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Abstract: This paper evaluated and compared the performance of two recently developed optimization 

algorithms: Moth-Flame Optimization (MFO) and Antlion Optimization (ALO) using parameter extraction of a 

Three Diode Model (TDM) of a photovoltaic module. These techniques were equally recently reported to have 

good performance. However, it is imperative to know the best method among them in terms of accuracy, 

execution time and speed of convergence for a given optimization problem. Experiments were conducted to 

obtain several values for the PV module’s currents and voltages. Part of the data were used in optimizing the 

TDM parameters by the two optimization techniques using MATLAB R2017a programming software. The 

remaining data were used to validates the two codes. The performances of the two techniques in terms of the 

speed convergence, execution time and accuracy were compared through I-V curve fitting approach and 

statistical analysis such as Mean Bias error (MBE) and Absolute Error at Maximum Power Point (AE at MPP). 

The results show that MFO has better performance in terms of both accuracy and speed of execution with 

average value of MBE as 0.15, AE at MPP as 0.02 and ET as 152.2288 sec than the ALO with MBE of 0.17, AE 

at MPP of 0.14 and ET of 2254.1822 sec, indicating that the MFO is 93.24% faster than the ALO. Other 

statistical parameters evaluated agree with these findings. The MFO was found to outperform the ALO in terms 

of speed of convergence. 
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I. Introduction 
Solar energy is the most readily available source of energy that is free. It is a renewable energy source 

that will contribute to secure future energy demands without emission of pollutants items to air and our 

environment. Solar energy can be converted to electricity using photovoltaic (PV) cells. The PV cells are p-n 

junction semiconductor devices that work under the principle of photoelectric effect. The power produced by a 

single PV cell is not enough for general use, as such several PV cells are connected to form photovoltaic 

modules and several modules can be connected to form  photovoltaic array [1]. The most efficient PV cell 

produced was reported to have efficiency of 46.0±2.2% [2]. Due to the lower output efficiency of the PV cell, 

enormous amount of work has been carried out to physically improve their performance [3], [4]. However, it 

appears that a proper system design also plays a significant role in increasing the overall efficiency of 

photovoltaic systems. Thus, several models were designed to predict the real behavior of the PV cell under 

varying environmental conditions to improve their performance. 

The objective of the models is to emulate the electrical behavior of physical PV modules [5]. The 

popular approach is to utilize electrical equivalent circuit model [6] which is primarily based on an independent 

light generated current source connected in parallel to a p-n junction diode. Many models have been proposed 

for the simulation of the PV cells [7]. The complexity ranges from the simplest model which is the Single Diode 

Model (SDM) and passing through the more elaborate models such as the Double Diode Model (DDM) and to 

the more detailed models such as the Three-diode model (TDM). To implement these model‟s various electrical 

parameters must be evaluated which include; photocurrent (Iph) representing the independent light generated 

current source, diode reverse saturation current (Io), diode ideality factor (a), series resistance (Rs) and shunt 

resistance (Rp). 

Because of the transcendental nature of the different model‟s equation, these parameters cannot be 

solved explicitly [6]. However, several conventional and heuristic techniques were used to extract the 

parameters for the last few decades [8]. Some of the recent literature based on these two techniques include: For 

the conventional techniques, the recent research include [9][10]. For the heuristic, recently the following 

techniques were used: Genetic Algorithm (GA) [11]–[14], Simulated Annealing (SA) [15], [16]), Particle 
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Swarm Optimization (PSO) [17], [18], Differential Evolution [6], [19]–[21], Firefly Algorithm (FF) [22], 

Gravitational Search Algorithm (GSA) [23], Antlion Optimization (ALO) [24], Hybrid genetic Algorithm [12], 

Pattern Search Technique (PS) [25], and Moth Flame Optimization (MFO) [26]. The heuristic methods have 

shown better precision and computational efficiency as compared to the conventional methods [17]. 

From the literature it is observed that, several research investigations on PV cell models‟ parameters 

extraction was carried out but very few researchers investigated the TDM based on outdoor experimental I-V 

data set. Ref [8]reviewed over 100 published available researches conducted from 2011 to 2017 on PV cell 

models‟ parameters extraction out of which very few groups of researchers investigated the TDM. Ref.[26] 

extracted seven out of the nine unknown electrical parameters of the TDM based on laboratory measured I-V 

data set taken using solar simulator. Also, ref. [17]extracted TDM with variable resistance parameters using I-V 

data set taken using laboratory I-V measurement system. According to [26] some of the researchers relied on 

conventional algorithms, which were proven to suffer from inaccuracy with the increased number of the 

unknown parameters  and take longer execution time. However, the increase in number of the unknown 

electrical parameters of the TDM make most of the techniques to lose their accuracy. Thus, more efficient and 

powerful optimization techniques should be introduced to estimate the TDM parameters base on real outdoor 

experimental I-V data with accuracy and within shortest execution time. 

This paper compared the performance of two recently developed meta-heuristic optimization 

techniques: MFO and ALO in terms of accuracy, execution time and speed of convergence using TDM 

parameter extraction optimization problem based on real outdoor experimental I-V data by extracting the 

complete nine unknown electrical parameters of the model. The two techniques were recently reported to have 

good performance when applied for the PV cell models‟ parameters extraction problem based on I-V data set 

taken using laboratory I-V measurement system [24], [26].The accuracy of the techniques was evaluated using 

I-V curve fitting approach and statistical relations namely; Root Mean Square Error (RMSE), Mean Bias Error 

(MBE), Absolute Error at Maximum Power Point (AE at MPP) and Coefficient of Determination (R
2
). The 

speed of the techniques was evaluated in terms of execution time ET and rate of convergence. 

