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Abstract: The aim of this work is to study the combined effects of transverse magnetic field and double 

diffusion on unsteady boundary-layer flow of a viscous, incompressible, electrically conducting and two-

dimensional heat-absorbing viscoelastic fluid flow past a semi-infinite vertical permeable plate in presence of 

free convection. The Rivlin-Ericksen model is employed to simulate the rheological liquids encountered in 

cooling of electronic devices, polymer solutions, hydrocarbons and chemical engineering processes. The plate is 

assumed to move with a constant velocity in the direction of fluid flow while the free stream velocity is assumed 

to follow the exponentially increasing small perturbation law. Time-dependent wall suction is assumed to occur 

at the permeable surface. The transport equations employed in the flow are governed by a coupled non-linear 

system of partial differential equations and include the engineering parameters. However, the exact solution is 

not possible for this set of partial differential equations and hence these equations solved by finite difference 

method. Numerical evaluation of the numerical results is performed and some graphical results for the velocity, 

temperature and concentration profiles within the boundary layer are discussed. Skin-friction coefficient, 

Nusselt numbers are also discussed with the help of numerical values presented in tabular forms. Limiting case 

results are obtained for the non-Newtonian fluid and compared with the literature.  
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Nomenclature: 

List of Variables: 

O Origin 

M  Hartmann number 

C  Concentration of fluid near the plate (
3mmol ) 

D  Chemical molecular diffusivity (
12 sm ) 

 g  Acceleration of gravity, 9.81 (m/s
2
) 

pC   Specific heat at constant pressure (J-K/Kg) 

oB   Magnetic field component along y  axis (Tesla)    

yx ,   Coordinate system (m) 

xRe
 

Reynold’s number 

oU  Reference velocity (m/s) 

Pr  Prandtl number 

pU  Plate Velocity (m/s) 

Nu
 

Nusselt number (or) Rate of heat transfer 

S  Heat absorption parameter 

Gc  Grashof number for mass transfer 

yx,  Dimensionless coordinates (m) 
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oQ  Dimensional Heat absorption parameter 


C  Concentration of the fluid at infinity (

3mmol ) 

vu,  Components of velocities along and perpendicular to the plate respectively, x direction (m/s) 

Gr  Grashof number for heat transfer 

wC   Concentration of the fluid far away of the fluid from the plate  (
3mmol ) 

Sc  Schmidt number 

Sh
 

Sherwood number (or) Rate of mass transfer 

oV  Suction velocity (m/s) 

U  Free stream velocity (m/s) 

u  Velocity component in x direction (m/s) 

t  Time (second) 

K  The permeability parameter (m
2
) 

K   The permeability of medium (m
2
) 

wT   Temperature of the fluid far away of the fluid from the plate (K) 


T  Temperature of the fluid at infinity (K) 

T   Temperature of fluid near the plate (K) 

pu  Dimensional Plate Velocity (m/s) 

n  Dimensional exponential index 

n  An exponential index 

y    Dimensionless coordinate (m) 

Greek symbols 
  Thermal conductivity of the fluid (W/mK) 


 

Skin-friction (
2/ mN ) 

tn
 

Phase angle (degrees) 

  Non-dimensional temperature (K) 

  Viscoelastic fluid parameter 

  Kinematic viscosity  12 sm  

  Electrical conductivity of the fluid  11  m  

  Density of the fluid  3/ mkg  

  Concentration of the fluid (
3mmol ) 

*  Coefficient of volume expansion for mass transfer (
13 Kgm ) 

  Coefficient of volume expansion for heat transfer  1K  

1  Kinematic viscoelasticity 

  A positive constant 

Superscripts 
/
 Dimensionless properties 

Subscripts 

w   Wall condition  

p   Plate  

   Free stream condition 



Influence of Viscoelastic Rivlin-Ericksen Fluid On Free Convective Flow Past A Vertical… 

DOI: 10.9790/4861-1003024562                                 www.iosrjournals.org                                            47 | Page 

I. Introduction 
The convection problem in a porous medium has important applications in geothermal reservoirs and 

geothermal extractions. The process of heat and mass transfer is encountered in aeronautics, fluid fuel nuclear 

rector, chemical process industries and many engineering applications in which the fluid is the working medium. 

