
IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG)  

e-ISSN: 2321–0990, p-ISSN: 2321–0982.Volume 4, Issue 1 Ver. I (Jan. - Feb. 2016), PP 09-20 

www.iosrjournals.org 

DOI: 10.9790/0990-04110920                            www.iosrjournals.org                                                        9 | Page 

 

Geological mapping in semi-arid regions with low spectral 

contrast surfaces using ASTER data 
 

Mourad El Koundi
1,2

, Pascal Allemand
3
, Fouad Zargouni

2 
 

1
(Office National des Mines, 24 Rue de l’Energie, La Charguia 2035, Tunis, Tunisia) 

2
(Département de Géologie, Faculté des Sciences de Tunis, 1060 El Manar II, Tunis, Tunisia) 
3
(Université de Lyon, F-69622, Lyon, France, Université Lyon 1, Villeurbanne, ENS, Lyon) 

 

Abstract: Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) is largely used fo r 

geological mapping and lithological discriminations because of its relative fine resolution and its relative broad 

spectral range (14 bands). This study investigated the use of ASTER data for geological mapping at scale 

1:50.000 in the Sahel block (eastern Tunisia). This region is characterised by sedimentary outcropping series 

with relative low tone contrast. Based on mineral composition of outcropping series, five indices were used in 

addition to VNIR and SWIR corrected bands for classification process. A Minimum Noise Fraction 

Transformation was performed to increase S/N ratio and to reduce redundancy. Eleven spectral endmembers 

representing lithostratigraphic units were used as training classes for a supervised classification using the 

Spectral Angle Mapping (SAM) algorithm. Results were validated using field verification and accuracy 

assessment. With an overall accuracy of 85.67% and a Kappa of 0.791, produced map is estimated to be 

accurate. 
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I. Introduction 
ASTER is a high spatial resolution-imaging instrument on board the NASA’s Earth Observing System 

Terra satellite. It acquires imagery from 14 different spectral bands by mean of three separate subsy stems. The 

first one measures reflected radiation in three bands ranging from 0.52 to 0.86 µm (VNIR) with spatial 

resolution of 15m. The second subsystem (SWIR) has six spectral channels ranging from 1.6 to 2.43 µm 

(SWIR) with spatial resolution of 30m. The third one (TIR) measures emitted radiation in five bands in the 

8.125 – 11.65 µm wavelength regions at 90m resolution. In addition, ASTER has fine stereoscopic capabilities 

useful for geological and geomorphological studies thanks to a back-looking VNIR telescope with 15m 

resolution [1]. The swath-width is 60 km and its pointing capability extends the total cross -track viewing 

capability to 232 km [2, 3]. This complimentary combination of both spectral and geometrical properties 

provides to ASTER high mineral discrimination capabilit ies.  

ASTER has already proved its ability for mapping lithologies on spectral contrasted surfaces. In fact, 

VNIR data were used for chlorophyll density estimation and for Iron and some rare -earth element detection [4, 

5]. SWIR data offer the possibility for carbonate, hydrate and hydroxide mineral mapping [4, 6]. Thanks to its 

sensitivity to emissions in thermal infrared region, ASTER can also spectrally separate quartzose rocks, granitic 

rocks and intermediate to mafic rocks [4]. 

Many studies evaluating potential of ASTER data in d iscriminating minerals and mapping rock types 

were largely described [7-10]. These studies often use in-place spectral data, hyperspectral data or both 

combinations and it generally concerns areas with high contrast spectra. 

This paper tests the capabilities of ASTER data to validate and extent existing geological maps at 

1:50000 scale in the Sahel block (Eastern Tunisia). Only spectral libraries of known “pure” materials are used to 

correlate outcropping series spectra with mixture materials. These compositions encloses Calcite, Illite, 

Kaolinite, Gypsum and Quartz that are the most frequent minerals fo rming outcropping rocks in this region.  

 

II. Geological and geomorphological settings 
The Tunisian Sahel (Eastern Tunisia) is a semi-arid area of low steppes characterized by flat slowly  

subsiding lowlands and formed by low hills, flat plains and large sebkhas separated by a dense hydrographic 

network [11-13]. The National Geological Survey of Tunisia attaches an interest in mapping this region because 

of its relat ive low coverage rate at 1/50.000 scale.  

