}^{-1}\right)$	7.46	4.87	5.05	0.88
Crystal size (mm)	$0.12 \times 0.08 \times 0.06$	$0.40 \times 0.30 \times 0.08$	$0.06 \times 0.06 \times 0.02$	$0.10 \times 0.08 \times 0.05$
θ range (${ }^{\circ}$)	2.955-73.018	4.498-70.735	2.946-72.960	2.399-31.792
Absorption correction	Multi scan	Multi scan	Multi scan	
Index ranges	$\begin{gathered} -28 \leq h \leq 37, \\ -37 \leq k \leq 20, \\ -13 \leq l \leq 13 \end{gathered}$	$\begin{aligned} & -12 \leq h \leq 11, \\ & -9 \leq k \leq 10, \\ & -14 \leq l \leq 14 \end{aligned}$	$\begin{aligned} & -15 \leq h \leq 15, \\ & -15 \leq k \leq 15, \\ & -18 \leq l \leq 19 \end{aligned}$	$\begin{aligned} & -25 \leq h \leq 24 \\ & -12 \leq k \leq 11 \\ & -18 \leq l \leq 18 \end{aligned}$
No. of measured Reflections collected	16700	17769	38168	40018
Independent Reflections	7137	3484	8284	5905
Observed reflections [I > $2 \sigma(I)]$	5606	3468	6828	5089
$R_{\text {int }}$	0.046	0.035	0.055	0.050
Final $R_{1}, w R_{2}$ indices [I > $2 \sigma(I)]$	0.0409, 0.1033	0.0357, 0.0902	0.0379, 0.0967	0.0266, 0.0607

Synthesis, spectroscopic characterization, and crystal structure of Co(III), Ni(II) and ..

Final $R_{1}, w R_{2}$ (all data)	$0.0565,0.1384$	$0.0357,0.0902$	$0.0483,0.1051$	$0.0352,0.0627$
Data/restraints/parameters	$5606 / 4 / 499$	$3468 / 8 / 279$	$6828 / 12 / 529$	$5089 / 0 / 256$
GOF	1.11	1.06	1.03	1.05
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	$0.46,-0.47$	$0.26,-0.56$	$1.33,-0.46$	$0.54,-0.48$

III. Result and discussion

3.1. Synthesis and spectroscopic studies

The acyclic Schiff base ligand $\mathrm{H}_{2} \mathrm{~L}$ was prepared following a method in the literature [23]. The synthesis of $\mathrm{H}_{2} \mathrm{~L}$ was achieved in one step procedure by the condensation reaction between salicylaldehyde and 2 -aminoethanol in quantitative yield. The infrared spectrum of the ligand reveals a broad band between 3200 and $3500 \mathrm{~cm}^{-1}$ which is attributable to the v_{OH} vibrations of the phenol and the alcohol groups. The band pointed at $1632 \mathrm{~cm}^{-1}$ is assigned to the $v_{\mathrm{C}=\mathrm{N}}$ vibration of the imine group. The band pointed at $1276 \mathrm{~cm}^{-1}$ is attributed to the $v_{\mathrm{C}-\mathrm{O}}$ vibration. The bands observed between 2876 and $2971 \mathrm{~cm}^{-1}$ are attributed to the methylene groups. Bands characteristic of phenyl ring are pointed in the region $1490-1580 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the ligand recorded in DMSO- d_{6} reveals singlet spotted at 13.56 ppm which is attributed to the phenolic proton $\mathrm{Ar}-\mathrm{OH}$. Signals at 8.51 and 4.77 ppm are respectively assigned to the protons of the imine function $(\mathbf{H C}=\mathrm{N})$ and the primary alcohol $-\mathrm{CH}_{2}-\mathrm{OH}$. Signals observed in the range [6.87-7.44] ppm as a multiplet are assigned to the aromatic protons. Two signals appearing as triplet are pointed at 3.54 and 3.74 ppm and assigned to the methylene protons ($-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$) and to the protons of the carbon atom supporting the alcoholic function $\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right)$. The ${ }^{13} \mathrm{C}$ NMR shows a signal at 166.60 ppm attributed to the azomethine carbon atom $(\mathbf{C}=\mathrm{N})$. The signal at 161.06 ppm is assigned to the $\mathbf{C}_{\mathrm{ipso}}-\mathrm{OH}$ of the phenol ring. The signals of the methylene carbon atoms are pointed at $60.24\left(-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right)$ and $60.90 \mathrm{ppm}\left(-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right)$. The signals in the range [118 ppm - 132 ppm] are attributed to the aromatic carbon atoms.

The reactions of $\mathrm{H}_{2} \mathrm{~L}$ with chloride metal transitions salts in 1:1 ratio, were screened. The complexation was achieved in methanol or ethanol solutions by mixing both ligand and salts. The air-stable complexes were isolated as mononuclear or dinuclear. Crystals suitable for X-ray analyses were isolated by slow evaporation of the solution of $\quad\left\{\left[\mathrm{Co}(\mathrm{L})_{2}\right] \cdot\left[\mathrm{Co}(\mathrm{HL})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\} \quad(\mathbf{1}), \quad\left[\mathrm{Ni}_{2}(\mathrm{HL})_{2}\left(\mathrm{Cl}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}$ $\left\{\left[\mathrm{Cu}_{2}(\mathrm{HL})_{2}\left(\mathrm{Cl}_{2}\right] \cdot\left[\mathrm{Cu}_{2}(\mathrm{HL})_{2}(\mathrm{Cl})_{2}\right] \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}(3),\left[\mathrm{Cu}_{2}(\mathrm{HL})_{2}(\mathrm{Cl})_{2}\right.\right.$ (4). All the complexes are characterized by elemental analysis, IR and UV spectroscopies, molar conductivity measurements, room temperature magnetic moments measurements and X-ray diffraction.

Scheme 1. The process of preparation of the complexes.
Upon coordination to metal ion, a shift was observed for the azomethine infrared band comparatively to the free ligand. For complexes $\mathbf{1 - 4}$, the $\mathrm{C}=\mathrm{N}$ band appears respectively at $1644 \mathrm{~cm}^{-1}, 1646 \mathrm{~cm}^{-1}, 1635 \mathrm{~cm}^{-1}$ and $1650 \mathrm{~cm}^{-1}$. Those displacements are indicative of the involvement of the azomethine in the coordination. The electronic spectrum of the free ligand shows two main bands at $38610 \mathrm{~cm}^{-1}$ and $31348 \mathrm{~cm}^{-1}$ attributable to the aromatic ring and the azomethine $\mathrm{C}=\mathrm{N}$. The electronic spectrum of the complex of $\mathrm{Co}(\mathrm{III})(\mathbf{1})$ exhibits distinct absorption bands at $19048 \mathrm{~cm}^{-1}, 24876 \mathrm{~cm}^{-1}, 31153 \mathrm{~cm}^{-1}$ and $38314 \mathrm{~cm}^{-1}$. The band at $38314 \mathrm{~cm}^{-1}$ is attributed to $\pi \rightarrow \pi^{*}$ while the band at $31153 \mathrm{~cm}^{-1}$ is due to $\mathrm{n} \rightarrow \pi^{*}$ transition. These transitions are due to the benzene ring and azomethine moiety. Comparatively to the band on the spectrum of the free ligand, reduction in intensity is observed. The band at $24876 \mathrm{~cm}^{-1}$ is assigned to the ligand to metal charge transfer (LMTC) $\mathrm{PhO}^{-} \rightarrow \mathrm{Co}^{3+}$ and $\mathrm{C}=\mathrm{N} \rightarrow \mathrm{Co}^{3+}$ [37]. In spin paired cobalt(III) octahedral complex, two spin allowed $\mathrm{d} \rightarrow \mathrm{d}$ transitions at relatively low energy are expected. In the spectrum of complex 1, bands at $19048 \mathrm{~cm}^{-1}$ and $13423 \mathrm{~cm}^{-1}$ assigned to ${ }^{1} \mathrm{~A}_{1 g} \rightarrow{ }^{1} \mathrm{~T}_{1 g}$ and ${ }^{1} \mathrm{~A}_{1 g} \rightarrow{ }^{1} \mathrm{~T}_{2 g}[38,39]$. Room temperature magnetic susceptibility measurements show that the complex 1 is diamagnetic as expected for low-spin cobalt(III) complexes [40]. The electronic spectrum of complex 2 shows high intensity bands at $38462 \mathrm{~cm}^{-1}$ and $27027 \mathrm{~cm}^{-1}$ which are assigned to $\pi \rightarrow \pi^{*}$ transitions of the aromatic ring and to $\mathrm{LMCT} \mathrm{PhO}^{-} \rightarrow \mathrm{Ni}^{2+}$ and $\mathrm{C}=\mathrm{N} \rightarrow \mathrm{Ni}^{2+}$, respectively [41]. The band at $16949 \mathrm{~cm}^{-1}$ is assigned to $\mathrm{d} \rightarrow \mathrm{d}$ transition. Additional band with low intensity is pointed at $13369 \mathrm{~cm}^{-1}$. This band is assigned to a spin-forbidden transition [42]. Room temperature magnetic susceptibility measurements shows that the complex $\mathbf{2}$ is diamagnetic with a magnetic moment value of $3.7 \mu_{\mathrm{B}}$ per $\mathrm{Ni}(\mathrm{II})$ ion. This value is indicative of the presence of two unpaired electrons in an octahedral environment around each of the two uncoupled nickel atoms [43-45]. The electronic spectrum of complex 3 shows band at 38461 and $32894 \mathrm{~cm}^{-1}$ which are due to the $\pi \rightarrow \pi^{*}$ and $\mathrm{n} \rightarrow \pi^{*}$ transition for the aromatic ring and the azomethine moiety. The band at $27247 \mathrm{~cm}^{-1}$ is typical to LMCT [41]. The band of low intensity appearing at $15360 \mathrm{~cm}^{-1}$ is attributable to the $\mathrm{d} \rightarrow \mathrm{d}$ transition of copper ion in square-pyramidal environment [46]. Complex 3 is diamagnetic with an effective room temperature magnetic moment of $2.49 \mu_{\mathrm{B}}$ per dimer which is comparable to the spin only value of $2.45 \mu_{\mathrm{B}}$, expected for two non-interaction copper (II) ions. The magnetic moment value of complex $\mathbf{3}$ is close proximity to those reported
for similar copper (II) complexes [47,48]. Complex 4 shows three main bands. The bands at $25710 \mathrm{~cm}^{-1}$ and $21413 \mathrm{~cm}^{-1}$ are due to the intra-ligand transitions, while the band at $14556 \mathrm{~cm}^{-1}$ is attributable to the $\mathrm{d} \rightarrow \mathrm{d}$ transition in copper(II) ion in square pyramidal geometry [49]. The magnetic moment value of $1.75 \mu_{\mathrm{B}}$ per copper ion in complex 4 , is closer to the expected value of $1.73 \mu_{\mathrm{B}}$ for a well-separated copper (II) ion [50].
The molar conductance Λ measured in $10^{-3} \mathrm{M} \mathrm{DMF}$ solutions of complexes 1-4 are respectively $9,8,12$ and 5 S $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$. These values are indicative of neutral electrolytes in DMF [51].

