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Abstract: In this paper we have presented the method of evaluation of magnetic field and density dependence of 

the Josephson frequency of the coherent atom-molecule collisions in the linear approximation. Actually 

linearized time dependent field equation are coupled equation and these equations describe exactly the Rabi 

oscillation as the coupled harmonic equation with the coupling constant. In the context of particle number 

oscillations between condensates, Rabi oscillations are referred Josephson oscillations and the associated 

frequency is called Josephson frequency. This is Josephson oscillation between and atomic condensate and a 

condensate of bare molecule instead of dressed molecules. Now if one expand the propagation of the molecules 

around the pole at the bound state energy then one obtains the Josephson oscillations of an atomic and a 

dressed molecular condensate and the Josephson frequency is obtained. The result agrees well with the 

experimental fact. Our theoretical result are in good agreement with that of the experimental data. Our 

theoretical result indicates that Josephson frequency is almost constant for the condensate density but it rises 

very sharply for condensate density as a function of magnetic field. As expected, the difference between the 

Josephson frequency and the molecular binding energy increases with increasing condensate density Moreover, 

for values of the magnetic field closer to resonance the difference is also larger. It gives a great deal of insight 

in the coherent atom-molecule oscillations and in particular, in their many-body aspects. 
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I. Introduction 
we have studied the coherent atom-molecules oscillations. The experimental observation of atom-

molecule coherence in Bose-Einstein condensate has been made [1,2] and its theoretical description has been 

derived in terms of mean field theory. In the experiments[1,2] performed both in Wieman’s group at JILA, one 

makes  use of Feshbach resonance[3] at Bo = (54.4) Gauss in the    (f = 2; mf = -2) hyperfine state  of 
85 

Rb. The  

width of the resonance is equal to ∆B = 11.04 G and the off resonant background scattering length is given by 

abg = -443 a0 where a0 is the Bohr radius. The difference in the magnetic moment between the open channel and 

the closed channel is given by ∆  = -2.23 B where B is the Bohr magneton.[4] In both experiments, one starts 

from a stable and essentially pure condensate of about Nc = 10,000 atoms at a magnetic field such that the 

effective scattering length is close to zero. This implies that, since the condensate is in the noninteracting limit, 

its density profile is detuned by the harmonic oscillator ground state wave function. The harmonic external 

trapping potential is axially symmetric with trapping frequencies V r= 17.4 and Vz= 6.8 Hz in the radial and 

axial direction respectively. Starting from this situation, one quickly ramps the magnetic field to a value Bhold 

closeto the resonant value and keeps it therefore a short time thold before ramping to a value Eevolve. The magnetic 

field is kept at this last value for a time tevolve before performing a similar pulse to go back to the initial situation. 

The duration of all four magnetic field ramps is given by tramp. Both the ramp time tramp and the hold time thold are 

kept fixed at values of 10-15s. The time tevolve between the pulses is variable.  

Such a double pulse experiment is generally called a Ramsey experiment.[5] Its significance is most 

easily understood from single system of two coupled harmonic oscillator. The atomic condensate corresponding 

to oscillator ‘a’ and the molecular condensate to oscillator ‘b’. Therefore, after performing the double-pulse 

sequence in the magnetic field one makes a light absorption image of the atomic density from which one 

extracts the number of condensate and noncondensed atoms. Since this imaging technique is sensitive to a 

specific absorption line of the atoms it does not measure the number of molecules. One also expects to observe 
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oscillations in the number of condensate atoms. Moreover, if the situation is such that the detuning between the 

pulses is relatively large the effect of the coupling can be neglected and the frequency of the observed 

oscillations corresponds to the energy difference between the atoms and the molecules i.e. the molecular binding 

energy. This is indeed what is observed, thereby providing compelling evidence for the existence of coherence 

between atoms and molecules. The parameters of the inter-atomic potentials are fit to the experimental results 

for the frequency. Clearly, the frequency of the coherent atom-molecule oscillations agrees very well with the 

molecular binding energy in vacuum over a large range of magnetic field. Moreover in the magnetic field range 

Bevolve ≅ 157-159 G the frequency of the oscillations is well described by the formulae [𝜖m (B)] =ħ2
/ma

2 
(B) for 

the binding energy. Close to resonance, the measured frequency deviates from the two results [6]. 

Although some of the physics of these coherent atom-molecule oscillations can be understood by a 

simple two-level picture. First of all, during Rabi oscillation in a single two level system one quantum in a state 

oscillates to the other state. In case of Fashbach resonance pairs of atoms oscillate back and forth between the 

dressed molecular condensate and a atomic condensate. Therefore the Hamiltonian is not quardratic in the 

annihilation and creation operators and physics is more complicated. In particular the dressed molecule may 

decay into two noncondensed atoms  instead of forming two condensate atoms. Second, the observed atom 

molecule oscillations are oscillations between an atomic condensate and a dressed molecular condensate[7-10]. 

