The Glassy state activation enthalpy of the Johari-Goldstien relaxation for the $Ge_{30-x}Se_{70}Ag_x$ (x= 0, 5, 10, 15, 20) glassy systems

Amba Prasad¹, Ashish Kumar Saxena², Saurabh Kumar Tiwari³

1 Department of Physics, Rajkiya Mahila Degree College, Buduan-243601, (U.P.)-India 2- Department of Physics, N.M.S.N.Dass P.G. College, Buduan-243601, (U.P.)-India 3 Department of Physics, Pt.Rishi Maharaj P.G.College Jaswantpur Muradganj Auraiya- 206129 (UP.)-India Corresponding Author: Amba Prasad

Abstract: For glassy substances, the secondary relaxation can be predicted quantitatively from the coupling model. Here $E_{\boldsymbol{\theta}}$ is defined as the glassy state activation enthalpy of the Johari-Goldstein $\boldsymbol{\theta}$ relaxation, $T_{\boldsymbol{g}}$ is the glass transition temperature of the α – relaxation and R is the gas constant. The calculated values of $E_{\boldsymbol{\theta}}$ are in good agreement for the glass formers. The calculated results locate the origin of this cross co-relation between $T_{\boldsymbol{g}}$ and $E_{\boldsymbol{\theta}}$.

Keywords: Glassy state activation enthalpy and glass transition temperature.

Date of Submission: 28-01-2019

Date of acceptance:11-02-2019

I. Introduction

Underlying the glass transition and its related dynamics is one of the most important features in condensed matter physics [1, 2]. The glass transition related relaxation scenario encompasses the drastic viscous slowdown of the super-cooled liquids, which is ultimately bringing the liquids in the glassy state. A glass forming liquid generally shows a non –Arrhenius temperature dependence of viscosity and the related a-relaxation time. In addition to the primary a- relaxation process, a secondary so called Johari-Goldstein (J-G) β -relaxation often exists at high frequencies [3].

Naturally, the J-G relaxation is defined is not intermolecular but intermolecular in origin. Science the primary a- relaxation also involves motion of the entire molecules; there is a reason to except that the dynamic properties of J-G β -relaxation defined here may bear some co-relation with that of the a-relaxation [4-6].

In the present work we have to correlate E_β with T_g and calculate the different value of E_β for different $T_g{\,}^ss$

II. Relation between E_{β} and T_{g}

Since the independent relaxation of the coupling model involve the local motion of the entire molecules, one such criterion is the correspondence between the most probable JG β –relaxation time τ_{JG} and the independent relaxation time τ_0 [7-10], as-

$$\tau_{JG} = \tau_0$$
 ------(1)

The correspondence has been shows to hold for genuine JG- β relaxation in a number of glass former sat temperatures above the glass transition temperature T_g. This is an indication of the possible fundamental role played by the JG- β relaxation I glass transition.

The possible connection of the JG β -relaxation to the glass transition is suggested by the empirical relation between T_g and the activation enthalpy E_β of τ_{JG} is given by-

$$E_{\beta} = 24 RTg$$
 -----(2)

where R is the gas constant, which is found by Kudlik et.al. [11-13]. The calculated values of E_{β} and T_{g} [14] are listed in Table-1, as

Table-1, the values of E_{β} , T_{g} and the E_{β}/RT_{g}			
In%	Tg(K)	Eβ (KJ/mol)	Eβ/RTg
0	505.64	100.7705	24.0125
5	492.82	98.1764	24.0126
10	485.40	96.8594	24.0127
15	484.50	96.6789	24.0127
20	482.60	96.3007	24.0127

III. Conclusion

The correlation of E_{β} with RT_{g} found by Kudlik *et.al.*, has drawn attention to workers [15-19] in glass transition, including us. We confirm the findings of Kudlik *et. al.* that the ratio $(E_{\beta}/RT_{g})_{expt.}$ For the JG β -relaxation in the given glassy system straddles the values of 24.Finally the values of $(E_{\beta}/RT_{g})_{expt.}$ For non-JG secondary relaxations examined in this work are significantly greater than 24.