Table-2. Selected bond lengths $[\AA]$ and bond angles $\left[{ }^{\circ}\right]$ of complexes 1, 2, $\mathbf{3}$ and $\mathbf{4}$.

1		2		3		4	
Col-O1	1.874 (5)	Ni2-N2	2.004 (3)	Cu2-N2	1.947 (3)	Cu2-N2	1.9410 (12)
Co1-O3	1.895 (5)	Ni2-O3	2.007 (3)	$\mathrm{Cu} 2-\mathrm{Cl} 2$	2.2649 (8)	Cu2-O3	1.9434 (11)
Co1-N1	1.897 (7)	Ni2-O1	2.056 (3)	Cu2-Cl1	2.7688 (9)	Cu2-O4	1.9812 (11)
Co1-N2	1.912 (6)	Ni2-O6	2.090 (3)	Cu4-O5	1.889 (2)	Cu1-O3	1.9888 (10)
Col-O4	1.919 (5)	Ni2-O4	2.195 (3)	Cu4-N4	1.943 (2)	$\mathrm{Cu} 1-\mathrm{N} 1$	1.9305 (12)
Co1-O2	1.929 (5)	Ni2-Cl2	2.4711 (10)	$\mathrm{Cu} 4-\mathrm{Cl} 4$	2.2815 (8)	$\mathrm{Cu} 2-\mathrm{Cl} 1$	2.2629 (4)
Co2-O6	1.880 (5)	Ni1-O1	2.001 (3)	Cu3-O8	2.018 (3)	$\mathrm{Cu} 2-\mathrm{Cl} 2$	2.6194 (4)
Co2-N4	1.895 (7)	Ni1-N1	2.012 (3)	Cu3-Cl3	2.2607 (8)	$\mathrm{Cu} 1-\mathrm{O} 1$	1.8769 (12)
Co2-N3	1.901 (6)	Ni1-O3	2.061 (3)	Cu3-Cl4	2.7664 (9)	$\mathrm{Cu} 1-\mathrm{O} 2$	2.0200 (11)
Co2-08	1.911 (5)	Ni1-O5	2.076 (3)	$\mathrm{Cu} 1-\mathrm{O} 1$	1.902 (3)	$\mathrm{Cu} 1-\mathrm{Cl} 1$	2.6735 (4)
Co2-09	1.916 (5)	Ni1-Cl1	2.3915 (11)	$\mathrm{Cu} 1-\mathrm{O} 2$	1.987 (2)		
Co2-O7	1.927 (5)	Ni1-O2	2.395 (3)	$\mathrm{Cu} 1-\mathrm{Cl} 1$	2.2418 (9)		
N1-Co1-N2	174.1 (3)	N2-Ni2-O1	170.43 (12)	$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 4$	174.04 (9)	O3-Cu2-O4	168.47 (5)
O3-Col-O4	177.7 (3)	N1-Ni1-O3	169.71 (12)	N2-Cu2-Cl2	168.98 (9)	N2-Cu2-Cl1	163.07 (4)
N4-Co2-N3	174.7 (3)	O3-Ni2-O4	170.85 (11)	O5-Cu4-O6	170.30 (10)	N1-Cu1-O3	169.60 (5)
O8-Co2-09	178.4 (2)	O5-Ni1-Cl1	169.49 (9)	N4-Cu4-Cl4	152.82 (8)	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	168.15 (5)
O6-Co2-O7	178.2 (3)	$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2$	168.81 (11)	O7-Cu3-O8	175.42 (9)	$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{Cl} 1$	89.36 (3)
O1-Col-O2	179.1 (2)	O6-Ni2-Cl2	168.82 (9)	N3-Cu3-Cl3	166.31 (10)	$\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{Cl} 1$	93.68 (3)
O6-Co2-N3	95.0 (2)	N2-Ni2-Cl2	95.35 (9)	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	174.78 (10)	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 2$	90.90 (4)
O3-Co1-N1	90.2 (3)	O3-Ni2-O6	91.29 (12)	N1-Cu1-Cl1	166.03 (8)	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	105.90 (4)
O1-Co1-N2	89.2 (2)	O1-Ni1-O5	93.69 (11)	Cu4-C14-Cu3	85.62 (3)	N2-Cu2-O3	92.30 (5)
N3-Co2-O9	91.8 (2)	N1-Ni1-O5	92.50 (12)	$\mathrm{Cu} 1-\mathrm{Cl} 1-\mathrm{Cu} 2$	87.87 (3)	O1-Cu1-O3	90.90 (5)