 

II. Background Theory 
Photovoltaic cell working principle is based on photoelectric effect were absorption of a photon leads 

to generation of electron-hole pairs. These electron-hole pairs are likely to recombine to lose their electrical 

energy but the built in potential barrier of the PV cell separate them, sending more holes to one side of the cell 

and more electron to the other. These charge separation sets up a voltage difference between either ends of the 

cell which can be used to derive an electric current in an external circuit. Modeling is required to predict the 

behavior of PV cell under varying environmental conditions. The popular approach is to utilize electric 

equivalent circuit model. The complexity ranges from single diode model to the double and three diode models. 

The SDM is based on an equivalent circuit consisting of an independent current source represented by 

photocurrent (Iph) connected in parallel with a diode (D), a shunt resistance (Rp) and a series resistance (Rs) [27]. 

The Diode current Id represents the current due to diffusion, the series resistance Rs represents the resistance in 

the path of the current due to contact resistances and resistance in the emitter and bulk regions and Shunt 

resistance Rp represents the current leakage across the p-n junction of the PV module [17]. This model assumes 

that, the recombination losses in the depletion regions are absent. Consideration of these losses leads to the 

DDM [28].The DDM is more precise than the SDM because the effect of the recombination loss in the depletion 

region was considered which is modeled by the second diode. The DDM has some limitations whereby, the 

output performance is still not appreciable because of the effect of recombination of electron-hole pair in the 

defect region. Considering this loss leads to an improved model known as the TDM with additional diode in 

parallel to the other two [17]. 

 

2.1 Three Diode Model 

The purpose of adding a third diode in parallel to the two diodes in TDM is to consider contribution of the diode 

current component (𝐼𝐷3) due to recombination in the defect regions [17]. Fig.1 depict the TDM equivalent 

circuit. 

 
Figure 1.Three Diode Equivalent Circuit Model. 
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The series resistance Rs and Shunt resistance Rp are the same resistance components as defined for SDM and 

DDM. The current through the circuit elements in Fig. 1 is governed by the voltage across them expressed as (1): 

 

𝑉𝑎 = 𝑉 + 𝐼𝑅𝑠                                                                    (1)  

 

where; Va is the voltage across both diodes and shunt resistance, 𝑅𝑠  is the series resistance, I is the output 

current and V is voltage across the output terminals. 

 

Considering the loop of the voltage V across the series resistanceRS and the shunt resistance 𝑅𝑝  in Fig. 1, the 

shunt current 𝐼𝑝  can be expressed as (2): 

 

𝐼𝑝 =
𝑉+𝐼𝑅𝑠

𝑅𝑝
                                                                          (2) 

For a given irradiance and temperature, the I–V relationship for the circuit in Fig. 1 can be represented by 

applying Kirchhoff‟s current rule as; 

 

𝐼𝑝ℎ = 𝐼𝐷1 + 𝐼𝐷2 + 𝐼𝐷3 + 𝐼𝑝 + 𝐼                                        (3) 

𝐼 = 𝐼𝑝ℎ − 𝐼𝐷1 − 𝐼𝐷2 − 𝐼𝐷3 − 𝐼𝑝                                         (4) 

 

where 𝐼𝐷1, 𝐼𝐷2and 𝐼𝐷3are the diodes currents 1,2 and 3 for the three diodes respectively. 𝐼𝑝  is the current through 

the shunt resistance. The diodes currents are expressed by Shockley equation as follows [29]. 

 

𝐼𝐷1 = 𝐼01  exp  
𝑉+𝐼𝑅𝑠

𝑎1𝑉𝑡
 − 1                                         (5) 

𝐼𝐷2 = 𝐼02  exp  
𝑉+𝐼𝑅𝑠

𝑎2𝑉𝑡
 − 1                            (6) 

𝐼𝐷3 = 𝐼03  exp  
𝑉+𝐼𝑅𝑠

𝑎3𝑉𝑡
 − 1                            (7) 

 

where; 𝐼01 , 𝐼02 , 𝐼03are the diode reverse saturation current 1, 2 and 3 in Ampere [A] respectively, V is the voltage 

across the output terminal of the PV module in Volt [V],  𝑎1 , 𝑎2 𝑎𝑛𝑑 𝑎3 are the diode ideality factors 1, 2 and 3.  

RS is the series resistance in Ohms [Ω] and 𝑉𝑡  is the thermal voltage given by (8). 

 

𝑉𝑡 =  
𝑘𝑇

𝑞
                                                                               (8) 

 

where k is the Boltzmann constant in Joules per Kelvin [J/K], T is the temperature of the p-n junction in Kelvin 

[K] and q is the charge of an electron in Coulomb [C]. 

 

With the preceding information, the I-V characteristic equation describing the TDM can now be expressed as; 

 

𝐼 = 𝐼𝑝ℎ − 𝐼01  𝑒𝑥𝑝  
𝑉+𝐼𝑅𝑠

𝑎1𝑉𝑡
 − 1 − 𝐼02  𝑒𝑥𝑝  

𝑉+𝐼𝑅𝑠

𝑎2𝑉𝑡
 − 1 − 𝐼03  𝑒𝑥𝑝  

𝑉+𝐼𝑅𝑠

𝑎3𝑉𝑡
 − 1 −

𝑉+𝐼𝑅𝑠

𝑅𝑝
                         (9) 

 

where; Rp is the shunt resistance in Ohms [Ω] and 𝐼𝑝ℎ is the independent current source (Photocurrent). 

 

The TDM parameters to be optimized by the proposed optimization techniques are;𝐼𝑝ℎ , RS, Rp, 𝐼01 , 𝐼02 , 𝐼03 , 𝑎1 , 𝑎2 

and 𝑎3. 