References

- [2]. P.G.Debenedetti, F.H.Stillinger, (2001), Supercooled liquids and the glass transition, Nature(London), 410, 259-267.
- [3]. G.P.Johari, M.Goldstien, (1970), Viscous liquids and the glass transition –II, secondary relaxation in glasses of rigid molecules, J.Chem.Phys.53, 2372.
- [4]. K.L.Ngai (1979), Temperature dependence of the excess of 1/f noice in metals, Solid State Phys. 9, 141.
- [5]. K.L.Ngai, K.Y.Tsang, (1999), Similarity of relaxation in supercooled liquids and interactivity arrays of oscillators, Phys.Rev.E, 60, 4511.
- [6]. K.L.Ngai, (2001), Soupling model explanation of salientdynamic properties of glass forming substances, IEEE Trans. Dielectric Elect. Insul.8, 239.
- [7]. K.LNgai, (1998), Relaxation between some secondary relaxations and α- relaxation in glass forming materials according to the coupling model, J.Chem. Phys. 109, 6982.
- [8]. Y.H.Liu, T.Fujita, M.Matsuura et. Al. (2014), Structural origin of Johar- Goldstien relaxation in metallic glasses, Nature Communication, 5, 3238.
- [9]. K.L.Ngai, M.Paluch, (2003), Infrence of the evolution from charged dynamics to cooperative relaxation in glassy formers from dielectric relaxation data, J.Phys. Chem. B, 107, 6865.
- [10]. K.L.Ngai, M.Paluch, (2001), Pressure and temperature dependence of the relaxation dynamics of cresolphthanlin dimethylether:Evidence o contributions from thermodynamic and molecular interactions, J.Chem. Phys.114, 10872.
- [11]. A.Kudlik, C.Tschirwitz et.al. (1997), Slow secondary relaxation process in supercooled liquids, Euro-Phys.Lett. 40, 649.
- [12]. A.Kudlik, C.Tschirwitz et.al. (1998), Slow secondary relaxation in simple glass formers, J.Non-Cryst. Solids, 235-237, 406-411.
- [13]. A.Kudlik, C.Tschirwitz et.al. (1999), The dielectric response of simple organic glass formers, J.Mat.Struct. 479, 210-218.
- [15]. Saurabh Tiwari, A.K.Saxena, D.Saxena, (2011), Effect of silver contant on the optical and other physical characteristics of Ge-Se-Ag glass system, 23, 12, 5635-38.
- [16]. Q.Wang, S.T.Zhang, Y.Yang et.al. (2015), Unusual fast secondary relaxations in metallic glasses, Nature Communication, 6, 7876.
- [17]. F.Zhu, H.K.Nguyen, H.ang et.al. (2016), Intrinsic correlation between β- relaxation and spatial heterogeneity in metallic glasses, 7, 11516.
- [18]. J.C.Qiao, Q.Wang, D.Crespo, Y.Yand, (2017), Amorphous physics and Materials: Secondaryrelaxation and dynamic heterogeneity in metallic glasses, A brief review, Chinese Phys.B, 26(1), 016402.
- [19]. M.Zhang, Y.J.Wang, L.H.Dai,(2016), Understood the serrated flow and Johari- Goldstien relaxation of metallic glasses, J.Non-Cryst. Solids, 444, 23-30.

IOSR Journal of Applied Physics (IOSR-JAP) is UGC approved Journal with Sl. No. 5010, Journal no. 49054.

Amba Prasad " The Glassy state activation enthalpy of the Johari-Goldstien relaxation for the Ge30-xSe70Agx (x= 0, 5, 10, 15, 20) glassy systems." IOSR Journal of Applied Physics (IOSR-JAP), vol. 11, no. 1, 2019, pp. 33-34.