3.2. Description of the crystal structure of the complex 1

The title compound crystallizes in the trigonal system in the space group $R 3$. The asymmetric unit of the title compound, $\left\{\left[\mathrm{Co}(\mathrm{L})_{2}\right] \cdot\left[\mathrm{Co}(\mathrm{HL})_{2}\right] \cdot 4\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}$, contains two mononuclear ionic units, anionic $\left[\mathrm{Co}(\mathrm{L})_{2}\right]^{-}$and cationic $\left[\mathrm{Co}(\mathrm{HL})_{2}\right]^{+}$and two uncoordinated water molecules (Figure 1a). The selected bond lengths and angles are collected in Table 2. In one of the two unit, the $\mathrm{Co}^{\mathrm{III}}$ ion is coordinated by two monodeprotonated ligand through one phenolate oxygen atom, one alcoholic oxygen atom and one nitrogen atom. In the second unit the $\mathrm{Co}^{\mathrm{III}}$ ion is coordinated to two dideprotonated ligand molecule through one phenolate oxygen atom, one alcoholate oxygen atom and one nitrogen atom. The environment of the $\mathrm{Co}^{\mathrm{III}}$ ion in both molecules is a $\mathrm{N}_{2} \mathrm{O}_{4}$. For both $\mathrm{Co}^{\text {III }}$ the two ligands are in mer configuration. Each Co atom is in a distorted octahedral geometry. The basal planes are occupied by N1, O3, N2, O4 for Co1 and N3, O6, N4, O7 for Co2. The cissoid angles are in the range [84.4 (3)-94.4 (3)] for Co 1 and [85.2 (2)-95.0 (2)] for Co 2 while the transoid angles are $\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 4=$ $177.7(3)^{\circ}, \mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2=174.1(3)^{\circ}, \mathrm{O} 6-\mathrm{Co} 2-\mathrm{O} 7=178.2(3)^{\circ}$ and $\mathrm{N} 3-\mathrm{Co} 2-\mathrm{N} 4=174.7$ (3) ${ }^{\circ}$ (Table 2). The sum of the angles subtended by the atoms in the basal planes are 360.1° and 359.9° for Co 1 and Co 2 respectively. The apical positions are occupied by one phenolate oxygen atom and one alcoholic oxygen atom for each $\mathrm{Co}^{\mathrm{III}}$ ion with angle values of $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2=179.1$ (2) ${ }^{\circ}$ and $\mathrm{O} 8-\mathrm{Co} 2-\mathrm{O} 9=178.4$ (2) ${ }^{\circ}$. Each ligand form with the corresponding Co ion five-membered ring CoOCCN and hexa-membered ring CoOCCCN, which
share a vertex at the azomethine nitrogen. The $\mathrm{N}-\mathrm{Co}-\mathrm{O}$ bite angles values within the five-membered chelate rings fall in the range $\left[84.4(3)^{\circ}-86.0(3)^{\circ}\right]$ and the values in the range $\left[94.4(3)-95.0(2)^{\circ}\right]$ are attributed to the $\mathrm{N}-\mathrm{Co}-\mathrm{O}$ bite angles within hexa-membered chelate. These angle values are in accordance with the expected values for similar octahedral cobalt complex [52]. The deviation of the Co 1 and Co 2 ions from their corresponding basal plane are $0.0127 \AA$ and $0.0269 \AA$, respectively. The mean planes defined by the atoms of the ligand coordinated to Co1 are quite perpendicular with dihedral angle of 89.614 (8) ${ }^{\circ}$. The dihedral angle between the means planes of the ligand coordinated to Co 2 is 84.479 (5) ${ }^{\circ}$. The distances $\mathrm{Co}-\mathrm{O}$ and $\mathrm{Co}-\mathrm{N}$ are comparable and fall in the range $[1.874$ (5) $\AA-1.929$ (5) \AA] and are compatible with the expected values for those type of bond [53]. In the crystal, intramolecular and intermolecular hydrogen bonds are simultaneously present. The crystal packing of compound $\mathbf{1}$ is stabilized by intramolecular $\mathrm{O} 9-\mathrm{H} 9 \cdots \mathrm{O} 2$ and $\mathrm{O} 5-\mathrm{H} 5 \mathrm{~A} \ldots \mathrm{O} 3$ and intermolecular $\mathrm{O} 7-\mathrm{H} 7 \cdots \mathrm{O} 4^{\mathrm{i}}$ ($\mathrm{i}=-\mathrm{y}+1, \mathrm{x}-\mathrm{y}, \mathrm{z}$) hydrogen bonds. Additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $\mathrm{C} 25-$ $\mathrm{H} 25 \cdots \mathrm{O} 12^{\mathrm{ii}}$ and $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 7^{\mathrm{ii}}$ (ii $=-\mathrm{x}+\mathrm{y}+1,-\mathrm{x}+1$, z) connect the unit forming a planar two dimensional structure in the $a b$ plane (Figure 1b, Table 3).

Fig 1. (a) Crystal structure of the dinuclear complex $\left\{\left[\mathrm{Co}(\mathrm{L})_{2}\right] \cdot\left[\mathrm{Co}(\mathrm{HL})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}(\mathbf{1})$, (b) packing diagram of (1) viewed along the ab plane.

Table-3. Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$ of complex 1.

| $D — \mathrm{H} \cdots A$ | $D — \mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D — \mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| O9—H9 $\cdots \mathrm{O} 2$ | $0.862 \quad(14)$ | $1.550 \quad(19)$ | $2.407 \quad$ (7) | $172 \quad$ (6) |
| $\mathrm{O}^{2}-\mathrm{H} 7 \cdots \mathrm{O}^{\mathrm{i}}$ | 0.86 | 1.64 | $2.425 \quad$ (7) | 150.5 |

Synthesis, spectroscopic characterization, and crystal structure of $\mathrm{Co}($ III $), \mathrm{Ni}(I I)$ and ..

| O5—H5A $\cdots \mathrm{O} 3$ | 0.85 | 1.99 | $2.827 \quad(10)$ | 166.6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C25—H25 $\cdots \mathrm{O}^{2} 2^{\mathrm{ii}}$ | 0.93 | 2.61 | $3.498 \quad(12)$ | 160.8 |
| C8—H8B $\cdots \mathrm{O}^{7 i}$ | 0.97 | 2.65 | $3.427 \quad(10)$ | 137.4 |
| C27—H27B $\cdots \mathrm{O} 2$ | 0.97 | 2.55 | $3.388 \quad(9)$ | 144.9 |

Symmetry codes: (i) $-\mathrm{y}+1, \mathrm{x}-\mathrm{y}, \mathrm{z}$; (ii) $-\mathrm{x}+\mathrm{y}+1,-\mathrm{x}+1$, z .

3.3. Description of the crystal structure of the complex 2

The title compound crystallizes in the monoclinic system in the space group Pc. The asymmetric unit consists of a dinuclear neutral unit, $\left[\mathrm{Ni}_{2}\left(\mathrm{HL}_{2}\right)_{2}\left(\mathrm{Cl}_{2}\right]\right.$ (Figure 2a). The selected bond lengths and angles are collected in Table 2. In the dinuclear unit, both nickel ions are in an $\mathrm{NO}_{4} \mathrm{Cl}$ environment, which can be described as a square bipyramidal geometry. The basal planes around each of these two nickel ions are occupied by one phenolate, one alcoholic oxygen atoms and one nitrogen atom from one ligand molecule and one phenolate oxygen atom from a second ligand. The two phenolate oxygen atoms acts as bridge between the two nickel ions. The apical positions are occupied by one oxygen from a coordinated water molecule and one chloride anion. The apical bond lengths $\mathrm{Cl} 1-\mathrm{Ni} 1$ and $\mathrm{Cl} 2-\mathrm{Ni} 2$ are 2.394 (3) and 2.471 (1) \AA, respectively, and are the longest distances around these two nickel ions. These values are close proximity to the values reported for the complex $\left.\mathrm{Ni}(2 \text { aepy })_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$ (2aepy is 2-aminoethylpyridine) in which the chlorido ion is in terminal position as in the studied complex [54]. The two other apical bonds $\mathrm{O}_{\text {water }}-\mathrm{Ni}$ distances are respectively 2.076 (3) \AA and 2.090 (3) \AA for $\mathrm{O} 5-\mathrm{Ni} 1$ and $\mathrm{O} 6-\mathrm{Ni} 2$ ad agree with the bond length values of $\mathrm{O}_{\text {water }}-\mathrm{Ni}$ in reported complex $\operatorname{Bis}[\mu-2-\{\operatorname{bis}(2-p y r i d y l e t h y l) a m i n o\} p h e n o l a t o]-b i s[a q u a n i c k e l(I I)] ~ d i n i t r a t e ~ t e t r a h y d r a t e ~[55] . ~$. The the $\mathrm{Ni}-\mathrm{N}_{\text {imino }}$ distance of are quite identical with value of 2.012 (3) \AA [$\left.\mathrm{Ni} 1-\mathrm{N} 1\right]$ and 2.004 (3) \AA [$\left.\mathrm{Ni} 2-\mathrm{N} 2\right]$. The $\mathrm{Ni}-\mathrm{O}_{\text {phenoxo }}$ bridge is asymmetric as revealed by $\mathrm{Ni} 1-\mathrm{O} 1=2.000(3) \AA, \mathrm{Ni} 2-\mathrm{O} 1=2.056(2) \AA, \mathrm{Ni} 1-\mathrm{O} 3=$ 2.061 (2) \AA and $\mathrm{Ni} 2-\mathrm{O} 3=2.007$ (3) \AA. The $\mathrm{Ni}-\mathrm{N}, \mathrm{Ni}-\mathrm{O}$ and $\mathrm{Ni}-\mathrm{Ni}$ distances are in the range reported for Ni complexes having $\mathrm{Ni}_{2} \mathrm{O}_{2}$ moiety in which the oxygen atoms are issued from phenolic units [56,57]. The separation between the two metal centers is about $3.1437(8) \AA$. This distance is too long to consider an intermetallic interaction with a bridge angle of Ni1-O1-Ni2 = $101.59(11)^{\circ}$ and $\mathrm{Ni} 1-\mathrm{O} 3-\mathrm{Ni} 2=101.21(11)^{\circ}$. These observations are in accordance with those found for similar dinuclear nickel complex [58]. The transoid angles at the Ni1 ion are equal to 169.71 (12) and $168.81(11)^{\circ}$, the cissoid angles vary from 76.52 (12) to $112.01(11)^{\circ}$. Around Ni2 ion, the transoid angles are equal to 170.43 (12) and $170.85(11)^{\circ}$, the cissoid angles vary from $78.59(10)^{\circ}$ to $110.14(11)^{\circ}$ (Table 2). These angle values which deviate severely from the ideal values of 180° for transoid angles and 90° for cissoid angles are indicative of the deformation of the octahedrons around Ni ions. The deviation of the Ni 1 and Ni 2 ions from their corresponding basal plane are $0.0623 \AA$ and $0.0367 \AA$, respectively. The sum of the angles subtended by the atoms in the basal planes are 359.70° and 359.88° for Ni 1 and Ni 2 , respectively. For each Ni , the ligand forms one five-membered ring and one hexa-membered ring which share one vertex at nitrogen imino atom. The values of $76.52(12)^{\circ}$ and $79.02(12)^{\circ}$ of the $\mathrm{N}-\mathrm{Ni}-\mathrm{O}$ bite angles within five-membered chelate rings and the values of $92.58(12)^{\circ}$ and $92.13(12)^{\circ}$ of the $\mathrm{N}-\mathrm{Ni}-\mathrm{O}$ bite angles within hexa-membered chelate are as expected [29]. The dihedral angle between the phenolato-rings $(\mathrm{O} 1-\mathrm{C} 6)$ and $(\mathrm{O} 3-\mathrm{C} 15)$ is 3.82° and these planes form dihedral angles with the $\mathrm{Ni}_{2} \mathrm{O}_{2}$ plane of 2.11° and 4.83°, respectively. A series of intramolecular $\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{Cl} 2, \mathrm{O} 6-\mathrm{H} 6 \mathrm{~A} \cdots \mathrm{Cl} 1$ and $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 2$ hydrogen bonds stabilize the structure. The intermolecular hydrogen bond $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\mathrm{i}}(\mathrm{i}=\mathrm{x}$, $y+1, z$), O5-H5A $\cdots \mathrm{Cl} 1^{\text {ii }}(\mathrm{ii}=\mathrm{x},-\mathrm{y}+1, \mathrm{z}-1 / 2), \mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{Cl} 2^{\mathrm{iii}}$ (iii $=\mathrm{x},-\mathrm{y}+2, \mathrm{z}+1 / 2$) and $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 2^{\text {iv }}(\mathrm{i}=\mathrm{x}$, $-\mathrm{y}+1, \mathrm{z}+1 / 2$) connect the units forming a planar two dimensional structure in the $a b$ plane (Figure 2b, Table 4).