2.2 Problem Formulation 

The main requirements to apply the ALO and MFO optimization techniques are accomplished by the 

determination of the solution vector (X), the search range and the objective function. 

 

2.2.1 The Solution Vector and Search Range 

The solution vector is the vector that contains the set of all the parameters to be optimized which can be 

expressed in this study from (9) as 

 

𝑋 = [𝑅𝑠 , 𝑅𝑝 , 𝐼𝑜1 , 𝐼𝑜2 , 𝐼𝑜3 , 𝑎1 , 𝑎2 , 𝑎3, 𝐼𝑝ℎ ].                          (10) 

 

The search ranges are the boundaries within which the optimal values of the parameters will be looked up.  
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According to the previous literature the search range of the parameters are selected as follows: 𝑅𝑝𝜖[𝑅𝑝𝑜   5000], 

𝑎1,2,3𝜖 [0.5 4], 𝑅𝑠𝜖  [𝑅𝑠𝑜   2], and 𝐼𝑝ℎ𝜖 [0 2𝐼𝑠𝑐 ] where 𝐼𝑠𝑐  is the short circuit current [20]. 𝐼𝑜1,02,03𝜖[0  1e-12] [26]. 

According to [30]𝐼𝑜2 is 3 - 7 orders of magnitude greater than 𝐼𝑜1. The values of 𝑅𝑠𝑜  is zero [20] and 𝑅𝑝𝑜  can be 

evaluated at Standard Test Condition (STC) based on the PV module  manufacturers data sheet specifications 

[20]. 

 

𝑅𝑝𝑜 =
𝑉𝑀𝑃

𝐼𝑠𝑐−𝐼𝑀𝑃
−

𝑉𝑂𝐶 −𝑉𝑀𝑃

𝐼𝑀𝑃
                                                   (11) 

 

where; 𝑉𝑂𝐶  is the open circuit voltage, 𝐼𝑆𝐶  is the short circuit current, 𝐼𝑀𝑃  is the maximum power current and 

𝑉𝑀𝑃  is the maximum power voltage. 

 

2.2.2 The Objective Function. 

The extraction performance is evaluated using objective function formulated as the root mean square of the 

difference between the measured and simulated model current data for both the two optimization techniques. 

The difference between the measured and simulated PV module current data is given by the error function 

𝑓(𝑉, 𝐼, 𝑋) expressed as; 

 

𝑓 𝑉, 𝐼, 𝑋 = 𝐼𝐿 − 𝐼𝐿−𝐸𝑋𝑃                                      (12) 

 

where the estimated current IL can be calculated using (9) and 𝐼𝐿−𝐸𝑋𝑃  is the measured current obtained from the 

experiment.  

 

Root Mean Squared Error is used as a criterion to express the difference between the measured data and the 

simulated result. The parameters are extracted by minimizing the Root Mean Squared Error (13). 

 

𝑅𝑀𝑆𝐸 =  
1

𝐾
 𝑓(𝑉𝐿 , 𝐼𝐿 , 𝑋)2𝐾

𝐿=1                          (13) 

 

Hence, the objective function for K number of measured I-V data set is defined by (14). 

 

Objective function = 𝑚𝑖𝑛 
1

𝐾
 𝑓(𝑉𝐿 , 𝐼𝐿 , 𝑋)2𝐾

𝐿=1      (14) 

 

Smaller value of (14) implies the deviation between the module measured current and the current computed 

from the extraction method is small. Ideally, a zero value of (14) is desired [20]. 

 

2.3 MFO Algorithm 

MFO is a new population based algorithm developed by Mirjalili [31] and was inspired by the 

navigation method of moths in nature called transverse orientation. Moths are fancy insects, they have special 

navigation methods at night called transverse orientation [31]. In this mechanism, they fly at night by 

maintaining a fixed angle with respect to the moon, this method is very helpful for traveling in a straight line 

especially when the light source is very far Fig.2, [31].  

 

 
Figure 2 Transverse orientation. 
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When the light source is close, moths fly spirally around it and finally converge toward it after just a few 

corrections as shown  in Fig.3[31]. 

 
Figure 3Spiral flying path around close light sources [31]. 

 

The key components in the MFO algorithm are moths and flames where both are considered as a 

solution, however, they differ in the way of their treatment and their updating in each iteration. The moths are 

actual search agents that move around the search space, while flames are the best position of moths that are 

obtained so far. Thus, flames can be considered as flags that are dropped by moths when searching the search 

space. Therefore, each moth searches around a flag and updates it in case of finding a better solution [31]. Since 

the MFO algorithm is a population-based algorithm, the set of moths and flames can be represented in a matrix 

given by  (15) and (16) respectively [31]. 

𝑀 =  

𝑚1,1     𝑚1,2         …   …     𝑚1,𝑑

𝑚2,1          𝑚2,2      …    …   𝑚2,𝑑

 ⋮           ⋮            ⋮       ⋮         ⋮
 𝑚𝑛,1    𝑚𝑛,2        …     …   𝑚𝑛,𝑑

 (15) 

 

𝐹 =  

𝐹1,1    𝐹1,2      …        …         𝐹1,𝑑

𝐹2,1   𝐹2,2      …        …          𝐹2,𝑑

⋮        ⋮         ⋮          ⋮        ⋮
  𝐹𝑛,1      𝐹𝑛,2    …     …            𝐹𝑛,𝑑

  (16) 

 

where; 𝑛 is the number of moths and 𝑑 is the number of variable. 

 

For both the moths and flames there is an array for storing their corresponding fitness values each as follows 

[31]. 