The wide range of technological and industrial applications has stimulated considerable amount of interest in the 

study of heat and mass transfer in convection flows. MHD free convection flows occur frequently in nature. The 

applications of hydromagnetic incompressible viscous flow in science and engineering involving heat transfer 

under the influence of chemical reaction are of great importance to many areas of science and engineering. This 

frequently occurs in petro-chemical industry, power and cooling systems, chemical vapor deposition on surface, 

cooling of nuclear reactors, heat exchanger design, forest fire dynamics and geophysics as well as magneto-

hydrodynamic power generation systems. Srinivasa Raju [1] studied unsteady MHD boundary layer flow of 

Casson fluid over an inclined surface embedded in a porous medium with thermal radiation and chemical 

reaction. Viscous dissipation impact on MHD free convection radiating fluid flow past a vertical porous plate 

discussed by Srinivasa Raju et al. [2]. Anand Rao et al. [3] studied MHD over a vertical plate in presence of free 

convection flow and hall current through EFGM solutions. Manideep et al. [4] studed MHD free convection 

heat transfer couette flow in rotating system. Unsteady MHD free convection flow of Casson fluid over an 

inclined vertical plate embedded in a porous media discussed by Manideep et al. [5]. Krishna Prasad et al. [6] 

studied the role of Casson fluid on MHD natural convective flow towards vertically inclined plate with hall 

current. Anand Rao et al. [7] studied jeffrey fluid effect on free convective over a vertically inclined plate with 

magnetic field. Thermal diffusion effect on MHD mixed convective flow along a vertically inclined plate: a 

Casson fluid flow discussed by Krishna Prasad et al. [8]. Srinivasa Raju and Ramesh [9] studied grid 

independence of finite element method on magnetohydrodynamic free convective casson fluid flow with slip 

effect. Thermal radiation influence on MHD flow of a rotating fluid with heat transfer through EFGM solutions 

studied by Krishna Prasad et al. [10]. Sailaja et al. [11] discussed finite element analysis of MHD Casson fluid 

flow past a vertical plate with the impact of angle of inclination. Analytical solutions of unsteady MHD 

convective heat and mass transfer past a semi-infinite vertical permeable plate with heat absorption studied by 

Chamkha [12]. Some of the authors ([13]-[67]) discussed convective fluid flows in presence of thermal 

diffusion, diffusion thermo, heat absorption, heat and mass transfer, porous medium, thermal radiation, chemical 

reaction, hall current, magnetic field towards a vertical plate and inclined plate using numerical results. 

The Rivlin-Ericksen viscoelastic fluid has relevance and importance in geophysical fluid dynamics, 

chemical technology and industry. Sivaraj and Rushi Kumar [68] investigated chemically reacting dusty 

viscoelastic fluid flow in an irregular channel with convective boundary. Slip effects on MHD boundary layer 

flow over an exponentially stretching sheet with suction/blowing and thermal radiation were considered by 

Swati [69]. Mahgoub [70] investigated forced convection heat transfer over a flat plate in a porous medium. 

Effects of hall current and radiation absorption on MHD micropolar fluid in a rotating system were studied by 

Satya Narayana et al. [71]. Raju et al. [72] considered MHD convective flow through porous medium in a 

horizontal channel with insulated and impermeable bottom wall in the presence of viscous dissipation and Joule 

heating. Effects of variable suction and thermophoresis on steady MHD combined free-forced convective heat 

and mass transfer flow over a semi-infinite permeable inclined plat in the presence of thermal radiation were 

investigated by Alam et al. [73]. Seth et al. [74] considered, MHD natural convection flow with irradiative heat 

transfer past an impulsively moving plat with ramped wall temperature. Magnetic field effects on transient free 

convection flow through porous medium past an impulsively started vertical plate with fluctuating temperature 

and mass diffusion was studied by Ravikumar et al. [75]. Varshney et al. [76] discussed effects of rotator Rivlin-

Ericksen fluid on MHD free convective and mass transfer flow through porous medium with constants heat and 

mass flux across moving plate. Uwanta et al. [77] discussed effects of mass transfer on hydromagnetic free 

convective Rivlin-Ericksen flow through a porous medium with time dependent suction. Gupta et al. [78] 

discussed on Rivlin-Ericksen elastico-viscous fluid heated and solution from below in the presence of 

compressibility, rotation and Hall currents. Sharma et al. [79] discussed hall effects on thermal instability of 

Rivlin-Ericksen fluid. Rana [80] discussed thermal instability of compressible Rivlin-Ericksen rotating fluid 

permeated with suspended dust particles in porous medium. Noushima et al. [81] discussed hydromagnetic free 

convective Rivlin-Ericksen flow through a porous medium with variable permeability. Daleep et al. [82] studied 

bounds for complex growth rate in thermosolutal convection in Rivlin-Ericksen viscoelastic fluid in a porous 

medium. 