Fig. 2. (a) Crystal structure of the dinuclear complex $\left[\mathrm{Ni}_{2}(\mathrm{HL})_{2}(\mathrm{Cl})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}(\mathbf{2})$, (b) packing diagram of (2) viewed along the $a b$ plane.

Table-4. Hydrogen-bond geometry ($\AA,^{\circ}$) of complex 2.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 — \mathrm{H} 4 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.870(13)$	$2.19(3)$	$2.985(4)$	$152(4)$
O5—H5A $\cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.90	2.24	$3.118(3)$	164.4
O5—H5B $\cdots \mathrm{Cl} 2$	0.90	2.39	$3.241(3)$	156.9
O6—H6A $\cdots \mathrm{Cl1}$	0.85	2.41	$3.188(3)$	153.1
O6—H6B $\cdots \mathrm{Cl}^{\mathrm{iiii}}$	0.85	2.34	$3.173(3)$	165.7
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{Cl} 2^{\mathrm{iv}}$	$0.862(13)$	$2.457(16)$	$3.309(3)$	$170(4)$
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{O} 2$	0.93	2.48	$3.387(5)$	163.6

Symmetry codes: (i) $\mathrm{x}, \mathrm{y}+1$, z ; (ii) $\mathrm{x},-\mathrm{y}+1, \mathrm{z}-1 / 2$; (iii) $\mathrm{x},-\mathrm{y}+2, \mathrm{z}+1 / 2$; (iv) $\mathrm{x},-\mathrm{y}+1, \mathrm{z}+1 / 2$.

3.4. Description of the crystal structure of the complex 3

The title compound $\mathbf{3}$ crystallizes in the triclinic system in the space group $P-1$. The asymmetric unit consists of two binuclear neutral copper(II) complexes $\left[\mathrm{Cu}_{2}(\mathrm{HL})_{2}\left(\mathrm{Cl}_{2}\right]\right.$, and one guest water molecule (Figure 3a). The selected bond lengths and angles are collected in Table 2. Each $\mathrm{Cu}^{\mathrm{II}}$ is pentacoordinated in a $\mathrm{NO}_{2} \mathrm{Cl}_{2}$ environment. The ligand acts in tridentate fashion through one azomethine nitrogen atom, one phenoxo oxygen atom and one alcoholic oxygen atom. The Cu ion is in a distorted square pyramid environment formed by the three coordinated atoms of the ligand and one bridged chloro atom defining the basal plane, while the second bridged chloro ion occupying the apical position. According to the Addison index [59] ($\tau=(\beta-\alpha) / 60$ where β and α are the largest values of the bond angles around the central ion) the coordination geometry around a pentacoordinated metal center can be discussed: $\tau=0$ describes a perfect square pyramidal, while $\tau=1$ describes a perfect trigonal bipyramidal geometry. The τ values of $0.146(\mathrm{Cu} 1), 0.084(\mathrm{Cu} 2), 0.151(\mathrm{Cu} 3)$ and $0.291(\mathrm{Cu} 4)$ are indicative of a distorted square pyramidal geometry around each metal center. In the dinuclear unit $\mathrm{Cu} 1 / \mathrm{Cu} 2, \mathrm{Cu} 2$ is more less distorted from a square-pyramidal geometry than Cu 1 , while in the dinuclear unit $\mathrm{Cu} 3 / \mathrm{Cu} 4, \mathrm{Cu} 4$ is more distorted from a square-pyramidal geometry than Cu 3 . The modified index suggested by Konno et al. [60] $\chi=(\beta+\gamma+\delta-2 \alpha) / 180$ (which considers the other angles, β and α are the largest angles, γ and δ are the other angles around the metal centers without the donor atoms defining β) which is more efficient confirms the geometries around the copper ions. The χ values of $0.1919(\mathrm{Cu} 1), 0.1311(\mathrm{Cu} 2)$, $0.1913(\mathrm{Cu} 3)$ and $0.3901(\mathrm{Cu} 4)$ are indicative of distorted square pyramid for each Cu center.

The two μ_{2}-chlorido ligands link the $\mathrm{Cu}(\mathrm{II})$ ions somewhat unsymmetrically. One of the bridging $\mathrm{Cu}-$ Cl bonds is significantly longer than the other as shown by the following values for the two units $i e . \mathrm{Cu} 1-\mathrm{Cl} 1=$ 2.2418 (9) \AA and $\mathrm{Cu} 2-\mathrm{Cl} 1=2.7688$ (9) \AA (Table 2). The axial longest $\mathrm{Cu}-\mathrm{Cl}$ distances $[\mathrm{Cu} 1-\mathrm{Cl} 2=2.957$ (1) $\AA, \mathrm{Cu} 2-\mathrm{Cl} 1=2.7688$ (9) $\AA, \mathrm{Cu} 4-\mathrm{Cl} 3=2.8183$ (8) \AA and $\mathrm{Cu} 3-\mathrm{Cl} 4=2.7664$ (9) \AA] fall in the range $[2.66 \AA-$ $3.36 \AA$] reported for similar complexes [61-63]. The $\mathrm{Cu}-\mathrm{O}[1.889$ (2) $\AA-2.018$ (2) \AA] and $\mathrm{Cu}-\mathrm{N}[1.931$ (3) \AA $\AA 1.947$ (3)] distances are in the range expected for similar square pyramidal complexes [63-65]. The separation between the two metal centers in the two units are 3.4973 (6) \AA [$\mathrm{Cu} 1-\mathrm{Cu} 2$] and 3.4973 (6) \AA [Cu3-Cu4]. For each of the coordinated ligand, the dihedral angle value between the plane of the phenolate ring and the plane formed by the atoms in the open chain, shows a distortion from planarity. For example, for the ligand molecule coordinated to Cu 1 , the plane of the phenolate ring $(\mathrm{O} 1 \mathrm{C} 1 \mathrm{C} 2 \mathrm{C} 3 \mathrm{C} 4 \mathrm{C} 5 \mathrm{C} 6)$ and the plane formed by (O2N1C8C9) forms a dihedral angle of $7.130(12)^{\circ}$ which is indicative of a twist in the ligand. For $\mathrm{Cu} 2, \mathrm{Cu} 3$ and Cu 4 the dihedral angles formed by the two parts of the coordinated ligand molecule are respectively 18.269 $(25)^{\circ}, 21.004(3)^{\circ}$ and $19.319(6)^{\circ}$. In all cases the ligand is twisted. For the dinuclear unit $\mathrm{Cu} 1 / \mathrm{Cu} 2$ the copper ions are displaced from their basal planes N1, O2, O1, Cl1 (rms deviation $0.1294 \AA$) for Cu 1 and N2, O3, O4, Cl 2 (rms $0.0843 \AA$) for Cu 2 by 0.0616 (10) \AA and 0.0010 (1) \AA A respectively. The dihedral angle between these two planes is $13.799(5)^{\circ}$. For the dinuclear unit $\mathrm{Cu} 3 / \mathrm{Cu} 4$ the copper ions are displaced from their basal planes O8, N3, O7, Cl3 (rms deviation $0.1002 \AA$ Å) for Cu3 and O5, N4, O6, Cl4 (rms $0.2752 \AA$) for Cu4 by 0.0986 (1) \AA and 0.1349 (9) \AA respectively. The dihedral angle between these two planes is 13.717 (9) ${ }^{\circ}$. Numerous intramolecular bonds are observed in the structure. In each of the two molecules in the asymmetric unit, intramolecular O (alcohol) $-\mathrm{H} \cdots \mathrm{O}$ (phenolate) which close in $S(6)$ stabilized the structure. The guest water molecule connect the two molecules complex in the asymmetric unit by intramolecular bonds of type O (alcohol) $-\mathrm{H} \cdots \mathrm{O}$ (water), O (water) $-\mathrm{H} \cdots \mathrm{O}$ (phenolate). Additional intermolecular hydrogen bonds $\mathrm{C} 25-$ $\mathrm{H} 25 \cdots \mathrm{O}^{\mathrm{i}}$ (phenolate) $(\mathrm{i}=-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+2)$ connect the units forming a planar two dimensional structure in the $b c$ plane (Figure 3b, Table 5).