The Sahel outcropping series comprises only sedimentary units made by monotonous series with 

alternating sand, clay and limestone. Distinction between some units is difficult  because of alteration that causes 

the formation of calcareous crust and carbonate concretions on sandy or clayey area [13]. Over 80% of the Sahel 

surface is represented by continental quaternary deposits that should be differentiated to produce more detailed  

and precise geological maps. 
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The study area (Fig. 1) is located in the southern part of the Tunisian Sahel longitudes (09° 55' 27.3" E 

to the West and 10° 53' 13.0" E to the East) and latitudes (35° 04' 34.6" N to the North and 34° 30' 35.0" N to 

the south) for an area of 20 by 20km². This sector covers the common corners of four geological maps at 

1/50.000 scale o f Bir A li Ben Khlifa (No. 105) of Agareb (No. 106) Graiba (No. 114) and Mahares (No . 115 ). 

 
Fig. 1: Geological map of Tunisian Sahel [14] 

The sedimentary outcropping series predominantly consist of Quaternary deposits with Upper Miocene 

to Pliocene rare outcrops [13, 15]. Mio-Pliocene deposits (M-Pl) are undifferentiated on geological maps at 

1/50.000 scale. It consist of alternating yellow fine grained sand and brownish clay [16-18]. Pliocene series 

(Plm) are formed by yellowish gypsiferous clay that overlay M-Pl in continuity of sedimentation (ie. no evident 

sedimentary or tectonic limit). The Quaternary deposits are widespread and represented by various continental 

deposits (Fig. 2). Associated lithological units are subdivided to three groups: 1) Lower Pleistocene (Qv) with 

silt and red shale slightly gypseous and capped by a calcareous crust known as “villafranchian crust”. 2) The 

middle Pleistocene deposits that occupy the majority of the high zones and show reddish silts and soils with 

limestone concretions (Qcl) and a lot of blocks of the “villafranchian” crust (Qe) [16, 19]. 3) The upper 

Pleistocene deposits are more developed than the two previous series; they are formed dominantly by reddish 

sands (lQ) with diffuse carbonated and gypsiferous concretions and sand with altered elements, such as 

conglomeratic beds (Qg) [17]. Historic to Actual deposits are formed by aeolian sand (dQ) and Wadi-fills (a) 

with sand, clay and gravel (Fig.2).  

Two geological maps were established in the eastern part of study area [16, 17]. To report 

lithostratigraphic limits of these units, cartographers are only guided by topographic contour lines and 

geomorphological features so that produced maps become contestable. Although having varied percentages in 

mineral composition, these units present nearly the same shaly and sandy facie s. For cartographers 

lithostratigraphic units are hard to discriminate and precisely map with only field observation or photo -

interpretation.  
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Fig. 2: Geological map of Mahares [17] 

 

III. Methods 
For several decades, many studies used mult ispectral imaging data in general and ASTER data 

specially to map lithology or mineral distribution using several methodologies [20-22]. These studies concern, 

generally, high spectral contrasted areas with “sub-pure” pixels and use hyperspectral data or field measured 

spectra to identify endmembers and to improve classification process. Spectral libraries of known materials 

make it possible to correlate study area series with different mineral mixtures.  

Two types of approaches are frequent on related literature. The first one uses the spectral signatures of 

minerals or mixtures (rocks, vegetation …) to identify and map their spatial distribution. This process involves: 

1) Minimum Noise Fraction (MNF) transformation to enhance data quality by increasing  signal to noise ratio, 2) 

Pixel Purity Index (PPI) algorithm to locate most pure pixels, 3) endmembers identificat ion, and 4) map  

production using a classification process. 

The second type of methods make use of the distinguishing spectral characteristics  of some rocks or 

mixtures to increase the spectral contrast value. Basing on the lithological composition of outcropping series, 

other authors suggest using band ratios [4, 10, 23, 24]. 

Within this work, and going with mineral composition of outcrops that  are made by calcite, illite, 

kaolinite, s mectite, gypsum and quartz [16, 19], five band ratios were used. 

The Carbonate Index (CI) was defined by [25] to map extension of calcareous and dolomit ic rocks that 

show an absorption feature at 11.3 µm reg ion that corresponds to ASTER band 14. The carbonate index is 

computed using the following fo rmula: 

 

 
The Quartz Index (QI) was also defined by [25] to map the silica minerals that show a relatively higher 

emissivity at 8.65 µm (ie ASTER band 11) than at 8.3 µm (ie ASTER band 10) and at 9.1 µm (ie ASTER band 

12) (Fig. 4). QI is calculated as follows: 

 
QI is expected to be high for quartz and low for K-feldspar and gypsum. 