 

𝑂𝑀 = [𝑂𝑀1 𝑂𝑀2 … 𝑂𝑀𝑛]T
                        (17) 

𝑂𝐹 = [𝑂𝐹1 𝑂𝐹2 … 𝑂𝐹𝑛 ]T                               
(18) 

 

where n is the number of moth and T is transpose. 

The general structure of the MFO algorithm contains three-tuple approximation functions that are summarized 

as follows [31]. 

 

𝑀𝐹𝑂 = (𝐼, 𝑃, 𝑇)                                    (19) 

 

The I function: The „I‟ is the initialization function that generates a random population of moths using (20) and 

stored in (15) and evaluate their corresponding fitness values using (14) and stored in (16). 

 

𝑀 𝑖, 𝑗 =  𝑢𝑏 𝑖 − 𝑙𝑏 𝑖  ∗ 𝑟𝑎𝑛𝑑() + 𝑙𝑏 𝑖              (20) 

 

where 𝑢𝑏 and 𝑙𝑏 are upper and lower bound of the variables respectively, 𝑟𝑎𝑛𝑑 is a random number between 0 

and 1. 
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The P function: The „P‟ is the main function which moves the moths around the search space and receive the 

matrix „M‟ (15) and returns its updated one eventually. 

After initialization, the P function is iteratively run until the termination function T is satisfied. As mentioned 

earlier, the inspiration of this algorithm is the transverse orientation of moth. Thus, in order to mathematically 

model this behavior, a logarithmic spiral is chosen as the update mechanism of the position of each moths with 

respect to the flame [31].The position of each moths is updated with respect to a flame using  (21) [31]. 

 

𝑀𝑖 = 𝑆 𝑀𝑖 , 𝐹𝑗          (21) 

 

The logarithmic spiral for the Moth Flame optimization algorithm is defined by (22). 

 

𝑆 𝑀𝑖 , 𝐹𝑗  = 𝐷𝑖 ∗ 𝑒𝑏𝑡 ∗ cos 2𝜋𝑡 + 𝐹𝑗                      (22) 

 

where 𝑀𝑖  indicate the 𝑖 − 𝑡ℎ moth, Fj indicates the𝑗 − 𝑡ℎ flame, and S is the spiral function. 𝐷𝑖  indicates the 

distance of the 𝑖 − 𝑡ℎ moth for the 𝑗 − 𝑡ℎ flame, b is a constant for defining the shape of the logarithmic spiral, 

and t is a random number in [r, 1]. Adaptive convergence constant r linearly decreases from -1 to -2 to 

accelerate convergence around the flames over the course of iterations. The lower the t, the closer the distance to 

the flame [31]. 

 

The distance of the i-th moth for the j-th flame  𝐷𝑖can be evaluated using (23) as follows; 

 

𝐷𝑖 =  𝐹𝑗 − 𝑀𝑖         (23) 

 

(22) is where the spiral flying path of moths is simulated. The next position of a moth is defined with respect to 

a flame. The t parameter in the spiral equation defines how much the next position of the moth should be close 

to the flame (𝑡 = −1 is the closest position to the flame while 𝑡 = 1 is the furthest).  

 

The logarithmic spiral, space around the flame, and the position considering different t on the curve are 

illustrated in Figure 4. 
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Figure 4 Logarithmic spiral, space around the flame and the position with respect to t [31] 

 

 
Figure 5 Some of the possible positions that can be reached by a moth with respect to a flame using the 

logarithmic spiral [31]. 

 

The spiral equation allows a moth to fly around a flame and not necessarily in the space between them. 

Fig. 5 illustrates the updated moth positions around the flame. Exploration occurs when the next position lies 

outsides the space between the moth and the flame as illustrated in the arrows labeled 1,3 and 4 in Fig. 5. 

Exploitation happens when the next position lies inside the space between the moth and the flame as observed in 

the arrow labeled 2 in Fig. 5. 

 

To balance between the exploration and exploitation, the number of flames adaptively decreases over the 

iterations as given in (24) [31]. 

 

𝑓𝑙𝑎𝑚𝑒 𝑛𝑜. = 𝑟𝑜𝑢𝑛𝑑  𝑁 − 𝑙 ∗
𝑁−1

𝑇
     (24) 

 

where; 𝑙 is the current number of iteration, 𝑁 is the maximum number of flames, and 𝑇 is the maximum number 

of iterations. 

However, the moth updates their position only with respect to the best flame in the final step of the iterations. 

The gradual decrement in number of flames balances exploration and exploitation of the search space [31].  

The termination function T: The p function is executed until the T function is satisfied. Therefore, after the 

termination of the P function, the best moth is returned as the best obtained approximation of the optimum [31] 

 

2.4 ALO Algorithm 

The antlion optimizer is a recently developed meta-heuristic nature inspired algorithm developed by 

Mirjalili in 2015 [32] which imitates the hunting strategy of antlions in nature for catching ants. Antlions are 

insects that exhibit two phases in their life cycle namely; larvae and adult. In larvae stage, they hunt insects 
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especially ants, whereas, adult stage is meant for breeding. Antlion larvae dig a cone-shaped pit by moving 

around in a circular path as illustrated in Fig. 6. 

 

The Antlion hides underneath the bottom of the cone shaped pit and waits for the ants to be trapped in the pit. 

When an ant happens to pass over the pit, it slides and falls inside the trap. Antlion tries to catch the ant when it 

realizes the ant is trapped. 

 

 
Figure 6 Antlion cone shape pit. 

 

However, ants usually try to get away from the trap as such antlion shoot sand at the edge of the trap to slide the 

ant to the bottom and then catches it as illustrated in Fig. 7. After consuming the prey, antlions re-build the trap 

[32]. 

 
Figure 7 Antlion hides underneath the bottom of its cone-shaped pit waiting for ant [24]. 