(a)

(b)

Fig. 3. (a) Crystal structure of the dinuclear complex $\left\{\left[\mathrm{Cu}_{2}(\mathrm{HL})_{2}\left(\mathrm{Cl}_{2}\right] \cdot\left[\mathrm{Cu}_{2}(\mathrm{HL})_{2}(\mathrm{Cl})_{2}\right] \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}\right.$ (3), (b) packing diagram of (3) viewed along the $b c$ plane

Table-5. Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$ of complex 3.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 — \mathrm{H} 4 \cdots \mathrm{O} 1$	$0.868(9)$	$1.86(2)$	$2.602(3)$	$142(3)$
$\mathrm{O} 6-\mathrm{H} 6 \cdots \mathrm{O} 7$	$0.868(9)$	$1.856(16)$	$2.630(3)$	$148(2)$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O} 9$	$0.869(9)$	$1.86(2)$	$2.658(3)$	$153(3)$
O8—H8 $\cdots \mathrm{O} 9$	$0.869(9)$	$1.811(19)$	$2.616(3)$	$153(3)$
O9—H9C $\cdots \mathrm{O} 3$	0.85	1.98	$2.822(3)$	174.1
O9—H9D $\cdots \mathrm{O} 5$	0.85	1.86	$2.709(3)$	173.3

Synthesis, spectroscopic characterization, and crystal structure of Co(III), Ni(II) and ..

$\mathrm{C} 29 — \mathrm{H} 29 \cdots \mathrm{Cl} 1$	0.93	2.88	$3.679(3)$	145.1
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.61	$3.434(4)$	147.8

Symmetry codes: (i) $-x+1,-y+1,-z+2$.

3.5. Description of the crystal structure of the complex 4

The complex crystallizes in the monoclinic system in the space group $\mathrm{P} 2_{1} / \mathrm{c}$. The crystallographic data and the lattice parameters of the complex are recorded in the table 1. A perspective view of the structure and numbering of the atoms of this complex is shown in the Figure 4. The selected bond lengths and angles are collected in Table 2. The asymmetric unit consists of two copper (II) ions, two NO_{2}-donor tridentate ligands and two chloride ions. In the unsymmetrical complex, the pentacoordinated copper ion Cu 1 is situated in the $\mathrm{NO}_{3} \mathrm{Cl}$ inner, while the copper ion Cu 2 is located in the $\mathrm{NO}_{2} \mathrm{Cl}_{2}$ cage. The two copper ions are bridged by one chloro ion $[\mathrm{Cu}(\mu-\mathrm{Cl}) \mathrm{Cu}]$ and one phenolate oxygen ion $[\mathrm{Cu}(\mu-\mathrm{phenolato}) \mathrm{Cu}]$. The geometries around the Cu (II) ions can be elucidated using the Addison parameter (τ). The τ values of $0.024(\mathrm{Cu} 1)$ and $0.09(\mathrm{Cu} 2)$ are indicative of a slightly distorted square pyramidal environment for the two copper (II) ions.

The basal planes for Cu 1 and Cu 2 ions are defined respectively by $\mathrm{N} 1, \mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 1$ (rms 0.0600) and $\mathrm{O} 3, \mathrm{~N} 2, \mathrm{O} 4, \mathrm{Cl} 1$ (rms 0.0299) with the Cu ions $0.1328 \AA(\mathrm{Cu} 1)$ and $0.1934 \AA(\mathrm{Cu} 2)$ out of their corresponding plane. The apical position for Cu 1 is occupied by the bridged chloro ion Cl 1 , while the apical position for Cu 2 is occupied by the terminal Cl2. In the basal planes, the transoid angles values are $168.15(5)^{\circ}$ and $169.60(5)^{\circ}$ for Cu 1 and $163.07(4)^{\circ}$ and $168.47(5)^{\circ}$ for Cu 2 and the cissoid angles are in the ranges [94.90 (5) ${ }^{\circ}-81.69(5)^{\circ}$] for the Cu 1 , and $\left[92.30(5)^{\circ}-81.60(5)^{\circ}\right.$] for Cu 2 . The angle formed between the two basal planes is $76.584(6)^{\circ}$.

The μ_{2}-chlorido ligand and the μ_{2}-phenolato oxygen ions link the $\mathrm{Cu}(\mathrm{II})$ ions somewhat unsymmetrically. The lengths of the bridging $\mathrm{Cu} 1-\mathrm{Cl} 1$ [2.6735 (4) \AA] and $\mathrm{Cu} 2-\mathrm{Cl} 1$ [2.2629 (4) Å] bonds are significantly different. The lengths of the bridging Cu1-O3 [1.9888 (10) Å] and Cu2-O3 [1.9434 (11) (4) Å] bonds are also different. The axial bonds distances $\mathrm{Cu} 1-\mathrm{Cl} 1[2.6735$ (4) \AA] and $\mathrm{Cu} 2-\mathrm{Cl} 2$ [2.6194 (4) \AA] are similar to the distances reported for similar complexes [66]. The $\mathrm{Cu}-\mathrm{O}[1.8769(12) \AA-2.020(11) \AA$] and $\mathrm{Cu}-\mathrm{N}$ [1.9305 (12) $\AA-1.9410(12) \AA$ A distances are in the range expected for similar square pyramidal complexes [67].

The crystal packing of compound $\mathbf{4}$ is stabilized by intramolecular O (alcohol) $-\mathrm{H} \cdots \mathrm{Cl}($ terminal $)$ and C9-H9A...Cl(bridged) and intermolecular O (alcohol) $-\mathrm{H} \cdots \mathrm{Cl}$ (terminal) hydrogen bonds which form layers parallel to b axis. Additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds consolidate the structure. In the crystal, intramolecular and intermolecular hydrogen bonds are simultaneously present. The intramolecular hydrogen bond $\mathrm{O} 2_{\text {(alcohol)- }}$ $\mathrm{H} 2 \cdots \mathrm{Cl} 2_{\text {(terminal) }}$ forms a six-membered ring. Intermolecular hydrogen bonds, $\mathrm{O} 4_{\text {(alcohol) }}-\mathrm{H} 4 \cdots \mathrm{Cl} 2^{\mathrm{i}}{ }_{\text {(terminal) }}$ (i: -$\mathrm{x}+1,-y,-\mathrm{z}+1$), C18-H18B...Cl1 ${ }^{\text {iii }}$ (ii: $x,-y+1 / 2, z-1 / 2$), C8-H8A...Cl2 $2^{\text {iii }}$ (iii: $x,-y-1 / 2, z+1 / 2$) and C8H8B...Cl1 ${ }^{\text {iv }}$ (iv: $x,-y+1 / 2, z+1 / 2$) lead to the formation of layers. Additional $\mathrm{C}-\mathrm{H}_{\cdots} \mathrm{Ol}^{\mathrm{i}}{ }_{(\text {carbonyl }}$ (i: $1-\mathrm{x}, 2-\mathrm{y}, 1-\mathrm{z}$) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} 2_{\text {(phenol) }}$ connect the layers and consolidate the structure into a two-dimensional network in the $a c$ plane (Figure 4b, Table 6).

(b)

Fig. 4. (a) Crystal structure of the dinuclear complex $\left[\mathrm{Cu}_{2}(\mathrm{HL})_{2}(\mathrm{Cl})_{2}\right]$ (4), (b) packing diagram of (4) viewed along the $a c$-plane.

Table-6. Hydrogen-bond geometry ($\left(\AA,{ }^{\circ}\right.$) of complex 4.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 2$	0.82	2.23	$3.0260(11)$	165.5
$\mathrm{O} 4 — \mathrm{H} 4 \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.82	2.15	$2.9598(11)$	169.1
$\mathrm{C} 18-\mathrm{H} 18 \mathrm{~B} \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.97	2.87	$3.5833(16)$	130.8

Synthesis, spectroscopic characterization, and crystal structure of Co(III), Ni(II) and ..