 

II. Materials and Methods 
One consider the Hamiltonian of two coupled harmonic oscillators 

Ĥ = 
1

2
  â†  ⋀

𝑏

†
   

𝛿 𝑡  
∆

      𝛿

            −𝛿(𝑡) 
   

â

 ⋀𝑏
       (1) 

Where â† and  ⋀
𝑏
† create a quantum in the oscillators a and b, respectively, and ∆ denotes the coupling between 

the two oscillators. 

 One considers first the situation that the detuning 𝛿 (t) is time independent. The exact solution is found 

easily by diagonalizing the Hamiltonian. One assumes that initially there are only quanta in oscillator a and none 

in b, so that one has that   ⋀
𝑏
†  ⋀

𝑏
  (0) = 0. The number of quanta in oscillator a as a function of time is then given 

by 

 â†  â  (t) =  1 −
∆2

(ħ𝜔)2  𝑠𝑖𝑛2  (𝜔𝑡/2)    â†  â  (0)     (2) 

With the frequency 𝜔 given by  

ħ𝜔 =  𝛿2 − ∆2         (3) 

 One sees that the number of quanta in the oscillator a oscillates in time with frequency . Such 

oscillations are called Rabi oscillations. Note that the number of quanta in oscillator b is determined by  

  ⋀
𝑏
†   ⋀

𝑏
  (t) = - 

∆2

(ħ𝜔)2  𝑠𝑖𝑛2  (𝜔𝑡/2)  â†  â  (0)     (4) 

 

So that the total number of quanta is indeed conserved. 

 Suppose now that one starts from the situation with all quanta in the oscillator a and none is b and that 

detuning such that 𝛿 (t) >> ∆. Then one has from Eq. (2) that   â†  â  ≈ â † â  (o) and   ⋀
𝑏
†  ⋀

𝑏
  (t) ≃ (o). Starting 

from this situations, one changes the detuning instantaneously to a value 𝛿 (t) ≃ 0 and keep it at this value 

for a time thold. During this hold time quanta in oscillator a will go to oscillator b. Moreover, thold is such that  

thold  ≈ 
𝜋

2
 
ħ

∆
           (5) 

on average half of the quanta is oscillator a will go to oscillator b. Such a pulse is called a 𝜋/2 pulse. The 

defining property of a 𝜋/2. pulse is that is creates a superposition of the oscillators a and b, such that the 

probabilities to be in oscillators a and b equal, and therefore equal to ½. This is indicated by the average   â†𝑏†  

(t). At t = 0 this average is equal to zero because there is no superposition at that time. One can shows that 

after the above 𝜋/2- pulse the average  â + ⋀
𝑏

+  (t) reaches its maximum value. In detail, the state after the 

𝜋/2 pulse is equal to  

1

 𝑁!
 

â†+ ⋀𝑏
†

 2
 2  

|  0          (6) 

where the ground state is denoted by |  0  and N =   â†  â  (0). 

 Experimentally, the number of atoms in the condensate is fit to the formulae. 

Nc(t) = Naverage- αt + A exp (-βt) sin (𝑒𝑡 + )    (7) 

Where Naverage is the average number of condensate atoms, A and  are the oscillation amplitude and phase, 

respectively, and β is the damping rate of the oscillation. The overall atom loss is characterized by rate constant 
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α. The experimentally observed frequency is equal to e = 2𝜋  𝑣𝑒
2 − [𝛽/2𝜋]2

. By defining the frequency of the 

coherent atom-molecule oscillation in this way one compensates for the effects of the damping on the frequency.  

 This is seen most easily by considering the linearized version of the time-dependent mean-field 

equation. Writing  

a (t) = ae
t

/ħ + 𝛿a (t) and m (t) = me
-2t/ħ + 𝛿m (t), one has that  

iħ 
𝜕𝛿 𝑚 (𝑡)

𝜕𝑡
 =  𝛿 𝐵 − 𝑔2  

𝑚3/2

2𝜋ħ3  𝑖  𝑖ħ
𝜕

𝜕𝑡
− 2ħ 𝐻𝐹  𝛿m (t) + 2ga 𝛿a(t) 

iħ 
𝜕𝛿 𝑎 (𝑡)

𝜕𝑡
 = 2ga

*
 𝛿m (t)        (8) 

where one neglected the off-resonant part of the inter-atomic interactions. This is justified sufficiently close to 

resonance, where one is also allowed to neglect the energy dependence of the atom molecule coupling constant. 