Motivated by the above studies, this paper is extended the study of Chamkha [12], by considering a 

well known non-Newtonian fluid namely Rivlin-Ericksen fluid for the case of a semi-infinite vertical plate in a 

porous medium in the presence of pressure gradient and constant velocity in the flow direction when the 

magnetic field is imposed transverse to the plate. The results obtained here are in good agreement with the 

results of Chamkha [12] in the absence of non-Newtonian fluid. This research article is arranged in the 

following ways: Section “Mathematical modeling” deals with the physical model of a non-newtonian fluid flow 
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over a semi-infinite vertical plate with non-dimensionalization. The next section dealt with finite difference 

method to solve the flow-field partial differentail equations. In the Section comparison between third-grade and 

Newtonian fluids are explained . Further, “Results and discussion”, the velocity, temperature and concentration 

profiles, wall and heat and mass transfer rate coefficients are analyzed. Finally, in Section “Concluding 

remarks” the important observations are made. 

 

II. Mathematical Formulation 
Consider unsteady two-dimensional flow of a laminar, incompressible, viscous, electrically conducting 

fluid past a semi-infinite vertical permeable plate embedded in a uniform porous medium and subjected to a 

uniform transverse magnetic field in the presence of viscoelastic Rivlin-Ericksen fluid. The flow geometry along 

with specified variables is shown in Fig. 1. For this investigation the following assumptions are made.  

i. In cartesian coordinate system, let x axis is taken to be along the plate and the y axis normal to 

the plate.  

ii. Since the plate is considered infinite in x direction, hence all physical quantities will be independent 

of x direction.  

iii. The wall is maintained at constant temperature )( wT 
 
and concentration )( wC  higher than the ambient 

temperature )( 
T

 
and concentration )( 

C respectively.  

iv. A uniform magnetic field of magnitude oB
 
is applied normal to the plate. 

v. It is assumed that there is no applied voltage which implies the absence of an electrical field.  

vi. The transversely applied magnetic field and magnetic Reynolds number are assumed to be very small 

so that the induced magnetic field and the Hall effect are negligible.  

vii. Similarly, in this work, Soret and Dufour effects are also negligible.  

viii. A consequence of the small magnetic Reynolds number is the uncoupling of the Navier-Stokes 

equations from Maxwell’s equations.  

ix. The governing equations for this investigation are based on the balances of mass, linear momentum, 

energy and concentration species.  

x. The magnetic and viscous dissipations are neglected in this study.  

xi. It is assumed that the permeable plate moves with a constant velocity in the direction of fluid flow, and 

the free stream velocity follows the exponentially increasing.  

xii. In addition, it is assumed that the temperature and the concentration at the wall as well as the suction 

velocity are exponentially varying with time. 

xiii. The homogeneous chemical reaction of first order with rate constant K  between the diffusing species 

is neglected.  

xiv. The fluid has constant kinematic viscosity and constant thermal conductavity, and the Boussinesq's 

approximation have been adopted for the flow.  
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a --- Momentum boundary layer,   b --- Thermal boundary layer,  c --- Concentration boundary layer 

Taking into consideration the assumptions made above, the flow equations can be written in Cartesian frame of 

reference as follows (Chamkha [12]): 

Equation of Continuity: 
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Energy Equation: 
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Species Diffusion Equation: 
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The appropriate boundary conditions for the velocity, temperature and concentration fields are (Chamkha [12]) 
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It is clear from equation (1) that the suction velocity at the plate surface is a function of time only. Assuming 

that it takes the following exponential form (Chamkha [12]): 

  ntAeVv  10                                                                                                                                      (6) 

Where A   is a real positive constant,   and A  are small less than unity, and 0V  is a scale of suction velocity 

which has non-zero positive constant. Outside the boundary layer, equation (2) gives (Chamkha [12]) 
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It is convenient to employ the following dimensionless variables (Chamkha [12]): 
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In view of Eqs. (6), (7) and (8) and Eqs. (2)-(4) reduce to the following dimensionless form: 
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The dimensionless form of the boundary conditions (5) become (Chamkha [12]) 
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The Skin-friction, the Nusselt number (Rate of heat transfer) and the Sherwood numbers (Rate of mass transfer) 

coefficients are important physical parameters for this type of boundary layer flow. These parameters can be 

defined and determined as follows (Chamkha [12]):    
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Where 


xVo
x


Re is the local Reynolds number. 