Many clayey minerals (illite and kaolin ite) display a strong feature in SWIR region at 2.2 µm (ie 

ASTER band 6) assigned to a combination mode of OH in clay lattice [26]. The Clay Index (ClI) is proposed by 

[27] and was computed using the following formula: 
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The Normalized Difference Vegetation Index (NDVI), was proposed  by [28] fo llowing this formula : 

 
Where “NIR” is data collected from the near-infrared part of the spectrum (ie ASTER band 3) and “R” 

that from the red part of the spectrum (ie ASTER band 2). Any kind of ASTER data can be applied to extract  

NDVI [29]. For this study, the Level-1B data are used this index was also used to select the appropriate Regions 

Of Interest (ROIs) at the endmember selection step. 

The Roughness Index (RI) is introduced by [24] as the topographic expression of the surface below 

maps resolution and following this formula: 

 
The roughness index is used to increase spectral contrast between lithostratigraphic pair units that 

possess nearly the same lithologic composition and differ only by presence of gravel or roc k blocs (Qcl – Qe). 

 

 
Fig. 3: Laboratory based emissivity spectra of: a) calcite, b) quartz, c) gypsum, d) illite, e) kaolinite and f) 

smectite witch are dominant in the study area; A- Full resolution spectrum; B- resampled s pectrum to 

ASTER TIR wavelengths. Notice that all pairs except the illite-kaolinite one can easily be distinguished 

with ASTER data 

The applied approach consists of using both of the previously defined methods. We propose to 

integrate significant band ratios previously listed in order to maximize contrast values at the classification step. 

The analysis approach (Fig. 4) comprises a pre-processing step that concerns all ASTER bands (B1-B14) 

except the back-looking band 3 (B3B) and a processing step that concerns all pre-processed output data with the 

B3B band. It includes all band ratios computation, the Minimum Noise Fraction (MNF) transform, the 

endmember selection and the classification procedure.  
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Fig. 4: Classification approach steps. The Hourglass approach processing steps were not only applied on 

calibrated VNIR and SWIR ASTER data (B1-B9), five band ratios (NDVI, RI, CII, CI, and QI) were also 

computed and injected as input data to the classification procedure 

3.1 Aster Data Pre-Processing 

The used ASTER scene (AST_L1B_00305052003101258_20061018110915_16045) is cloud free level 

1B data that acquired on May 05, 2003 with a solar incidence angle of about 138.69° and an azimuth angle of 

about 66.9°. The image has  been pre-georeferenced to Universal Transverse Mercator (Zone 32 North) with 

WGS-84 datum. 

The following pre-processing steps were performed: 1) Crosstalk correction; 2) Stacking and co -

registration of all 14 bands; 3) Atmospheric correction using the FLA ASH module within the Environment for 

Visualizing Images (ENVI) software [30, 31]; 4) Topographic correction and (5) Image orthorectification using 

SRTM 1 Arc-Second DEM data. 

 

3.2 Aster Data processing 

Several consecutive processes were performed to produce a calibrated reflectance/emission images that 

go with known spectral libraries. Data analysis are based on the fact that all bandwidths are considered as too 

narrow, making it possible to extract a spectrum from each pixel of image. Th is spectrum is compared to other 

“pure” materials spectra (minerals, rocks, vegetation …) endmembers. To ext ract accurately endmembers, a  

Minimum Noise Fract ion (MNF) transform is applied to enhance data quality by increasing S/N ratio and 

reducing data redundancy and correlation between spectral bands [32-34].  

 

 
Fig. 5: MNF eigenvalues plot of the 14 eigenimages of the ASTER data 
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Furthermore, to evaluate the separation quality of mapped lithostratigraphic units with MNF 

eigenimages, ROIs separability was calculated with Jeffries -Matusita (J-M) and Transformed Divergence 

separability coefficients (T.D.) [31]. Almost all values are lower than 1.6 (Table 1Error! Reference source not 

found.) indicating average class-separability [35].  

