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Abstract: The primary purpose of this paper isto provide the general solution to the equation describing radial 

motion for a classical extensible model of an electron as formulated by Dirac (1962). The general solution can 

be used in a Bohr-Sommerfeld quantization scheme for both angular momentum and vibrations. It is shown that 

one cannot satisfy both quantum requirements simultaneously but one or the other can always be satisfied 

exactly. Dirac considered only the vibration quantization (leading to a definition of the muon) from the point of 

view of small amplitude oscillations around an equilibrium state and so did not obtain an acceptable mass for 

the muon and he was silent about the angular momentum requirement.  
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I. Introduction 
The dynamics of the electron has been the center of many attempts to understand this enigmatic 

particle. A very detailed review of the history of such attempts is presented by Rohrlich (1997) in which the 

successes and failures of the historical struggles are clearly and cleanly listed. While there is no winning 

prescription as yet to providing an understanding of the electron there has been significant progress starting 

with, perhaps, Poincaré (1906). The present article is not intended to do justice to the plethora of papers 

concerning electron dynamics but rather is concentrated on one article by Dirac (1962) in order to show that 

general solutions to equations modeling electron dynamics yield extremely different behaviors than does the 

approximation of small amplitude oscillations around a stationary equilibrium. 

It is now nearly 60 years since Dirac published an article to describe the electron as an oscillating body 

with the oscillations considered as yielding a muon described through the first excited state of the electron when 

quantized according to the Bohr-Sommerfeld paradigm. The basic idea was to have an equivalent surface 

tension to stop the electron from disintegrating due to the repulsive charge on the body. The equation of purely 

radial motion of the electron radius, including effects due to curvilinear coordinates, was derived by Dirac 

(1962) (q.v) and included relativistic effects. The exception, as clearly stated by Dirac, was the exclusion of 

electron spin so that one was treating with a classical electron. 

Small amplitude oscillations around an equilibrium radius were considered. The frequency, ν, of the 

oscillations was then taken to correspond to an energyhν and so an equivalent mass; M =hν/c
2
, regrettably the 

equivalent mass turned out to be 448  times the electron mass and so was not acceptable as a representation of a 

muon. Indeed, Dirac (1962) noted this fact himself and remarked “the one-quantum oscillation is by no means a 

small one and the approximations used (…) are not valid for it ” There was also the problem that for the “small 

amplitude” oscillations no determination of the amplitude was made- perhaps not a fatal flaw but one was left 

wondering nevertheless. 

Indeed, while the equation of radial motion of the electron radius included relativistic effects, small 

oscillations around the equilibrium radius did not include such effects so one was again left wondering what was 

then the point of deriving an equation for motion of the electron radius and then not using its behavior? 

A thorough search of Dirac’s (1962) article allows one to note that the fundamental equation of radial 

motion was not solved at all. Speculations as to the reasons for this neglect are legion: such as the equation is 

nonlinear and so not easy to solve; one had no further interest in the equation of motion when small amplitude 

oscillations around the equilibrium radius failed to obtain the correct muon mass; etc. 

However, as noted by Whitham (1974) (when dealing with construction of exact solutions to nonlinear 

equations rather than expansions to some small order ε) “Not least is the lesson that exact solutions are still 

around and one should not always turn too quickly to a search for the ε.” 

This article is concerned with determining precisely the exact solutions to the equation of radial motion 

as given by Dirac (1962). Technical details are presented in the next section of the paper and the exact solutions 

obtained. The solutions differ markedly from the small oscillation behavior given by Dirac (1962) as was to be 
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expected after Whitham’s (1974) remark. A numerical section then follows illustrating the behavior of the exact 

solutions for specific parameter values. Based on the exact solutions a short section is then devoted to account 

for a quantum representation based on the Bohr-Sommerfeld quantization prescription. 