 

Since the ALO algorithm is a population-based algorithm, the positions of ants are saved in matrix𝑀𝐴𝑛𝑡  given 

by (25) where 𝐴𝑖,𝑗  denotes the j-th dimension position of the j-th variable of i-th ant [32]. 

 

𝑀𝐴𝑛𝑡 =

 
 
 
 
𝐴1,1 𝐴1,2     …    …         𝐴1,𝑑

𝐴2,1   𝐴2,2    …   …       𝐴2,𝑑

 ⋮           ⋮            ⋮       ⋮         ⋮
 𝐴𝑛,1𝐴𝑛,2     …     …   𝐴𝑛,𝑑  

 
 
 
                          (25) 

 

The fitness of ants is saved in matrix 𝑀𝑂𝐴  given by (26) [32]. 

 

𝑀𝑂𝐴 =

 
 
 
 

𝑓(𝐴1,1 𝐴1,2     …    …𝐴1,𝑑)

𝑓(𝐴2,1   𝐴2,2    …   …       𝐴2,𝑑)

 ⋮           ⋮            ⋮       ⋮         ⋮
𝑓( 𝐴𝑛,1𝐴𝑛,2 …     …   𝐴𝑛,𝑑)  

 
 
 

                           (26) 

Similarly, the positions of antlions are saved in a matrix 𝑀𝐴𝑛𝑡𝑙𝑖𝑜𝑛  given by (27) where 𝐴𝐿𝑖 ,𝑗 , denotes the j-th 

dimension position of the i-th antlion [32].  
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𝑀𝐴𝑛𝑡𝑙𝑖𝑜𝑛 =

 
 
 
 

𝐴𝐿1,1𝐴𝐿1,2 …   …     𝐴𝐿1,𝑑

𝐴𝐿2,1   𝐴𝐿2,2   …      …   𝐴𝐿2,𝑑

 ⋮           ⋮            ⋮       ⋮         ⋮
 𝐴𝐿𝑛,1𝐴𝐿𝑛,2     …     …   𝐴𝐿𝑛,𝑑  

 
 
 
(27) 

 

The fitness of antlion is saved in matrix 𝑀𝑂𝐴𝐿  given by (28).Among them, elite individual is the antlion with the 

best fitness [32]. 

 

𝑀𝑂𝐴𝐿 =

 
 
 
 

𝑓(𝐴𝐿1,1𝐴𝐿1,2 …   …     𝐴𝐿1,𝑑)

𝑓(𝐴𝐿2,1   𝐴𝐿2,2   …      …   𝐴𝐿2,𝑑)

 ⋮           ⋮            ⋮       ⋮         ⋮
𝑓( 𝐴𝐿𝑛,1𝐴𝐿𝑛,2  …     …   𝐴𝐿𝑛,𝑑)  

 
 
 

(28) 

 

The ALO algorithm is defined as a three-tuple function that approximates the global optimum for optimization 

problems as  𝐴𝐿𝑂(𝐴, 𝐵, 𝐶)[32]. 

 

The function A: This function generates the random initial population of ants and antlions stored in a matrix 

given by (25) and (27) respectively with their corresponding fitness values stored in a matrix given by (26) and 

(28) respectively. The initialization function is given by (28) [32]. 

 

𝑀 𝑖, 𝑗 =  𝑢𝑏 𝑖 − 𝑙𝑏 𝑖  ∗ 𝑟𝑎𝑛𝑑() + 𝑙𝑏 𝑖               (29) 

 

where ub and lb are the lower and upper bounds of the parameters. 

 

The function B: This function manipulates the initial population provided by the function A. The function is 

described by the following steps; 

 

1). Building the trap: To model the antlions‟ hunting capability, a roulette wheel is employed[32]. Ants are 

assumed to be trapped in only one selected antlion. The ALO algorithm is required to utilize a roulette wheel 

operator for selecting antlion for every ant based on their fitness during optimization [32]. 

 

2). Random walk of ant: The movement of ants are stochastic in nature while searching for food. The Random 

walk of ants is mathematically formulated with (30) [32]. 

 

𝑋 𝑡 =  0, 𝑐𝑜𝑚𝑠𝑢𝑚 2𝑟 𝑡1 − 1 , 𝑐𝑜𝑚𝑠𝑢𝑚 2𝑟 𝑡2 − 1 , … , 𝑐𝑜𝑚𝑠𝑢𝑚 2𝑟 𝑡𝑛 − 1            (30) 

 

where cumsum calculates the cumulative sum, n is the maximum number of iteration, t shows the step of 

random walk (iteration in this study), and r(t) is a stochastic function defined by (31) [32]. 

 

𝑟 𝑡 =   
1 𝑖𝑓 𝑟𝑎𝑛𝑑 > 0.5
0 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 0.5

                 (31) 

 

where; t shows the step of random walk and 𝑟𝑎𝑛𝑑 is arandom number generated with uniform distribution in the 

interval of [0, 1][32]. 

 

To keep the random walks inside the search space, they are normalized (min–max normalization) as follow [32]. 

 

𝑅𝑖
𝑡 =  

 𝑋𝑖
𝑡−𝑎𝑖 ×(𝑑𝑖−𝑐𝑖

𝑡)

(𝑑𝑖
𝑡−𝑎𝑖)

+ 𝑎𝑖     (32) 

 

where: 𝑅𝑖
𝑡  is the normalized displacement, 𝑋𝑖

𝑡  is the random displacement of the i-th Ant in the t-th iteration,𝑎𝑖 is  

the minimum displacement of random walk of i-th variable, 𝑑𝑖 is the maximum displacement of random walk in  

i-th variable, 𝑐𝑖
𝑡 is the minimum displacement of i-th variable at t-th iteration, and 𝑑𝑖

𝑡  indicates the maximum 

displacement of i-th variable at t-th iteration.  