 

Table 1: ROIs separability coefficients  
  M-Pl Plm QV Qcl Qe Qg lQ a 

M-Pl 
J-M  0.74887089 0.30935456 0.95838688 0.43178234 0.52713492 1.37285648 0.82731323 

T.D.  0.84172188 0.32008294 1.05663537 0.45131492 0.57229856 1.49185064 0.91318144 

Plm 
J-M   0.84369972 1.05458838 1.00363865 0.33826179 1.72616238 1.26829366 

T.D.   0.95072599 1.23236322 1.17869774 0.35636109 1.87715048 1.51036746 

QV 
J-M    0.90971484 0.34908795 0.64379738 1.39244959 0.85123897 

T.D.    1.05615005 0.36281634 0.78344159 1.53034701 0.95935011 

Qcl 
J-M     0.76189490 0.81249619 1.02625640 0.49924943 

T.D.     0.93706019 0.90358980 1.15234905 0.53947726 

Qe 
J-M      0.83873862 1.08187765 0.57438006 

T.D.      1.00480166 1.19475459 0.64715590 

Qg 
J-M       1.56051515 1.06807006 

T.D.       1.68757486 1.22973233 

lQ 
J-M        0.46787249 

T.D.        0.50701417 

a 
J-M         

T.D.         

 

Notice that many pair values (underlined) are lower than one and indicate a poor separability between  

ROI pairs and high mixture level. Only Plm and lQ (bolded pair) are relatively well distinguishable from one to 

other with a T.D. value over 1.8 and a J -M value over 1.7. 

Manually extract ing pure pixels is a hard and time-consuming task because most imagery pixels are not 

pure and often bear a relative influence of adjacent materials.  

PPI is an automatic mean of identification of most pure pixels that is used for lithological mapping 

because it produces a lithologic high separation within ASTER images [4, 36]. After, apply ing PPI thresholding, 

a visual selection of “pure pixels” allowed defin ing image classes [34, 37, 38]. For the study area, 11 

endmembers were used in the classification procedure (Table 2). Some class-types are equivalent to geological 

map units (M-Pl, Plm, Qv, Qcl, Qe and Qg), others (lQ and a) were each subdivided into two subclasses because 

of their important lithologic variation. In fact, lQ may be in places, covered with thick aeolian sand (dQ) that 

must be limited.  

 

Table 2: ASTER mapping classes 

N° Map unit Image class Pixel number Lithological composition 

1 M-Pl M-Pl 58 Fine grained sand and brownish clay 

2 Plm Plm 71 yellowish gypsiferous clay 

3 QV QV 118 Silts and clays capped with calcareous crust 

4 
Qcl Qcl 120 Silts and soils with limestone concretions 

5 Qe Qe 105 Silts and soils with villafranchian blocks 

6 Qg gQ 147 Soils and reddish sands with carbonated and gypseous concretions 

7 
lQ 

lQ1 = (lQ) 131 Soils and reddish sands 

8 lQ2 = (dQ) 104 Aeolian Sand 

9 
a 

a 138 Sand and clay 

10 a2 109 Gravel and heterogeneous blocs 

11  vegetation 102 Grass 

 

To validate endmembers selection, relat ing (J-M) and (T.D.) coefficients are computed for all MNF 

eigenimages pairs. All calculated values are greater than 1.9 indicating good class -separability [35].  
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The first step following the endmember collection and the validation of ROIs separability is to evaluate 

the classification ability of the procedure. For each endmember a spectral profile with statistics concerning 

minimum, maximum, mean and standard deviation of each MNF eigenimages are calcu lated. Resulting statistics 

prove that majority of the classes’ pairs may be easily distinguished and differentiated by MNF eigenimages 

(Fig. 6). For example, the lithostratigraphic unit (a) can be easily d ifferentiated from (a2) by large number of 

MNF eigenimages (1, 2, 3, 5, 8, and 9) and (lQ) can be clearly distinguished from (dQ) using four MNF 

eigenimages (1, 2, 6 and 8) however separation between (Qcl) and (Qe) is ambiguous (Fig. 6). 