 We consider first the situation that the fractional derivative is absent in the linearized meanfield 

equation in Eq. (8), i.e. one is dealing with the model of Drummond et. al. [11].
 
and   Timmermans et. al [12,13]. 

These coupled equation describe exactly the same Rabi oscillations as the coupled harmonic oscillators in Eq. 

(1), with the coupling equal to ∆ = |4g
𝑎

|. In the context of particle- number oscillations between condensates, 

Rabi oscillations are referred to as Josephson oscillations and the associated frequency is called the Josephson 

frequency. The Josephson frequency in the absence of the fractional derivative term in Eq. (8) is given by  

ħ𝜔𝐽
𝑏𝑎𝑟𝑒  =  𝛿2 𝐵 +  16𝑔2𝑛𝑎        (9) 

Which reduces to ħ𝜔𝐽
𝑏𝑎𝑟𝑒  = |𝛿(B)| sufficiently for off resonance where the coupling may be neglected. This 

result does not agree with the experimental result because, by neglecting the fractional derivative, which 

corresponds to the molecular self-energy, one is describing Josephson oscillations between an atomic 

condensate and a condensate of bare molecules instead of dressed molecules. Furthermore, using the result in 

Eq. (2) one has that the amplitude of these oscillation is given by 

𝐴𝐽
𝑏𝑎𝑟𝑒  = 

16𝑔2𝑛𝑎

[𝛿2(𝐵)]2         (10) 

 In first approximation one takes the dressing of the molecules into account as follows. If one is in the 

magnetic field range where the Josephson frequency deviates not too much from the molecular binding energy, 

one is allowed to expand the propagator of the molecules around the pole at the bound state energy. This 

corresponds to introducing the dressed molecular field and leads to the Heisenberg equations of motion. The 

linearized meanfield equations that describe the Josephson oscillations of a atomic and a dressed-molecular 

condensate are therefore given by  

iħ 
𝜕𝛿 𝑚 (𝑡)

𝜕𝑡
 = 𝜀𝑚(𝐵) 𝛿

𝑚
(𝑡) + 2g  𝑍 𝐵  

𝑎
𝛿

𝑎
(𝑡) 

 

iħ 
𝜕𝛿 𝑎 (𝑡)

𝜕𝑡
 = 2𝑔 𝑍 𝐵  

𝑎
∗𝛿

𝑚
(𝑡)      (11) 

and lead to the Josephson frequency  

ħ𝜔j =  𝜀𝑚
2  𝐵 +  16𝑔2𝑍(𝐵)𝑛𝑎        (12) 

which reduces to ħ𝜔j ≃  |𝜀𝑚 (B)| in the situation where the coupling is much smaller than the binding energy. 

This result agrees with the experimental fact that the measured frequency is, sufficiently far from resonance, 

equal to the molecular binding energy. Moreover, the initial deviation from the two-body result in the measured 

frequency is approximately described by the equation for the Josephson frequency in Eq. (12). The amplitude of 

the oscillations is in this case given by  

Aj = 
16𝑔2𝑍(𝐵)𝑛𝑎

[𝜀𝑚  𝐵 ]2          (13) 

which close to resonance is much larger than the result in Eq. (10). 

 With the meanfield theory derived one now calculates the magnetic field and density dependence of the 

Josephson frequency of the coherent atom-molecule oscillations, in a linear approximation. The only parameter 

that has not been determined yet is the effective range of the inter-atomic interactions rbg.  

 The effective range is determined by calculating the molecular binding energy in vacuum and 

comparing the result with the experimental data. One has seen that for off resonance the Josephson frequency is 

essentially equal to the molecular binding energy. Since the effect of the nonzero effective range only plays a 

role for large energies, and thus is important far off resonance, this comparison uniquely determines the 

effective range. As explained, the molecular binding energy is determined by solving for E in the equation 

E- 𝛿(B) – ħ    (𝐸) = 0
(+)
𝑚        (14) 

 For 
85

Rb the background scattering length is negative and the effective range turns out to be positive. 

The retarded molecular self-energy is therefore given by  
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ħ    (𝐸) =
(+)
𝑚  

𝑔2𝑚

2𝜋ħ2 1−2 
𝑟𝑏𝑔

𝑎𝑏𝑔

  
𝑖 1−2(𝑟𝑏𝑔 /𝑎𝑏𝑔 )𝑚𝐸 /ħ2 –(𝑟𝑏𝑔 𝑚𝐸 /2ħ2)

1+𝑖𝑎𝑏𝑔  1−2(𝑟𝑏𝑔 /𝑎𝑏𝑔 ) 𝑚𝐸 /ħ2−(𝑟𝑏𝑔 𝑎𝑏𝑔 𝑚𝐸 /2ħ2)

  

           (15) 

III. Results and Discussion 
 We have presented the method of evaluation of magnetic field and density dependence of the 

Josephson frequency of the coherent atom-molecule collisions in the linear approximation. The results are 

shown in table 1 and 2 respectively by the use of linearized version of the time dependent meanfield equation.  