 

Exact solutions to the radial motion equation 

 Dirac worked the problem through to the equation of radial motion using a representation where the 

velocity of light,c, is identically unity: c=1.The time varying radius of the electron ρ then satisfies the equation 

(Dirac, equation 14) 

d/dT(w(1-w
2
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-1/2
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where w = dρ/dT and the equilibrium radius a is given through a
3
 =e

2
/4ω  and so ω measures the fundamental 

strength of the surface tension just as e represents the fundamental charge on the electron. In physical units 

(where c ≠ 1) and with the representation ρ = aζ ,one has the equation in the dimensionless form 
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wheretime t is measured in units of a/c so that one has u = dζ/dt. Note that should one wish to have the 

equilibrium radius to be precisely the classical electron radius r*= e
2
/(mc

2
) then one arranges the surface tension 

so that ω = (mc
2
)

3
/(4e

4
)with m the electron mass. 

Equation (2a) can be solved in full generality as follows. Set (1-u
2
)

-1
 = A

2
 and then shift to ζ instead of t as a 

basic variable yielding equation (2a) in the form 

dA/dζ +2A/ζ = 2/ζ
4
        (2b) 

The result is a linear equation in A with general solution 

A
2
= ζ
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where Λ is an arbitrary but positive constant of integration. One has A = Λζ
-2

-2ζ
-3

 and the demand A>0 because 

A = (1-u
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 which must be positive. Thus Λ>2ζ
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. Use the solution (3) and the definition (1-u
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to obtain 

(dζ/dt)
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(4) which can also be 

written in the form 

(dζ/dt)
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 = (ζΛ -2 –ζ
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Because the left hand side of equation (5) is positive then so too must the right hand side be. Thus there is the 

requirement  

ζΛ -2 –ζ
3
>0             (6) 

which demands Λ>3 with equality (Λ=3) only on ζ = 1 corresponding to a fixed radius for the electron at the 

equilibrium value of ρ =a. A sketch of the critical curve for Λ versusζ is given in figure 1 showing the domain 

where physical solutions are possible. 

 

 
 

Note for later use that when ζ <<1 an approximate solution of equation (6) is ζ =2/Λ for large values of Λ>>1 

while the other approximate solution for Λ>>1 is ζ = Λ
1/2

. 

 For any value of Λ>3 one has minimum and maximum values of ζ (ζminand ζmax respectively) within 

which a solution oscillates with time. Figure 2 shows a sketch of such a situation. Note that as Λ increases above 

Λ=3 then ζminsteadily decreases and ζmaxsteadily increasesso that oscillations around ζ = 1 have a greater and 

greater “reach” on both sides of ζ = 1 with (1- ζmin)and (ζmax -1) both increasing withincreasing Λ.  
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Accordingly the normalized time T for an oscillation to vary from ζmin toζmaxand back is given by  

T/2 =∫dζ(ζΛ -2)/[(ζΛ -2)
2
-ζ

6
]

1/2
       (7) 

where the limits of integration run fromζmin<ζ<ζmax . The square root singularity in the integrand is 

accommodated in the customary manner so that for instance ∫f(x)dx/(x-1)
1/2

 can be written proportional tof(x)(x-

1)
1/2

 -∫(df(x)/dx)dx(x-1)
1/2

 and the integral then completed without concern for the singularity. 

Of interest is to determine not only the total time T for an oscillation but equally the fraction of time 

spent at values of ζ less than (greater than) unity for specific values of  the constant Λ. The various panels of 

Figure 3 show the oscillation time as a function of increasing Λ (panel 3a), the relative percentage time the 

electron radius lies below the equilibrium value of ζ = 1for increasing Λ (panel 3b), and the fraction of time the 

electron radius is greater than (less than) ζ = 1 as Λ increases (all values of Λ>3)(panels 3c and 3d respectively).  