 

III. Numerical Solutions By Finite Difference Method 

 
Fig. 2. Finite difference space grid 

  

The non-linear momentum, energy and concentration equations given in equations (9), (10) and (11) 

are solved under the appropriate initial and boundary conditions (12) by the implicit finite difference method. 

The transport equations (9), (10) and (11) at the grid point (i,  j) are expressed in difference form using Taylor’s 

expansion. 
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(18) 

Where the indices i  and j  refer to y  and t  respectively. The initial and boundary conditions (12) yield. 
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Thus the values of u, θ and ϕ at grid point t = 0 are known; hence the temperature field has been solved at time 

ttt ii 1  using the known values of the previous time itt   for all 1........,,2,1  Ni . Then the 

velocity field is evaluated using the already known values of temperature and concentration fields obtained at 

ttt ii 1 . These processes are repeated till the required solution of u, θ and ϕ is gained at convergence 

criteria.  

    310,,,, 
numericalexact

uuabs                                                                                         (20) 

 

 

IV. Code Validation Of Programme 
Table-1: Comparison of present skin-friction results with the skin-friction results of Chamkha [12] for different 

values of Grashof number for mass transfer, Heat absorption and Schmidt number 

 
 

Table-2: Comparison of present Nusselt number results with the Nusselt number results of Chamkha [12] for 

different values of Grashof number for mass transfer, Heat absorption and Schmidt number 
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Table-3: Comparison of present Sherwood number results with the Sherwood number results of Chamkha [12] 

for different values of Grashof number for mass transfer, Heat absorption and Schmidt number 

 
 
Tables 1, 2 and 3 present the comparison of skin-friction, rate of heat and mass transfer coefficients for the 

various values of Grashof number for mass transfer, Heat absorption and Schmidt number with previous 

published results of Chamkha [12] in absence of Rivlin-Ericksen fluid. From these tables, It is observed that our 

present results are in good agreement with the published results of Chamkha [12].  

 

V. Results And Discussions 
The non-zero coupled Eqs. (9)-(11) subject to boundary conditions (12), which describe heat absorbing 

Rivlin-Ericksen flow past a semi-infinite vertical porous plate under the influence of magnetic field and double 

diffusion are solved numerically by finite difference method. In order to get physical insight into the problem, 

the effects of various parameters encountered in the equations of the problem are analyzed on velocity and 

temperature fields with the help of figures. These results show the influence of the various physical parameters 

such as Grashof number for heat transfer (Gr), Grashof number for mass transfer (Gc), Magnetic field parameter 

(M), Permeability parameter (K), Prandtl number (Pr), Schmidt number (Sc), Heat absorption parameter (S) and 

Viscoelastic Rivlin-Ericksen fluid parameter (λ) on velocity, temperature and concentration distributions which 

are displayed graphically in Figs. 3 to 13. In the present study following default parameter values are adopted 

for computations: Pr = 0.7, M = 0.5, Gr = 1.0, Gc = 1.0,  λ = 0.5, K = 0.5, Sc = 0.22, S = 0.5, n = 0.1, t = 1.0, A 

= 0.5, ε = 0.001 and Up = 0.5. All graphs therefore correspond to these values unless specifically indicated on 

the appropriate graph. To find solution of this problem, the author placed an infinite vertical plate in a finite 

length in the flow. Hence, the author solved the entire problem in a finite boundary. However, in the graphs, the 

y values vary from 0 to 10, and the velocity, temperature, and concentration profiles tend to zero as y tend to 10. 