C9—H9A $\cdots \mathrm{Cl} 1$	0.97	2.94	$3.5234(16)$	119.7
$\mathrm{C} 8 — \mathrm{H} 8 \mathrm{~A} \cdots \mathrm{Cl} 2^{\mathrm{iii}}$	0.97	2.87	$3.5207(16)$	125.5
$\mathrm{C} 8 — \mathrm{H} 8 \mathrm{~B} \cdots \mathrm{Cl} 1^{\mathrm{iv}}$	0.97	2.80	$3.6917(16)$	152.9

Symmetry codes : (i) $-x+1,-y,-z+1$; (ii) $x,-y+1 / 2, z-1 / 2$; (iii) $x,-y-1 / 2, z+1 / 2$; (iv) $x,-y+1 / 2, z+1 / 2$.

IV. Conclusion

In the work presented in this article, we report the synthesis and characterization of three new complexes of cobalt, nickel and copper prepared from the tridentate ligand 2-((2-hydroxyethylimino) methyl) phenol. The structures of these three complexes $\left\{\left[\mathrm{Co}(\mathrm{L})_{2}\right] \cdot\left[\mathrm{Co}(\mathrm{HL})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}(\mathbf{1}),\left[\mathrm{Ni}_{2}(\mathrm{HL})_{2}(\mathrm{Cl})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}(\mathbf{2})$, $\left\{\left[\mathrm{Cu}_{2}(\mathrm{HL})_{2}(\mathrm{Cl})_{2}\right] \cdot\left[\mathrm{Cu}_{2}(\mathrm{HL})_{2}(\mathrm{Cl})_{2}\right] \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}(3),\left[\mathrm{Cu}_{2}\left(\mathrm{HL}_{2}(\mathrm{Cl})_{2}\right]\right.$ (4) are completely different. The cobalt (II) complex (1) is a mononuclear, in which the metal center is coordinated to two tridentate ligands, yielding an octahedral geometry $\mathrm{N}_{2} \mathrm{O}_{4}$. The nickel (II) complex (2) is a di-phenoxo-bridged dinuclear complex, in which the two phenoxo oxygen ions lie in the equatorial planes of the octahedral NClO_{4} environment around the two nickel (II) ions. The structures of the complexes $\mathbf{3}$ and $\mathbf{4}$ show isomeric forms which differs in the set of bridging donor atoms and the presence of a guest water molecule in complex $\mathbf{3}$. The copper complex (3) is a di-chlorido-bridged dinuclear complex, in which each bridging chloride occupies simultaneously an in-plane coordination site on one copper (II) ion and an apical site on the other copper(II) ion. The copper (II) ions are in pentagonal environment $\mathrm{NO}_{2} \mathrm{Cl}_{2}$. The two unit in the asymmetric unit are connected by the guest water molecule through hydrogen bond. The copper complex (4) is a dissymmetric bridged complex in which the two copper are in two different pentagonal environment $\mathrm{NO}_{3} \mathrm{Cl}$ and $\mathrm{NO}_{2} \mathrm{Cl}_{2}$. The two copper ions are bridged by one chloride ion and one phenolate oxygen ion.

Supplementary data

CCDC-2062391, 2062390, 2062389 and 2063454 contains the supplementary crystallographic data for the complexes 1, $\mathbf{2}$ and 3, respectively. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (Telephone: +44-01223-762910; Fax: +44-1223-336033; or E-mail: deposit @ccdc.cam.ac.uk).

Acknowledgements

The authors thank the FONDATION SONATEL for his financial support, http://fondationsonatel.sn/