 

 
 

Correspondingly, Figure 4 shows the values of ζminand ζmax for increasing values of Λ. Figure 5 

provides a sketch of the oscillation time versus the reach showing an almost linear relationship between the pair 

with the implication that, on average, the speed of motion of the radius is almost constant no matter what values 

of the parameter Λ are used (at least as high as Λ =10 and likely higher). 
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However such a linearity does not mean the speed is constant throughout every part of a complete cycle 

as can be seen in figure 3 where the time spent at values less than (greater than)the equilibrium value is sensitive 

to the Λ value chosen. 

 

 
 

A quantum representation 

 The classical theory of motion given above describes the exact solutions to the radial oscillation 

equation with just one “free” parameter Λ. There is no further constraint on the parameter without invoking 

behaviors not included directly in the equation of motion. Such is the purpose of the quantum representation. 

Two factors are needed. First a procedure for determining Λ in terms of a series of quantum states; second a 

procedure for determining the equivalent mass of a particle causing the oscillations once Λ has been prescribed. 

 

a. Quantum representation of Λ. 

The Bohr-Sommerfeld quantization representation takes the classical electron momentum p (= mv/(1-

v
2
/c

2
)

1/2
)and integrates it with respect to radius over the oscillation between the limits aζminto aζmax and then 

demands that the integral be an integer multiple of Planck’s constant h: 

 

 

 aζmax 

∫pdr      =nh        (8) 

aζmin 

 

Given that the only free parameter is Λ, equation (8) provides a discrete series of values for Λ as the 

integer n is increased. Note that n=0 describes an electron at rest at the radius a so that all other values 

correspond to excited states with increasing n.  
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b. The equivalent particle mass, M 

Supposing that one has obtained the discrete values of Λ from equation (8) one can then determine the 

oscillation frequency νas c/(aT), where T is the normalized dimensionless oscillation period given through 

equation (7). Then the equivalent mass of the particle causing the oscillation is M =hν/c
2
 .Collecting factors one 

can write  

M/m = 2π(r*/a)*((αT)
-1

)        (9) 

Because the oscillation period depends on Λ which is known from the quantization requirement (8)and 

because there are no further “free” parameters then the equivalent particle mass is given for each integer value 

of n>0.However, note that if thenormalized time, T, exceeds 2π/α then one would have M<m implying no 

solution. 

This last part of the puzzle completes the Dirac prescription under the Bohr-Sommerfeldquantization conditions. 

 

c. Alternative quantum description 

There is no compelling reason that one should attempt to evaluate the parameter Λ first from the 

angular momentum quantization rule (8) and then attempt to deduce the equivalent mass from equation (9) using 

the value of Λ obtained from equation (8). 

Instead one can determine the equivalent mass first and then use that value to attempt to determine the 

angular momentum constraint (8). The point is that the equation of motion is classical in origin and the 

quantization conditions are imposed ad hoc and are not an integral part of the development. Thus there is no 

good reason to suppose that values of Λ obtained from the angular momentum balance will also provide an 

equivalent mass satisfying the muon to electron mass ratio, and vice versa of course. Serendipity may prevail 

but one cannot assume it will. This point is now addressed quantitatively. 

d.Numerical illustrations 

Technically the angular momentum quantization of Λ takes the explicit form 

 ζmax 

∫[(ζΛ -2)
2
-ζ

6
]

1/2
 ζ

-3
dζ    = nπ(r*/a)/α       (10) 

ζmin 

whereα is the fine structure constant and so π/α = 430.4. Because the classical electron radius r*and the 

equilibrium radius a can be arranged to be equal the right hand side of equation (9) is large compared to unity 

for n>0. Equation (10) allows determination of the discrete values of Λ as n is systematically increased. 

However there is a finite number of “eigenvalues” for Λ with increasing n because using equation (10) to find 

acceptable values of Λ implies that when the values are used in equation (7) the oscillation time will eventually 

exceed 2π/α so that the oscillations would, if existent, require M<m which is not allowedphysically. 

 The evaluation of Λ eigenvalues satisfying the Bohr-Sommerfeld condition of equation (10) is complex 

because of the high degree of nonlinearity involving not onlyΛ directly in equation (10) but also through the 

dependence of the integral limits on Λ. It is not at all obvious that one obtains increasing Λ values as n is 

increased. 