 

 
Fig. 6: a-a2 pair endmember s pectral  profile, B- lQ-dQ pair endmember spectral profile, C- Qcl-Qe pair 

endmember s pectral profile  
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Table 3: Endmembers pairs separation with MNF eigenimages  

 Plm QV Qcl Qe Qg lQ dQ a a2 Grass 

M-Pl 8, 9 2, 8, 9 2, 7, 8, 9 1, 7, 8, 9 
1, 2, 3, 6, 7, 

8, 9, 10 
2, 7, 8, 9 1, 4, 6, 7, 9 

1, 2, 3, 5, 6, 

8, 9, 10, 11 

1, 2, 4, 6, 7, 

10 

1, 3, 5, 7, 9, 

11 

Plm  2 2 1, 7 
1, 2, 6, 7, 8, 
9, 14 

2, 7 1, 5, 6, 7, 8 
1, 2, 3, 5, 6, 
8, 9, 11 

1, 6, 7 
1, 3, 5, 7, 8, 
9, 10, 11 

QV   2, 7 1, 2, 7 
1, 2, 3, 6, 7, 

8, 9, 10 
2, 7 1, 2, 4, 7, 8 

1, 2, 5, 6, 8, 

10,11 

4, 6, 7, 10, 

14 

1, 2, 3, 5, 6, 

7, 8, 9, 11 

Qcl    2 
2, 6,7, 8, 9, 
10 

1, 2 1, 2, 3, 4, 8 
1, 3, 5, 6, 8, 
10, 11 

2, 4, 6, 14 
1, 2, 3, 5, 6, 
7, 8, 9, 11 

Qe     
2, 3, 6, 7, 8, 
9 

1, 2 1, 5, 8 
1, 2, 3, 5, 6, 
8, 9, 10, 11 

2, 6 
1, 3, 5, 6, 7, 
8, 9, 11 

Qg      
1, 2, 3, 6, 8, 
9 

1, 2, 3, 6, 8, 
9, 14 

1, 2, 3, 5, 11 2, 8, 9, 14 
1, 2, 3, 5, 6, 
7, 10, 11 

lQ       1, 2, 6, 8 
1, 2, 3, 5, 6, 
8, 9, 10,11 

1, 2, 6 
1, 2, 3, 5, 6, 
7, 8, 9, 11 

dQ        
1, 2, 5, 6, 8, 
9 

1, 2, 5, 6, 
1, 3, 5, 6, 7, 
8, 9, 10, 11 

a         
1, 2, 3, 5, 8, 
9 

1, 3, 5, 7, 10, 
11 

a2          
1, 2, 3, 5, 7, 
8, 9, 10, 11 

 

Table 3 indicates that B1 and B2 h ighly participate to the discriminatory abilities of ASTER data (B1:69.6% 

and B2:75%) whereas B12 and B13 were not used (Fig. 7). 
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Fig. 7: Discriminatory abilities of MNF eigenimages. The y axis represent the percentage of participation 

of one band B(i ) to distinguish all existing pairs (100%  means that band (i ) can distinguish all pairs)  

3.3Image classification 
Spectral Angle Mapper (SAM) algorithm is used to generate the new geological map at 1/50.000 scale 

(Fig. 8) based on eleven endmembers that were used as training classes. For the quality control, the result is 

compared to the existing geological map. An average similarity is visually clear between limits of the 

classification result and those of the geological maps for the (Qv) and (lQ) units. All other units are classified  

with a weak correlation to geological maps. The percentage of unclassified pixels is 17.7%.  
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Fig. 8: Output classification map (3 x 3 majority filter to reduce noise) 

 

IV. Results and discussion 
Error or confusion matrix [39] is used to quantify accuracy by comparing results with ground truth 

informat ion [40, 41]. As first step, existing geological maps were used as source of truth information. 

Subclasses (Qcl-dQ and a-a2) were merged to be in accordance with existing geological map units. The 

accuracy assessment table (Table 4) shows a low percentage of pixels accurately classified. The overall 

accuracy is 36.9629% and the Kappa Coefficient is 0.1866.  

 

Table 4: accuracy assessment table  
Classification M-Pl (%) Plm (%) QV (%) Qcl (%) Qe (%) Qg (%) lQ (%) a (%) User’s accuracy 

M-Pl 1.68 2.25 7.08 5.7 3.54 5.03 0.44 1.57 1.68 

Plm 12.51 30.45 9.2 10.93 15.19 23.21 1.57 2.22 30.45 

QV 32.16 22.94 38 9.39 16.61 26.1 2.78 10.47 38.00 

Qcl 1.51 0.32 1.8 14.61 5.89 1.12 19.98 9.86 14.61 

Qe 0.66 0.27 0.46 1.58 0.65 0.39 0.89 0.9 1.39 

Qg 27.26 17.49 16.83 4.87 7.78 15.48 1.42 6.7 15.48 
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lQ 3.76 1.89 4.41 25.22 15.11 4.97 50.67 37.95 50.67 

a 6.61 18.3 9.75 9.58 6.75 14.08 3.01 8.28 8.28 

Producer’s 
accuracy 

1.93 5.02 48.71 6.17 0.00 19.39 80.61 12.58 
 

 