 

3). Trapping of ants in antlion’s pit: Random walks of ants are affected by antlions‟ traps. To model this 

assumption, (33) and (34) are proposed [32]. 
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𝑐𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑐𝑡                                                            (33) 

𝑑𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑑𝑡                                                           (34) 

 

where 𝑐𝑡  is the minimum of all variables at t-th iteration, 𝑑𝑡  indicates the vector including the maximum of all 

variables at t-th iteration, 𝑐𝑖
𝑡  is the minimum displacement of all variables for i-th ant, 𝑑𝑖

𝑡  is the maximum 

displacement of all variables for i-th ant, and 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡  shows the position of the selected j-th antlion at t-th 

iteration.  (33) and (34) show that Ants randomly walk in a hyper sphere defined by the vectors c and d around a 

selected Antlion [32]. 

 

4). Sliding of ants towards antlion: Antlions shoot sands outwards the center of the pit once they realize that an 

Ant is in the trap. This behavior slides down the trapped Ant that is trying to escape. For modeling this behavior, 

the radius of Ant‟s random walks hyper-sphere is decreased adaptively 𝑐𝑡  and 𝑑𝑡  can be evaluated using (35) 

and (36) [32]. 

 

𝑐𝑡 =
𝑐𝑡

𝐼
                (35) 

𝑑𝑡 =
𝑑𝑡

𝐼
   (36) 

 

where;  𝑐𝑡  is the minimum of all variables at t-th iteration, and 𝑑𝑡  indicates the vector including the maximum of 

all variables at t-th iteration. The value of I can be evaluated using (37) as; 

 

𝐼 = 10𝑊 𝑡

𝑇
(37) 

 

where; t is the current iteration, T is the maximum number of iterations, and w is a constant defined based on the  

current iteration as (w = 2 when t > 0.1T, w = 3 when t > 0.5T, w = 4 when t > 0.75T, w = 5 when t > 0.9T, and 

w = 6 when t > 0.95T). Basically, the constant w can adjust the accuracy level of exploitation. 

 

5). Catching prey and re-building the pit: It is assumed that catching prey occur when Ants becomes fitter 

(goes inside sand) than its corresponding Antlion. Antlion is then required to update its position to the latest 

position of the hunted Ant to enhance its chance of catching new prey using the Eq. (38) [32]. 

 

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 = 𝐴𝑛𝑡𝑖

𝑡   𝑖𝑓 𝑓(𝐴𝑛𝑡𝑖
𝑡) > 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡)  (38) 

 

where t shows the current iteration,𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡  shows the position of selected j-th Antlion at t-th iteration, and 

𝐴𝑛𝑡𝑖
𝑡  indicates the position of i-th ant at t-th iteration. 

 

6). Elitism: The best Antlion obtained so far in each iteration is saved and considered as an elite. Since the elite 

is the fittest Antlion, it should be able to affect the movements of all the Ants during iterations. Therefore, it is 

assumed that every Ant randomly walks around a selected Antlion by the roulette wheel and the elite 

simultaneously as given by (39) [32]. 

 

𝐴𝑛𝑡𝑖
𝑡 =

𝑅𝐴
𝑡 +𝑅𝐸

𝑡

2
                  (39) 

 

where 𝑅𝐴
𝑡  is the random walk around the Antlion selected by the roulette wheel at t-th iteration, 𝑅𝐸

𝑡 is the random 

walk around the elite at t-th iteration, and 𝐴𝑛𝑡𝑖
𝑡  indicates the position of i-th Ant at t-th iteration. 

 

The function C: The B function is executed until the C function is satisfied [32] i.e. true or false. 

 

III. Methodology 
To implement the MFO and ALO techniques measured I-V data sets from the PV module along with 

measuredtemperature and irradiance are required. To obtain these parameters, outdoor experiments were 

conducted at Bayero University, Kano (latitude 11.97863N, longitude 8.47178E) for a period of ten days. The 

materials used for the experiment were: Sunshine AP-PM-20 (20W) polycrystalline PV module, digital 

multimeter with PC interface (MY64-345), Rheostat (SR45,2A and 26Ω), cell temperature detector, solar meter 

(tpi510) and connecting wires. Fig.8 depicts the experimental set-up. 
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Figure 8 Non Ideal PV Circuit Diagram of the experimental Set-up [33]. 

 

3.1 Experimental Procedure 

The open circuit voltage (Voc) and short circuit current (Isc) were obtained by opening and shortening the 

terminals of the set-up. The Rheostat was varied between the Voc and Isc values and the corresponding currents 

and voltages were recorded. For each experiment the date, time, temperature and irradiances were also recorded. 

The measured I-V data from the PV module were used for the optimization of the three diode model‟s 

parameters of the PV module in a MATLAB R2017a environment. 

3.2 Optimization / Simulation 

After many runs have been performed, the maximum number of iterations were chosen to be T = 500. The 

population size N was chosen to be 50. The population size N ranges between [5d 10d] where d is the number of 

the parameters [26]. 

3.3 Statistical Analysis 

To ensure the proposed algorithms extracted the unknown parameters accurately, a deeper analysis such as 

Mean Bias error (MBE), Absolute Error (AE) at Maximum Power Point, Root Mean Square Error (RMSE) and 

Coefficient of Determination (R
2
) were carried out. 

 

1). The MBE is a statistical quantity which measures the performance of the ALO and MFO techniques given by 

(39). 

 

𝑀𝐵𝐸 =  
1

𝐾
  𝐼𝑒 − 𝐼𝑒𝑥𝑝  𝑘

𝑖=1        (40) 

 

where k is the number of the readings of the measured I-V data and Ie, Iexp are the estimated and the 

experimental currents respectively [26]. 