Simplification can be obtained although it would seem that the integrals for momentum and oscillation time 

must still be done numerically. 

Following Richards (1959) define an auxiliary parameter φand determine Λ from φ by 

cosφ = −(3/Λ)
3/2         

(11) 

SoasΛvariescontinuouslyfrom3to∞,φdecreasesmonotonicallyfromπtoπ/2.  

Thenthethreerealrootsofζ3−Λζ+2=0 are(k=1,2,3) 

ζk=2(Λ/3)
1/2

cos( (φ+2πk)/3)       (12) 

with k=2 and k=3 providing positive values. 

One can then use equation (12) to simplify numerical methods. In his article Dirac (1962) concentrated 

on only the oscillation quantization around the equilibrium state and is silent concerning the angular momentum 

quantization. The full nonlinear solution to the equation of motion, while allowing one to investigate both 

factors, leads to a dichotomy as is now shown. 

 Using just a simple Excel integration method (which could be improved of course should one consider 

it necessary) one first determines the value of M/m provided by the integral given in equation (7) and with the 

aid of equation (9). More precisely one determines the value of Λ in equation (7) that will yield the ratio M/m = 

206.8. The numerical result is M/m=206.9 with a corresponding value Λ=4.84.  

 However when this now fixed value for Λ is inserted into the equation describing balance of angular 

momentum one obtains a value of 3.15 which is not even close to the value 430.4 required by the Bohr-

Sommerfeld quantization. 

The converse procedure is also available. Start with the angular momentum quantization and determine 

the value of Λ that will yield the required value of 430.4. Numerically the simple Excel program yields a best 
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value of 431.2 with Λ= 47.2. When this fixed value is now substituted in the oscillation quantization demand 

one obtains M/m = 51.6 which is seemly far away from the muon to electron mass ratio of 206.8. 

In short: with just one of the two quantization conditions one can obtain a remarkably accurate fit to the 

measured values of 403.4 (angular momentum) or 206.8 (mass ratio for vibration frequency). However when 

both quantization conditions are invoked then there is, apparently, no common ground for a half way decent fit 

to both. 

 

Summary 

While the primary purpose of this paper wasto provide the general solution to the equation describing 

radial motion for a classical extensible model of an electron as formulated by Dirac(1962), it was also possible 

to use the general solution in a Bohr-Sommerfeld quantization scheme for both angular momentum and 

vibrations. One cannot satisfy both quantum requirements simultaneously but one can satisfy one or the other. 

Dirac considered only the vibration quantization in his article and was silent about the angular momentum 

requirement.  

Ignoring electron spin, radiation from vibrations  and dealing with a classical electron motion means 

that it is not entirely unexpected that one does not reproduce the observed behavior of the electron, muon and, 

perhaps, tau. It is encouraging that the nonlinear solution to the classical equation does allow one to reproduce 

exactly one of the quantization requirements. While the results given are a long way from providing a complete 

theory of electron behavior they do indicate that one should be more open to general solutions in attempts to 

describe electron extensibility. 
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Figure Captions 

Figure 1. Normalized electron radius: equilibrium at value ζ = 1. 

Figure 2. Normalized electron radius sketching the “turning points” for localized behavior. 

Figure 3.The oscillation time as a function of increasing Λ (panel 3a), the relative percentage of time the 

electron radius lies below the equilibrium value of ζ = 1 for increasing Λ (panel 3b), and the fraction of time the 

electron radius is greater than (less than) ζ = 1 as Λ increases (all values of Λ>3,panels 3c and 3d respectively). 

Figure 4.Values of ζmin and ζmaxfor increasing values of Λ. 

Figure 5.Sketch of the oscillation time versus the reach(ζmax–ζmin)showing an almost linear relation between the 

pair. 
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Figure 2. Normalized electron radius: equilibrium at value ζ = 1    
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Figure 4 

 

 
Figure 5 
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