Compared with existing geological maps at 1/50.000, final output classificat ion map shows important 

differences. Many behaviours of lithology classification have been distinguished. The (M -Pl) and (Qe) units 

illustrate the case of very badly classified units with both User’s and Producer’s accuracy lower than 2%. The 

(Qcl), (Qg) and (a) lithostratigraphic units are roughly classified with both User’s and Producer’s accuracy 

lower than 20%. The (QV) unit is considered as moderately classified with both User’s and Producer’s accuracy 

lower than 70%. The Producer’s accuracy of (lQ) unit is 80%, indicating many locations on geological maps 

were accurately identified with classification procedure, but some actual deposits (a) were also assigned to this 

unit class. In contrast, the User’s accuracy of (Plm) unit was 30% but the Producer’s accuracy was only 5% 

which indicates that the classification result is very different from the in itial geological map and there were 

other surfaces not reported and that may be assigned to the (Plm) unit .  

To understand origin of inconsistency, spectral profiles of all lithostratigraphic units with statistics 

concerning min imum, maximum, mean and standard deviation of each MNF eigenimages were calculated. 

Resulting statistics indicates that lithostratigraphic limits drown on geological maps were in  reality mixed and 

indistinguishable. For example (M-Pl), (Qcl) and (a) units cannot be differentiated with all 14 MNF eigenimages 

(Fig. 9). 

 

 
Fig. 9: 'M-Pl', 'Qcl' and 'a' spectral profiles 

In addition, 391 reference sites were used to assess accuracy of classification result. Sites were picked  

randomly from visual image interpretation and verified on field.  

 

Table 5: Classification accuracy assessment for SAM classification with 391 reference sites  
 M-Pl Plm QV Qcl Qe Qg lQ a Total User’s accuracy (%) 

M-Pl 35 5 0 0 0 0 0 0 40 87.5 

Plm 1 22 0 0 0 0 0 1 24 91.66 

QV 1 0 36 0 8 0 0 1 46 78.26 

Qcl 0 0 0 29 12 0 0 0 41 70.73 

Qe 0 0 0 0 9 0 0 0 9 100 

Qg 0 0 3 0 1 49 0 1 54 90.74 

lQ 0 0 0 12 0 0 78 0 90 86.66 

a 1 3 0 0 6 0 0 77 87 88.5 

Total 38 30 39 41 36 49 78 80 391  

Producer’s accuracy (%) 92.1 73.33 92.3 70.73 25 100 100 96.25   

 

The overall classification accuracy for lithostratigraphic units is 85.67% and the kappa coefficient is 

0.791. Both the Producer’s and the User’s accuracy of (M-Pl), (Qg), (lQ) and (a) lithostratigraphic units are 

greater than 85% indicating good classification accuracy. All other units except (Qe) are associated wit h both 

Producer’s and User’s accuracy values over 70% indicat ing acceptable classificat ion accuracy. Although User’s 

accuracy of (Qe) was 100%, this unit is poorly identified and classified; the classification procedure does not 

allow its differentiation with the (Qcl) unit (Tab le 5). 
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V. Conclusion 
Potentials of ASTER is evaluated using a combination of visible and near infrared (VNIR), short wave 

infrared (SWIR) ASTER and five computed indices for geological mapping in semi -arid region with low 

spectral surfaces. ASTER level 1B data were processed based on endmembers spectral signatures and band 

ratios in order to discriminate and classify them. The adopted methodology consists of two main steps: the first 

one (1) data pre-processing with cross-talk correct ion, calibrat ion and radiance conversion, atmospheric and 

topographic correction, orthorectification and indices computing; the second step (2) classification process with 

minimum noise fract ion transformat ion, pixel purity index, endmember ext raction and SAM classification. 

Accuracy assessment is calculated with reference to 391 sites. The produced map is estimated to be accurate and 

allows validation and extension of geological map at 1/50.000 scale.  
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