 

2).The R
2
 was used as a guideline in measuring the accuracy of each technique. R

2
 has values between 0 and 1. 

When its value is 1, it means there is consistency between simulation and experimental result otherwise there is 

no consistency [26].  

 

𝑅2 = 1 −
 (𝐼𝑒−𝐼𝑒𝑥𝑝 )2𝑘

𝑖=1

 (𝐼𝑒𝑥𝑝 −𝐼𝑒𝑥𝑝      )𝑘
𝑖=1

      (41) 

 

where: 𝐼𝑒  is the estimated current, 𝐼𝑒𝑥𝑝  is the experimental current, k is number of measured data and 𝐼𝑒𝑥𝑝     : is the  

arithmetic mean of the experimental current for „k‟ number of measured I-V data given by (42). 

 

𝐼𝑒𝑥𝑝     =
1

𝑘
 𝐼𝑒𝑥𝑝

𝑘
𝑖=1            (42) 

 

3). The Root mean square error analysis was also computed to measure the accuracy of the ALO and MFO 

techniques and it is defined by (43)  

 

𝑅𝑀𝑆𝐸 =  
1

𝑘
 (𝐼𝑒 − 𝐼𝑒𝑥𝑝 )2𝑘

𝑖=1           (43) 

where k is the number of the readings of the measured I-V data and Ie, Iexp are the estimated and the 

experimental currents respectively. 

4).Absolute Error (AE) at maximum power point was also computed using (44) as follows; 

 

𝐴𝐸 = (𝐼𝑒−𝐼𝑒𝑥𝑝 )        (44) 

 

where; 𝐼𝑒   and 𝐼𝑒𝑥𝑝  are the estimated and experimental currents respectively. 
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IV. Results and Discussion 
  Comparison of calculated and measured I-V curves for the AP-PM-20 (20W) Polycrystalline PV 

module was carried out for the TDM using the MFO and ALO algorithms in order to illustrate the accuracy of 

the extracted parameters. The parameters of the model were estimated by fitting of the calculated I-V curves to 

the measured I-V curves with the least achievable MBE, RMSE and AE at MPP as shown in Fig. 9 to 14. This is 

in contrast to [6] in which no statistical relations were used. 

 

 
Figure 9 Comparison between the experimental and estimated I-V characteristic curve at T=37

0
C and 

G=719.8Wm
-2

. Date: 28/05/2018. 

 

 
Figure 10 Comparison between the experimental and estimated I-V characteristic curve at T=39

0
C and 

G=725.92Wm
-2

. Date: 31/05/2018. 
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Figure 11 Comparison between the experimental and estimated I-V characteristic curve at T=40.90

0
C and 

G=745.80Wm
-2

. Date:04/06/18. 

 
Figure 12 Comparison between the experimental and estimated I-V characteristic curve at T=45.50

0
C and 

G=798.10Wm
-2

. Date: 08/06/2018. 

 

 
Figure 13 Comparison between the experimental and estimated I-V characteristic curve at T=46

0
C and 

G=823.99Wm
-2

. Date: 11/06/2018. 
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Figure 14 Comparison between the experimental and estimated I-V characteristic curve at T=47.98

0
C and 

G=828.87Wm
-2

. Date: 13/06/2018. 

 

  The calculated I-V curves from the MFO have shown better match with the measured I-V curves than 

that of the ALO, this shows that the MFO extracted parameters values are better than that of the ALO.To further 

illustrate the accuracy of thetechniques,statistical analyses were carried out for the two techniques and the 

reported errors are compared with the errors reported in [24] and [26]as shown in Table1. 

 

TABLE 1Comparison of MBE/MAE, RMSE, AE at MPP and R for both MFO and ALO at different Irradiance 

levels. 

Author 
Irradiance 

level 
Model Technique R MBE/ MAE RMSE 

AE at 

MPP 

Ref. [26] 

109.2Wm-2 

TDM MFO 

0.999 8.6E-07 0.0018 8.9E-05 

246.65Wm-2 0.999 9.1E-07 0.0120 0.0023 

347.8Wm-2 0.999 5.0E-07 0.0099 0.0203 

580.3Wm-2 0.999 1.4E-06 0.0245 0.0304 

Ref. [24] - SDM ALO - 0.001 2.5E-06 - 

This research 

719.8Wm-2 

TDM 

MFO 0.833 0.198 0.261 0.021 

ALO 0.801 0.220 0.283 0.790 

725.92Wm-2 
MFO 0.874 0.146 0.211 0.028 

ALO 0.881 0.158 0.205 0.020 

745.80Wm-2 
MFO 0.908 0.119 0.172 0.045 

ALO 0.927 0.115 0.154 0.003 

798.10Wm-2 
MFO 0.859 0.162 0.225 0.004 

ALO 0.837 0.193 0.241 0.013 

823.99Wm-2 
MFO 0.848 0.173 0.238 0.017 

ALO 0.833 0.194 0.249 0.005 

828.87Wm-2 
MFO 0.909 0.123 0.172 0.028 

  ALO 0.897 0.140 0.183 0.032 

 

  It can be observed that, the errors reported by the MFO technique are small compared to that of the 

ALO. But compared to the reported errors by the two techniques in the literature it was observed that, both the 

ALO and MFO have lost their accuracies with the increased number of the unknown parameters. This is because 

the reported errors by the MFO and ALO techniques in the literature are far much smaller than those reported in 

this research.However, the reported errorsfor this research for six different irradiance levels are compared 

graphically as shown in Fig. 15 to 18. 
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Figure 15 Comparison of R from both ALO and MFO simulated I-V curves. 