References

[1]. P. Bhowmik, S. Chatterjee, S. Chattopadhyay, Heterometallic inorganic-organic frameworks of sodium-nickel(vanen): Cation- π interaction, trigonal dodecahedral Na^{+}and unprecedented heptadentate coordination mode of vanen ${ }^{2-}$, Polyhedron, 2013, 63, 214221.
[2]. P. Bhowmik, H.P. Nayek, M. Corbella, N. Aliaga-Alcalde, S. Chattopadhyay, Control of molecular architecture by steric factors: mononuclear vs polynuclear manganese(III) compounds with tetradentate $\mathrm{N}_{2} \mathrm{O}_{2}$ donor Schiff bases, Dalton Trans., 2011, 40, 79167926.
[3]. B. Iftikhar, K. Javed, M.S.U. Khan, Z. Akhter, B. Mirza, V. Mckee, Synthesis, characterization, and biological assay of Salicylaldehyde Schiff base Cu(II) complexes and their precursors, J. Mol. Struct., 2018, 1155, 337-348.
[4]. C. Liu, M.-X. Chen, M. Li, Synthesis, crystal structures, catalytic application and antibacterial activities of Cu (II) and $\mathrm{Zn}(\mathrm{II})$ complexes bearing salicylaldehyde-imine ligands, Inorg. Chim. Acta, 2020, 508, 119639.
[5]. Z. Qian, Y. Zhang, A.-Q. Jia, H.-T. Shi, Q.-F. Zhang, Syntheses, molecular structures, and spectroscopic properties of manganese(II)/(III) complexes with tetraphenylimidodiphosphinato and bi-pyridine or salicylaldehyde ligands, Inorg. Chim. Acta, 2020, 502, 119298.
[6]. A.I. Uraev, S.E. Nefedov, K.A. Lyssenko, V.G. Vlasenko, V.N. Ikorskii, D.A. Garnovskii, N.I. Makarova, S.I. Levchenkov, I.N. Shcherbakov, M.R. Milenković, G.S. Borodkin, Synthesis, structure, spectroscopic studies and magnetic properties of $\mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}-$, $\mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{~S}_{2}\right)$-, $\mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$-chromophores based on aminomethylene derivatives of pyrazole-5-one(thione), Polyhedron, 2020, 188, 114623.
[7]. H. Sun, L. She, S. Fang, X. Li, Reaction of acyl(hydrido)cobalt(III) complexes with (2-diphenylphosphanyl)thiophenol and the influence of chelating ligands containing hard/soft donor atoms on the stability of cobalt complexes, Polyhedron, 2008, 27, 854860.
[8]. J. Ji, X. Chen, H. Lin, A.-Q. Jia, Q.-F. Zhang, Ruthenium(II) complexes with substituted 2-(methylthio)-phenylsalicylaldimine Schiff-base ligands, Inorg. Chim. Acta, 2019, 494, 105-111.
[9]. E.L. de Araújo, H.F.G. Barbosa, E.R. Dockal, É.T.G. Cavalheiro, Synthesis, characterization and biological activity of $\mathrm{Cu}(\mathrm{II})$, $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Zn}($ II $)$ complexes of biopolymeric Schiff bases of salicylaldehydes and chitosan, Int. J. Biol. Macromol., 2017, 95, 168176.
[10]. T.S. Lobana, S. Indoria, A.K. Jassal, H. Kaur, D.S. Arora, J.P. Jasinski, Synthesis, structures, spectroscopy and antimicrobial properties of complexes of copper(II) with salicylaldehyde N -substituted thiosemicarbazones and 2,2'-bipyridine or 1,10phenanthroline, Eur. J. Med. Chem., 2014, 76, 145-154.
[11]. Z.A. Taha, A.K. Hijazi, W.M.A. Momani, Lanthanide complexes of the tridentate Schiff base ligand salicylaldehyde-2picolinoylhydrazone: Synthesis, characterization, photophysical properties, biological activities and catalytic oxidation of aniline, J. Mol. Struct., 2020, 1220, 128712.
[12]. Y.-S. Xue, T.-T. Kang, H.-H. Zhang, X.-Y. Qiao, W.-Y. Hou, F. Pan, W.-M. Wang, Two $\mathrm{Ln}^{\mathrm{III}}{ }_{4}\left(\mathrm{Ln}=\mathrm{Dy}^{\mathrm{III}}\right.$ and $\left.\mathrm{Gd}^{\mathrm{III}}\right)$ clusters showing single molecule magnet behavior and magnetic refrigeration, Polyhedron, 2018, 154, 480-485.
[13]. L. Shi, H.-M. Ge, S.-H. Tan, H.-Q. Li, Y.-C. Song, H.-L. Zhu, R.-X. Tan, Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde, Eur. J. Med. Chem., 2007, 42, 558-564.
[14]. M.A. Betiha, S.B. El-Henawy, A.M. Al-Sabagh, N.A. Negm, T. Mahmoud, Experimental evaluation of cationic-Schiff base surfactants based on 5-chloromethyl salicylaldehyde for improving crude oil recovery and bactericide, J. Mol. Liq., 2020, 316, 113862.
[15]. Y. Chen, Y. Mi, Q. Li, F. Dong, Z. Guo, Synthesis of Schiff bases modified inulin derivatives for potential antifungal and antioxidant applications, Int. J. Biol. Macromol., 2020, 143, 714-723.
[16]. Z. Guo, R. Xing, S. Liu, Z. Zhong, X. Ji, L. Wang, P. Li, Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan, Carbohydr. Res., 2007, 342, 1329-1332.
[17]. H.F.G. Barbosa, M. Attjioui, A.P.G. Ferreira, B.M. Moerschbacher, ÉT.G. Cavalheiro, New series of metal complexes by amphiphilic biopolymeric Schiff bases from modified chitosans: Preparation, characterization and effect of molecular weight on its biological applications, Int. J. Biol. Macromol., 2020, 145, 417-428.
[18]. H. Luo, Y. Xia, B. Sun, L. Huang, X. Wang, H. Lou, X. Zhu, W. Pan, X. Zhang, Synthesis and Evaluation of In Vitro Antibacterial and Antitumor Activities of Novel N,N-Disubstituted Schiff Bases, Biochem. Res. Int. 2017, 2017, ID6257240.
[19]. Ö. Özdemir, P. Gürkan, Y.D.Ş. Demir, M. Ark, Novel palladium(II) complexes of N-(5-nitro-salicylidene)-Schiff bases: Synthesis, spectroscopic characterization and cytotoxicity investigation, J. Mol. Struct., 2020, 1207, 127852.
[20]. A.A. Alothman, E.S. Al-Farraj, W.A. Al-Onazi, Z.M. Almarhoon, A.M. Al-Mohaimeed, Spectral characterization, electrochemical, antimicrobial and cytotoxic studies on new metal(II) complexes containing $\mathrm{N}_{2} \mathrm{O}_{4}$ donor hexadentate Schiff base ligand, Arabian J. Chem., 2020, 13, 3889-3902.
[21]. S.-Y. Chen, X.-H. Jiang, R.-X. Liu, Y. Huang, W.-Y. Shen, Y.-H. Jiang, K.-B. Huang, Y.-C. Liu, New cytotoxic zinc(II) and copper(II) complexes of Schiff base ligands derived from homopiperonylamine and halogenated salicylaldehyde, Inorg. Chim. Acta, 2021, 516, 120171.
[22]. R.M. Ramadan, A.K.A. Al-Nasr, O.A.M. Ali, Synthesis, spectroscopic, DFT studies and biological activity of some ruthenium carbonyl derivatives of bis-(salicylaldehyde)phenylenediimine Schiff base ligand, J. Mol. Struct., 2018, 1161, 100-107.
[23]. S. Yamada, Y. Kuge, K. Yamanouchi, Nickel(II) Complexes of Schiff Bases Derived from Alkanolamines and Salicylaldehyde and 3-Methoxysalicylaldehyde, Bull. Chem. Soc. Jpn., 1967, 40, 1864-1867; M. Amjad, S.H. Sumrra, M.S. Akram, Z.H. Chohan, Metal-based ethanolamine-derived compounds: a note on their synthesis, characterization and bioactivity, J. Enzyme Inhib. Med. Chem., 2016, 31, 88-97.
[24]. M. Shanmugam, K. Narayanan, M. Mahalakshmi, S. Kabilan, V. Chidambaranathan, Synthesis, characterization and biological studies of some novel 3-fluorosalicylaldehyde based amine derivatives, Spectrochim. Acta, Part A, 2013, 116, 394-400.
[25]. M. Zubair, M. Sirajuddin, K. Ullah, A. Haider, F. Perveen, I. Hussain, S. Ali, M.N. Tahir, Synthesis, structural peculiarities, theoretical study and biological evaluation of newly designed O-Vanillin based azomethines, J. Mol. Struct., 2020, 1205, 127574.
[26]. A.T. Myller, J.J. Karhe, M. Haukka, T.T. Pakkanen, The pH behavior of a 2 -aminoethyl dihydrogen phosphate zwitterion studied with NMR-titrations, J. Mol. Struct., 2013, 1033, 171-175.
[27]. I.A. Salem, Role of resin-manganese(II) complexes in hydrogen peroxide decomposition, J. Chem. Kinet., 1994, 26, 341-346.
[28]. M. Galanski, C. Baumgartner, K. Meelich, V.B. Arion, M. Fremuth, M.A. Jakupec, P. Schluga, C.G. Hartinger, N.G. v. Keyserlingk, B.K. Keppler, Synthesis, crystal structure and pH dependent cytotoxicity of (SP-4-2)-bis(2-aminoethanolato$\kappa^{2} \mathrm{~N}, \mathrm{O}$)platinum(II) - a representative of novel pH sensitive anticancer platinum complexes, Inorg. Chim. Acta, 2004, 357, 32373244.
[29]. J.-L. Hou, Y. Bi, Y.-H. Xiao, H.-Y. Wu, C.-B. Sun, W. Chen, Synthesis, X-ray crystal structures, and biological activity copper(II) and nickel(II) complexes derived from 5-bromo-2-((2-hydroxyethylimino)methyl)phenol, Inorg. Nano-Met. Chem., 2021, 51, 875881.
[30]. L.-F. Zhang, Z.-H. Ni, Z.-M. Zong, X.-Y. Wei, C.-H. Ge, H.-Z. Kou, A novel one-dimensional complex: catena-poly-[[manganese(III)-di- $\left.\mu-2-[(2-h y d r o x y e t h y l) i m i n o m e t h y l] p h e n o l a t o-\kappa^{2} O^{1}, N: \kappa O^{2} ; \kappa O^{2}: \kappa^{2} O^{1}\right]$ chloride], Acta Crystallogr. Sect., C: Struct. Chem., 2005, 61, m542-m544.
[31]. S. Majumder, J.P. Naskar, A. Bhattacharya, R. Ganguly, P. Saha, S. Chowdhury, A new phenylimidorhenium(V) compound containing the $2-[(2-h y d r o x y e t h y l i m i n o) m e t h y l] p h e n o l ~ S c h i f f-b a s e ~ l i g a n d: ~ e x p e r i m e n t a l ~ a n d ~ t h e o r e t i c a l ~ a s p e c t s, ~ J . ~ C o o r d . ~ C h e m ., ~$ 2015, 68, 599-615.
[32]. N. Hoshino, T. Ito, M. Nihei, H. Oshio, Syntheses, structures and magnetic properties of multinuculear manganese complexes with Schiff base ligands, Inorg. Chem. Commun., 2003, 6, 377-380.
[33]. G. Cros, J.-P. Laurent, Unusual dinuclear copper(II) and nickel(II) complexes of a novel Schiff base deriving from 2-aminoethanol, Inorg. Chim. Acta, 1988, 142, 113-117.