 

Table- 1: Evaluated result of Josephson frequency of the coherent atom-molecule oscillation as a function of the 

magnetic field 
Magnetic field B(G) Frequency of the coherent atom-molecule oscillation (Josephson frequency) KHz 

 Our’s Cal. Other’s Cal. Expl. 

150 10.2 9.82 12.6 

155 15.3 14.68 18.9 

156 58.5 55.34 60.6 

157 62.6 60.25 65.2 

158 69.7 70.56 72.8 

159 76.8 76.59 79.5 

160 120.5 121.8 122.8 

161 460.6 465.6 472.8 

162 960.7 970.8 1000.2 

 

Table- 2: Evaluated result of Josephson frequency of the coherent atom-molecule oscillation as a function of the 

condensate density for fixed magnetic field 
na (cm-3) Josephson Frequency (KHz) 

 B = 156 G B = 156.5 G B = 157 G 

1.1 × 1011 1.25 0.97 0.85 

1.5 × 1011 1.37 1.08 0.86 

2.0 × 1011 1.86 1.18 0.89 

3.0 × 1011 2.58 1.76 1.05 

5.0 × 1011 2.77 2.10 1.25 

6.0 × 1012 3.58 3.86 1.86 

8 × 1012 5.68 4.12 2.65 

1 × 1013 6.72 5.87 3.22 

5 × 1013 7.86 6.10 4.16 

8 × 1013 9.12 8.25 5.75 

10 × 1013 10.68 9.16 6.98 

15 × 1013 12.59 10.25 7.26 

 

This has been developed by Drummond et. al [11]. and Timmermanks et. al. [12,13]. Actually 

linearized time dependent field equation are coupled equation and these equations describe exactly the Rabi 

oscillation as the coupled harmonic equation with the coupling constant ∆ = |4ga|. In the context of particle 

number oscillations between condensates, Rabi oscillations are referred to as Josephson oscillations and the 

associated frequency is called the Josephson frequency. The Josephson frequency in the absence of fractional 

derivative is given by 

ħ𝜔𝐽
𝑏𝑎𝑟𝑒  =  𝛿2 𝐵 +  16𝑔2𝑛𝑎  

ħ𝜔𝐽
𝑏𝑎𝑟 𝑒  ≅ |𝛿2(B)| 

na is condensate density.  
 This is Josephson oscillation between and atomic condensate and a condensate of bare molecule instead 

of dressed molecules. Now if one expand the propagation of the molecules around the pole at the bound state 

energy then one obtains the Josephson oscillates of an atomic and a dressed molecular condensate and the 

Josephson frequency is given by  

ħ𝜔𝑗  =  𝜀𝑚
2  𝐵 +  16𝑔2𝑍 𝐵 𝑛𝑎  

≅ |𝜀𝑚 (𝐵)| 
 This result agrees well with the experimental fact. In table 1 we have given the Josephson frequency 

ħ𝜔j in KHz as a function of magnetic field B(G). We have compared our theoretical result with the work of J.M. 

Gerton et. al.[14].Our theoretical result are in good agreement with that of the experimental data. In table 2 we 

have presented the evaluated result of the Josephson frequency of the coherent atom-molecule oscillations as a 

function of the condensate density na for fixed magnetic field. Our theoretical result indicates that that Josephson 

frequency is almost constant for the condensate density 10
12

cm
-3

 but it rises very sharply for condensate density 
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above 10
13

 cm
-3

 as a function of magnetic field B. The magnitude of frequency is low in (KHz) for B= 157 G. 

Although the trend is same for the given three values of magnetic field B = 156 G, 156.5 G and 157 G. In this 

calculation we have subtracted the molecular binding energy to bring out the many body effects more clearly. 

As expected, the difference between the Josephson frequency and the molecular binding energy increases with 

increasing condensate density. Moreover, for values of the magnetic field closer to resonance the difference is 

also larger. The above calculations are done in the linear approximation and it gives a great deal of insight in the 

coherent atom-molecule oscillations and in particular, in their many-body aspects.
[
15

] 

 

IV. Conclusion 
From all the theoretical investigation, we get the following results: 

(a) In the evaluation of magnetic field and density dependence of the Josephson frequency of the coherent atom 

molecule, the linear approximation method developed by Drummond et al. and Timmermans et al. works 

very well in order to reproduce the experimental results. 

(b) While over viewing the physics  of Josephson effect between Bose Condensed system, it appear that it is 

possible to explore the crossover between collective Josephson behavior and independent boson Rabi 

dynamics. 
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