 

 
Figure 16Comparison of MBE from both ALO and MFO simulated I-V curves. 

 

1 2 3 4 5 6
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Figure 17 Comparison of RMSE form both ALO and MFO simulated I-V curves. 

 

 
Figure 18 Comparison of AE at MPP from both ALO and MFO I-V curves. 
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  Furthermore, the most important aspects of the comparison between the MFO algorithm and the ALO 

apart from accuracy are the speed of convergence and the execution time. Under the same parameter settings, 

Figure 19 to 24 shows thatthe MFO algorithm converges to the optimal solution rapidly compared to the 

ALO.However, Table 2 indicates that the execution time of ALO algorithm is about 18 times that of MFO 

technique. 

 

 
Figure 19 Comparison of convergence curves of MFO and ALO algorithms at 719.8Wm

-2
 and 37

o
C. 

 

 
Figure 20 Comparison of convergence curves of MFO and ALO algorithms at 725.92Wm

-2
 and 39

o
C. 
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Figure 21 Comparison of convergence curves of MFO and ALO algorithms at 745.80Wm

-2
 and 40.90

o
C. 

 

 
Figure 22 Comparison of convergence curves of MFO and ALO algorithms at 798.10Wm

-2
 and 45.50

o
C. 

 

 
Figure 23 Comparison of convergence curves of MFO and ALO algorithms at 823.99Wm

-2
 and 47.80

o
C. 
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Figure 24 Comparison of convergence curves of MFO and ALO algorithms at 828.87Wm

-2
 and 47.98

o
C. 

 

TABLE 2 Execution time consumed by each Algorithm for a single run 
Algorithm Execution time (sec) 

MFO 152.2288 

ALO 2254.1822 

 

The optimal values of the TDM extracted parameters by the ALO and MFO at different level of irradiance and 

temperature are given in Table 3. 

 

TABLE 3Extracted parameters of the TDM of AP-PM-20 (20W) Polycrystalline PV module by MFO and ALO 

algorithms at different levels of Irradiance and Temperature. 

Date, Irradiance G & 

Temperature T levels. 
Algorithm 

Parameters 

Rs (Ω) Rp (Ω) Io1 (A) Io2 (A) Io3 (A) a1 a2 a3 Iph (A) 

 28/05/18,  
 G = 719.80W/m2, 

 T = 37.000C 

MFO 0.0682 2521.5 7.66E-10 4.37E-06 6.00E-06 0.9819 1.4787 3.0355 0.7865 

ALO 0.3624 2419.2 6.78E-10 6.45E-06 7.13E-06 0.6596 1.1218 2.7640 0.7960 

 31/05/18, 

 G = 725.92W/m2,  
 T = 39.000C 

MFO 0.0171 2251.6 6.58E-10 7.31E-07 7.28E-06 0.7864 1.5304 3.1637 0.8100 

ALO 0.3511 2474.2 5.19E-10 7.08E-06 4.81E-06 0.4701 1.8580 2.9857 0.8275 

 04/06/18, 
 G = 745.80W/m2,  

 T = 40.900C 

MFO 0.0692 3386.0 2.71E-10 8.32E-07 3.43E-06 0.7720 1.4413 3.4755 0.8300 

ALO 0.3317 2140.5 4.24E-10 6.54E-06 3.81E-06 0.3817 1.52716 2.0693 0.8580 

 08/06/18,   

 G = 798.10W/m2,  
 T = 45.500C 

MFO 0.0274 3683.6 4.43E-10 2.00E-06 2.63E-06 0.8433 1.7092 2.8761 0.8600 

ALO 0.4526 1911.8 2.07E-10 6.06E-06 3.91E-06 0.8430 1.7255 2.6507 0.8766 

 11/06/18, 
 G = 823.99W/m2, 

 T = 47.800C 

MFO 0.0008 4009.7 8.94E-10 6.78E-06 3.31E-06 0.9614 1.6401 3.2007 0.9100 

ALO 0.3956 2871.5 6.89E-10 3.97E-06 5.39E-06 0.8449 1.1023 3.3170 0.9101 

 13/06/18, 
 G = 828.87W/m2, 

 T = 47.980C 

MFO 0.0040 3106.5 3.95E-10 6.09E-06 6.54E-06 0.9635 1.6958 2.5903 0.9100 

ALO 0.0450 2634.8 3.78E-10 4.17E-06 6.77E-06 0.6382 1.1567 2.8041 0.9045 

 

V. Conclusion 
  From the results obtained, both the two techniques were found to have slightly the same level of 

accuracy although the MFO have slightly recorded the least average value of; MBE as 0.15, RMSE as 0.21, AE 

at MPP as 0.022 and best value of R as 87% over the ALO with MBE 0.17, RMSE 0.22, AE at MPP 0.14 and R 

as 86%. However, in terms of execution time MFO algorithm have outstandingly outperforms the ALO having 

recorded the execution time of 152.2288 seconds for a single run while the ALO recorded 2254.1824 seconds 

for the same number of run, this indicates that MFO is about 15 times faster than ALO. Moreover, in terms of 
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speed of convergence MFO outperforms the ALO. However, the two techniques were found to slightly lose 

their accuracies with the increased number of the unknown electrical parameters especially towards the 𝑉𝑜𝑐  point. 

Thus, for accurate and efficient parameters extraction of a TDM of a PV module, MFO algorithm outperforms 

ALO algorithm based on this research. The knowledge of the extracted parameters is used not only to improve 

design and evaluate performance of PV cells but also to extract the MPP of the PV module and array. However, 

to find more suitable materials for high conversion efficiency of PV cell, it is important to extract the electrical 

unknown parameters of the present design for further improvement 
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