[34]. G.M. Sheldrick, SHELXT - Integrated space-group and crystal-structure determination, Acta Crystallogr. Sect. A: Found. Adv., 2015, 71, 3-8.
[35]. G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.
[36]. L.J. Farrugia, WinGX and ORTEP for Windows: an update, J. Appl. Crystallogr., 2012, 45, 849-854.
[37]. N.A. Mathews, A. Jose, M.R.P. Kurup, Synthesis and characterization of a new aroylhydrazone ligand and its cobalt(III) complexes: X-ray crystallography and in vitro evaluation of antibacterial and antifungal activities, J. Mol. Struct., 2019, 1178, 544553.
[38]. K. Ghosh, S. Chattopadhyay, Synthetic stratagem and structures of two heteroleptic cobalt(III) complexes acting as biomimetic catalysts: Role of co-ligands in catalytic activities, Polyhedron, 2019, 170, 495-507.
[39]. L. Pogány, J. Moncol, M. Gál, I. Šalitroš, R. Boča, Four cobalt(III) Schiff base complexes - Structural, spectroscopic and electrochemical studies, Inorg. Chim. Acta, 2017, 462, 23-29.
[40]. M. Das, S. Chattopadhyay, Synthesis and structures of two cobalt(III) complexes with N_{4} donor ligands: Isolation of a unique bishemiaminal ether ligand as the metal complex, Polyhedron, 2013, 50, 443-451.
[41]. T. Pandiyan, R.P.P. Nayuri, R.A. Toscano, Synthesis, structure, spectra and redox chemistry of mono- and dinuclear copper(II) complexes containing pyridyl groups, J. Coord. Chem., 2005, 58, 1087-1098.
[42]. C.C.V. Chaves, G. Farias, M.D. Formagio, A. Neves, R.M. Peralta, J.M.G. Mikcha, B. de Souza, R.A. Peralta, Three new dinuclear nickel(II) complexes with amine pendant-armed ligands: Characterization, DFT study, antibacterial and hydrolase-like activity, Inorg. Chim. Acta, 2020, 507, 119559.
[43]. S. Naiya, M.G.B. Drew, C. Estarellas, A. Frontera, A. Ghosh, Hydrogen-bond assisted stabilization of the less favored conformation of a tridentate Schiff base ligand in dinuclear nickel(II) complex: An experimental and theoretical study, Inorg. Chim. Acta, 2010, 363, 3904-3913.
[44]. X. Shi, Z. Gan, Preparation and characterization of poly(propylene carbonate)/montmorillonite nanocomposites by solution intercalation, Eur. Polym. J., 2007, 43, 4852-4858.
[45]. T. Koga, H. Furutachi, T. Nakamura, N. Fukita, M. Ohba, K. Takahashi, H. Ōkawa, Dinuclear Nickel(II) Complexes of PhenolBased "End-Off" Compartmental Ligands and Their Urea Adducts Relevant to the Urease Active Site, Inorg. Chem., 1998, 37, 989-996.
[46]. R. Vafazadeh, Z. Moghadas, A.C. Willis, Anion and solvent effects on the coordination behavior of N-(2pyridinylmethylene)benzoylhydrazone with copper(II): synthesis and structural characterization, J. Coord. Chem., 2015, 68, 42554271.
[47]. S. Youngme, P. Gunnasoot, N. Chaichit, C. Pakawatchai, Dinuclear copper(II) complexes with ferromagnetic and antiferromagnetic interactions mediated by a bridging oxalato group: structures and magnetic properties of $\left[\mathrm{Cu}_{2} \mathrm{~L}_{4}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ and $\left[\mathrm{Cu}_{2} \mathrm{~L}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{NO}_{3}\right)_{2}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOH}\right)_{2}\right]$ (L = di-2-pyridylamine), Transition Met. Chem., 2004, 29, 840-846.
[48]. S. Youngme, G.A. van Albada, N. Chaichit, P. Gunnasoot, P. Kongsaeree, I. Mutikainen, O. Roubeau, J. Reedijk, U. Turpeinen, Synthesis, spectroscopic characterization, X-ray crystal structure and magnetic properties of oxalato-bridged copper(II) dinuclear complexes with di-2-pyridylamine, Inorg. Chim. Acta, 2003, 353, 119-128.
[49]. [49]. Y. Burgos-Lopez, J.D. Plá, L.M. Balsa, I.E. León, G.A. Echeverría, O.E. Piro, J. García-Tojal, R. Pis-Diez, A.C. González-Baró, B.S. Parajón-Costa, Synthesis, crystal structure and cytotoxicity assays of a copper(II) nitrate complex with a tridentate ONO acylhydrazone ligand. Spectroscopic and theoretical studies of the complex and its ligand, Inorg. Chim. Acta, 2019, 487, 31-40.
[50]. Z.D. Matović, G. Pelosi, S. Ianelli, G. Ponticelli, D.D. Radanović, D.J. Radanović, Square-pyramidal copper(II) complexes of linear tetradentate edda-type ligands forming six-membered rings. Molecular structures of $\quad\left[\mathrm{Cu}(1,3-\mathrm{pdda})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ and $\left[\mathrm{Cu}(\mathrm{eddp})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 3.5 \mathrm{H}_{2} \mathrm{O}$, Inorg. Chim. Acta, 1998, 268, 221-230.
[51]. W.J. Geary, Coord. Chem. Rev., 1971, 7, 81-122.
[52]. O.Yu. Vassilyeva, K.V. Kasyanova, V.N. Kokozay, B.W. Skelton, Crystal structure of dichloridobis $\{\mu-2-m e t h o x y-6-[(m e t h y l-$ imino)methyl]phenolato\}\{2-methoxy-6-[(methylimino)methyl]phenolato\}cadmium(II)cobalt(III) monohydrate, Acta Crystallogr. Sect., E:, 2018, 74, 1532-1535.
[53]. E.A. Buvaylo, K.A. Kasyanova, O.Yu. Vassilyeva, B.W. Skelton, Crystal structure of bis\{4-bromo-2-[(carbamimidamidoimino)-methyl]phenolato- $\left.\kappa^{3} N, N^{\prime}, O\right\}$ cobalt(III) nitrate dimethylformamide monosolvate, Acta Crystallogr. Sect., E:, 2016, 72, 907-911.
[54]. S. Šterbinská, M. Holub, J. Kuchár, E. Čižmár, J. Černák, Markedly different magnetic properties of two analogous Ni(II) complexes with 2-aminoethylpyridine: $\left[\mathrm{Ni}(2 \text { aepy })_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Ni}(2 \text { aepy })_{2}\left(\mathrm{NO}_{3}\right)\right] \mathrm{NO}_{3}$, Polyhedron, 2020, 187, 114654.
[55]. U. Pal Chaudhuri, B. Varghese, N.N. Murthy, Bis[$\mu-2-\{$ bis(2-pyridylethyl)amino\}phenolato]bis[aquanickel(II)] dinitrate tetrahydrate, Acta Crystallogr. Sect., E:, 2003, 59, m627-m629.
[56]. M. Dieng, O. Diouf, M. Gaye, A.S. Sall, P. Pérez-Lourido, L. Valencia, A. Caneschi, L. Sorace, Polynuclear nickel(II) complexes with salicylaldimine derivative ligands, Inorg. Chim. Acta, 2013, 394, 741-746.
[57]. S. Tanase, M. Ferbinteanu, M. Andruh, C. Mathonière, I. Strenger, G. Rombaut, Synthesis and characterization of a new molecular magnet, $\left[\mathrm{Ni}(\mathrm{ampy})_{2}\right]_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and synthesis, crystal structure and magnetic properties of its mononuclear precursor, trans$\left[\mathrm{Ni}(\mathrm{ampy})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ (ampy=2-aminomethylpyridine), Polyhedron, 2000, 19, 1967-1973.
[58]. M.J. Prushan, D.M. Tomezsko, S. Lofland, M. Zeller, A.D. Hunter, A nickel(II) di- μ_{2}-phenolato bridged dinuclear complex: Weak antiferromagnetic interactions in nickel(II) dimers, Inorg. Chim. Acta, 2007, 360, 2245-2254.
[59]. A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]copper(II) perchlorate, J. Chem. Soc., Dalton Trans., 1984, 1349-1356.
[60]. T. Konno, K. Tokuda, J. Sakurai, K. Okamoto, Five-Coordinate Geometry of Cadmium(II) with Octahedral BidentateS,S Complex-Ligand $\operatorname{cis}(S)-\left[\operatorname{Co}(\text { aet })_{2}(\text { en })\right]^{+}($aet $=2$-aminoethanethiolate $)$: Synthesis, Crystal Structures and Interconversion of SBridged $\mathrm{Co}^{\text {III }} \mathrm{Cd}^{\text {II }}$ Polynuclear Complexes, Bull. Chem. Soc. Jpn., 2000, 73, 2767-2773.
[61]. H. Liu, F. Gao, D. Niu, J. Tian, Chlorido-bridged polymeric and dinuclear copper(II) complexes with tridentate Schiff base: Synthesis, crystal structure and magnetic properties, Inorg. Chim. Acta, 2009, 362, 4179-4184.
[62]. S.-L. Ma, X.-X. Sun, S. Gao, C.-M. Qi, H.-B. Huang, W.-X. Zhu, A New Chloro-Bridged Cu ${ }^{\text {II }}$ Schiff Base Complex with Ferromagnetic Exchange Interaction, Eur. J. Inorg. Chem. 2007, 2007, 846-851.
[63]. N.R. Sangeetha, S. Pal, Dimeric and polymeric square-pyramidal copper(II) complexes containing equatorial-apical chloride or acetate bridges, Polyhedron, 2000, 19, 1593-1600.
[64]. A. Bhattacharjee, S. Dey, P. Roy, Synthesis, characterization and catalytic properties of dinuclear complexes of copper(II) and nickel(II): Oxidation of cyclohexane, toluene and cyclopentane, Inorg. Chim. Acta, 2019, 490, 93-103.
[65]. U. Okeke, Y. Gultneh, R.J. Butcher, Crystal structure of aqua(perchlorato)bis[μ-(E)-2-(\{[2-(pyridin-2-yl)ethyl]imino $\}$ meth-yl)phenolato- ${ }^{4} N, N^{\prime}, O: O$]dicopper(II) perchlorate, Acta Crystallogr. Sect., E:, 2017, 73, 1708-1711.
[66]. L. Li, T.-L. Hu, X.-H. Bu, catena-Poly[[[$\mu-5,5^{\prime}$-di-2-pyridyl-1,1'-(p-phenylenedimethylene)bis(1H-tetrazole)]-[chloridocopper(II)]-di- μ-chlorido-[chloridocopper(II)]] acetonitrile solvate], Acta Crystallogr. Sect., E:, 2007, 63, m1393-m1394.
[67]. P.K. Bhaumik, K. Harms, S. Chattopadhyay, Counter anion modulated variation of denticity of NNO donor Schiff base in copper(II) complexes: Isolation of a zwitterionic Schiff base as the metal complex, Polyhedron, 2013, 62, 179-187.

Cheikh Ndoye, et. al. " Synthesis, spectroscopic characterization, and crystal structure of $\mathrm{Co}(\mathrm{III})$, $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ complexes with Schiff bases derived from salicylaldehyde." IOSR Journal of Applied Chemistry (IOSR-JAC), 14(7), (2021): pp 01-16.

[^0]: ${ }^{1}$ Corresponding author : mohamedl.gaye @ucad.edu.sn