This is true for any value of y. Thus, the author has considered finite length. Fig. 3 reveals that the velocity 

profiles increases when Grashof number for heat transfer Gr increases. In fact, higher values of Gr lead to an 

increase in the temperature gradient and enhances the buoyancy force. Therefore, it accelerates the fluid velocity 

profiles throughout the boundary layer region. For various values of Grashof number for mass transfer Gc, the 

velocity profiles are plotted in Fig. 4. The Grashof number for mass transfer Gc defines the ratio of the species 

buoyancy force to the viscous hydrodynamic force. As expected, the fluid velocity increases and the peak value 

is more distinctive due to increase in the species buoyancy force. The velocity distribution attains a distinctive 

maximum value in the vicinity of the plate and then decreases properly to approach the free stream value. It is 

noticed that the velocity increases with increasing values of the Grashof number for mass transfer Gc. 

 

http://www.sciencedirect.com/science/article/pii/S2211379716303400#t0020
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Fig. 3. Effect of Gr on velocity profiles 

 
Fig. 4. Effect of Gc on velocity profiles 
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Fig. 5. Effect of M on velocity profiles 

 

The effects of magnetic field or Hartmann number M on the velocity components are illustrated in Fig 

5. This figure indicates that an increase in the values of M tends to reduce the velocity components 

monotonically due to the Lorentz force, which is similar to the drag force that acts as an agent to retard the fluid 

flow. Therefore, when we increase the magnetic parameter, the Lorentz force is technically increased and more 

resistance is given to the motion of the fluid thus decelerating the velocity profiles. From Fig. 6, it is noted that 

an increase in the permeability parameter of the porous medium K enhances the velocity profiles due to the less 

friction force, which yields the reverse effect of the magnetic parameter. In fact, higher values of K reduce the 

resistance of the porous medium, which in turn increase the momentum development of the regime and thus 

accelerate the fluid flow in velocity profiles. Lower values of velocity profiles are seen with the increase of 

Prandtl number, Pr as presented in Fig. 7. Prandtl number is defined as the ratio between momentum diffusivity 

and thermal diffusivity and hence controls the relative thickness of the momentum and thermal boundary layers. 

This means that, an increase in the Prandtl number leads to an increase in the viscosity of the fluid which makes 

the fluid become thick, and consequently decreases the fluid flow. 

 
Fig. 6. Effect of K on velocity profiles 
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Fig. 7. Effect of Pr on velocity profiles 

 

Besides that, Fig. 8 exhibits the characteristics of the Prandtl number Pr on temperature distribution. It 

is noticed that a higher Prandtl number leads to a fall in temperature profiles due to the fact that lower Pr values 

have more uniform temperature distribution across the thermal boundary layer as compared to higher Pr. In this 

case, lower values of Pr, fluids possess high thermal conductivity which causes the heat to diffuse away from 

the heated surface more rapidly and faster compare to higher values of Pr. Thus, it increases the boundary layer 

thickness and consequently decreases the temperature distribution. Figs. 9 and 10 display the effects of the 

Schmidt number Sc on the velocity and concentration profiles at t = 1, respectively. As the Schmidt number 

increases, the concentration decreases. This causes the concentration buoyancy effects to decrease yielding a 

reduction in the fluid velocity. The reductions in the velocity and concentration profiles are accompanied by 

simultaneous reductions in the velocity and concentration boundary layers. These behaviors are clearly shown in 

Figs. 9 and 10.  

 
Fig. 8. Effect of Pr on temperature profiles 
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Fig. 9. Effect of Sc on velocity profiles 

 

 

Figs. 11 and 12 illustrate the influence of the heat absorption coefficient S on the velocity and 

temperature profiles at t = 1.0, respectively. Physically speaking, the presence of heat absorption (thermal sink) 

effects has the tendency to reduce the fluid temperature. This causes the thermal buoyancy effects to decrease 

resulting in a net reduction in the fluid velocity. These behaviours are clearly obvious from Figs. 11 and 12 in 

which both the velocity and temperature distributions decrease as S increases. It is also observed that both the 

hydrodynamic (velocity) and the thermal (temperature) boundary layers decrease as the heat absorption effects 

increase. The behavior of material parameter of Viscoelastic Rivlin-Ericksen fluid parameter, λ  on velocity 

fields is portrayed in Fig. 13. It was found that an increase in λ leads to a decrease in the velocity distribution 

across the boundary layer. The profiles for Skin-friction coefficient due to velocity profiles under the effects of 

Grashof number for heat transfer, Grashof number for mass transfer, Magnetic field parameter or Hartmann 

number, Permeability parameter,
 
Prandtl number, Schmidt number, Heat absorption parameter and Viscoelastic 

Rivlin-Ericksen fluid parameter is presented in the table 4. It is observed from the above table 4, the Skin-

friction coefficient
 
due to velocity increases under the effects of Grashof number for heat transfer, Grashof 

number for mass transfer, Permeability parameter and decreases under the effects of Magnetic field parameter or 

Hartmann number, Prandtl number, Schmidt number, Heat absorption parameter and Viscoelastic Rivlin-

Ericksen fluid parameter. The profiles for Nusselt number coefficient due to temperature profiles under the 

effects of Prandtl number and heat absorption parameter is presented in the table 5. From this table 5, It is 

observed that the Nusselt number coefficient
 
due to temperature profiles falls under the effects of Prandtl 

number and heat absorption parameter. The profiles for Sherwood number coefficient
 
due to concentration 

profiles under the effect of Schmidt number is presented in the table 5. From this table, It is observed that the 

Sherwood number coefficient due to the concentration profiles falls under the effect of Schmidt number.   
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Fig. 10. Effect of Sc on concentration profiles 

 

Table-4: Skin-friction coefficient ( )  

Gr  Gc  M  K  Pr  Sc  S λ 
 

2.0 2.0 0.5 0.5 0.7 0.22 0.5 0.5 2.0116258925 

3.0 2.0 0.5 0.5 0.7 0.22 0.5 0.5 2.2256154482 

2.0 3.0 0.5 0.5 0.7 0.22 0.5 0.5 2.3015447899 

2.0 2.0 1.0 0.5 0.7 0.22 0.5 0.5 1.9448511262 

2.0 2.0 0.5 1.0 0.7 0.22 0.5 0.5 2.1114548517 

2.0 2.0 0.5 0.5 1.0 0.22 0.5 0.5 1.9562100348 

2.0 2.0 0.5 0.5 0.7 0.30 0.5 0.5 1.9622150396 

2.0 2.0 0.5 0.5 0.7 0.22 1.0 0.5 1.9666654732 

2.0 2.0 0.5 0.5 0.7 0.22 0.5 1.0 1.9742133356 

 

 

Table-5: Nusselt number (Nu) and Sherwood number (Sh) coefficients 

Pr  S Nu  Sc  Sh  

0.7 0.5 4.3015201155 0.22 4.4622259158 

1.0 0.5 4.2546621938 0.30 4.4033265554 

0.7 1.0 4.2630155822 0.78 4.3601511187 
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Fig. 11. Effect of S on velocity profiles 

 

 
Fig. 12. Effect of S on temperature profiles 
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Fig. 13. Effect of λ on velocity profiles 

 

VI. Conclusions 
Generalized MHD Viscoelastic Rivlin-Eriksen fluid flow in presence of free convection past a vertical 

plate with heat absorption and double diffusion effects is considered. The governing equations for momentum, 

energy and concentration for the flow are solved in view of the boundary conditions at the clear fluid-porous 

interface. Velocity, temperature and concentration distributions are derived numerically which are used to finite 

difference method. The effects of pertinent parameters on the quantities of interest are depicted graphically and 

discussed. The findings are as follows. 

1. Velocity profiles in the flow increases with the increase in Grashof number for heat transfer, Grashof 

number for mass transfer, Permeability parameter whereas it decays with the increasing values of Hartmann 

number, Prandtl number, Schmidt number, Heat absorption parameter and Viscoelastic Rivlin-Eriksen fluid 

parameter. 

2. Temperature profiles falls with the increasing values of Prandtl number and Heat absorption parameter. 

3. Concentration profiles decreases with rising values of Schmidt number. 

4. With the increasing values of Grashof number for heat transfer, Grashof number for mass transfer and 

Permeability parameter, Skin-friction coefficient increases. However the trend is reversed with increasing 

values of Hartmann number, Prandtl number, Schmidt number, Heat absorption parameter and Viscoelastic 

Rivlin-Eriksen fluid parameter. 

5. Variation in varying values of Prandtl number and Heat absorption parameter, Nusselt number decreases. 

6. Sherwood number decays with the increasing values of Schmidt number. 

7. In the absence of Viscoelastic Rivlin-Eriksen fluid parameter observation of the present study coincides 

with published work of Chamkha [12]. 
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