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Abstract:  We investigate the critical properties of the Ising modelin two dimensions on non-local directed 

small-world networks  .The disordered system is simulated by applying forMonte Carlo updates heat bath and 

Wolff algorithms.We have calculated the critical temperature, as well as the criticalexponents  , 𝛾 𝑣 ,𝛽 𝑣 and 

1 𝑣  for several values of the rewiring probabilityP, We find that this system does not  belong to the same 

universalityclass as the regular two-dimensional ferromagnetic model. TheIsing model on non-local directed} 

small-world lattices presents in fact asecond-order phase transition with new critical exponentsdependent on p 

(0<p<1).  

Keywords: Ising Model, Small World,  probability, Magnetization, susctibility. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 24-09-2019                                                                           Date of Acceptance: 12-10-2019 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
The Harris criterion [1, 2] establishes that the relevance of the effect of quenched random disorder on 

the critical behavior of a physical system can be classified solely observing the specific heat exponent of the 

pure system, αpure. This criterion asserts that for αpure> 0 the quenched random disorder is a relevant perturbation, 

leading to different critical behavior than in the pure case. On the other hand, for αpure< 0 disorder is irrelevant 

and, in the marginal case αpure= 0 (like the d = 2 Ising model), no prediction can be made. There- fore, for the 

case of the Potts Model with 3 states in two dimensions, where αpure > 0, one would expect a universality class 

different from the non-random case. Pekalski, Herrero, and others authors [3{9] showed that the Ising model on 

a small-world (SW) network presents a phase transition well defined at a finite temperature. Silva et al. [10] 

presented simulations for the Potts model with q = 3 and 4 states on directed small-world networks (DSWN). 

The Potts model with q = 3 presented a second-order phase for rewiring probability p = 0.1, with exponent ratios 

𝛽 𝑣 = 0.24 5 and 𝛾 𝑣 = 1.5(1) . These exponents are different from the Potts model on a regular lattice, 

where αpure> 0, and for p = 0:9 they found a first-order phase transition. For q = 4 they have found a first-order 

phase transition for values of the rewiring probability p = 0.1 and = 0.9 that agree with the Harris criterion. Lima 

and Plascak [11] applying the Monte Carlo method with heat bath update algorithm investigated the critical 

properties of the two-dimensional spin-1/2 Ising and spin-1 Blume-Capel (BC) model on directed small- world 

lattices with quenched connectivity disorder. For both models, the critical temperature and the critical exponents 

were obtained for various values of the rewiringprobability p. They found that these systems do not belong to 

the same universality class as two-dimensional ferromagnetic models on regular lattices. In BC model, with zero 

crystal field (Δ= 0) interaction, on a directed small-world lattice presents a second-order phase transition for p < 

pc, and a first-order phase transition for p > pc, where pc≈ 0.25. For the spin-1/2Ising model, where αpure= 0, 

Fernandeset al. [12] showed that the exponents do no change in the undirected Small-World-Voronoi-Delaunay 

(SWVD) random lattice, but for directed SWVD random lattice the situation is quite different. For p < pc, we 

have a second- order phase transition and for p > pca first-order phase transition , where pc≈ 0.35. In addition, 

the calculated critical exponents for p < pcdo not belong to the same universality class as the regular two-

dimensional ferromagnetic model. Therefore both undirected and directed cases agree with the Harris criterion 

for αpure= 0. Recently, Ferraz et. al [13] studied the non-local directed small-world disorder effects in the three-

state Potts model. Their results are similar to those of Silva et al. [10] for the Potts model with q = 3. In the 

present work, we studied the spin-1/2 Isingmodel on DSWN with non-local interactions. We have calculated the 

critical temperature and the critical exponents 𝛾 𝑣 , 𝛽 𝑣 and 𝟏 𝒗   for several values of the rewiring probability 

p. In the next section we present the model and the simulation. The results and conclusions are discussed in the 

last section. 
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TABLE I. The critical exponents, for spin-1/2 on non-localDSWN with probability p. 𝛾 𝑣𝑚𝑎𝑥  

are the results from the maximum of the magnetic susceptibility. Error bars are statistical only. 
P 1 𝑣  𝛽 𝑣  𝛾 𝑣  𝛾 𝑣𝑚𝑎𝑥  

0.01 0:98(2)  0:352(20)  1:372(42)  1:371(34) 
0.05 1:09(5)  0:388(24)  1:205(8)  1:237(25) 
0.1 0:97(4)  0:448(7)  1:100(11)  1:153(22) 
0.3 1:06(3)  0:443(18)  1:118(16)  1:123(11) 
0.5 0:97(3)  0:440(7)  1:169(22)  1:167(8) 

 

II. Model And Simulation 
We consider the ferromagnetic spin-1/2 Ising model onDSWN by a set of spins variables Si = ±1 

situated on every site i of a square lattice with N = LxLsites were L is the side of square cluster. In this lattice, 

similar to Sanchez et al. [14], we start from a two-dimensional lattice consisting of sites linked to their 4 nearest 

neighbors by both outgoing and incoming links. Then, with probability p, we replace nearest-neighbor outgoing 

links by outgoing links to different sites chosen at random and provided the different site is neither the site itself 

nor any of its 4 nearest neighbors (local interaction). Afterrepeating this process for every outgoing link, we are 

left with a network with a density p of DSWN directed links. Therefore, with this procedure, every site will have 

the old number of outgoing links and a different random number of incoming links. The evolution in time of 

these systems is given by a heat bath andWolff dynamics with a probability Pi given by: 

 

𝑃𝑖 = 1  1 + 𝑒𝑥𝑝 2𝐸𝑖 𝑘𝐵𝑇    ,                                                                                                                          (1) 
 

where T is the temperature, kB is the Boltzmann constant, and Eiis the energy of the configuration obtained 

from the Hamiltonian: 

 

𝐻 = −𝐽 𝑆𝑖𝑆𝑗   ,                                                                                                                                                                                                                (2)

 𝑖 ,𝑗  

 

where the summation runs over all neighbor pairs of sites(including the nearest-neighbor and the non-local ones 

determined by the probability p) and the spin-1/2 variables Si assume values ±1. In the above Hamiltonian J is 

the exchange coupling. The spin-1=2 case on square lattices is well known in the literature [15, 16]. The 

simulations have been performed on different DSWN lattice sizes L = 10, 20, 30, 40, 80, 120 and 160 

comprising a number N = L
2
sites. For all system sizes quenched averages over the connectivity disorder are 

calculated by averaging over R = 50 independent DSWN lattices. For all simulations, we have started with a 

uniform configuration of spins. We ran 3x10
5
 Monte Carlo steps (MCS)per spin with 1.5x10

5
 configurations 

dis-carded for thermalization using a random-number generator [17].Here, we have employed the heat bath and 

Wolff algorithms, where for every 10 MCS of heat bath, we apply 1step of Wolff, and for every 10 MCS the 

energy and themagnetization per spin, e = E/N and 𝑚 =  𝑆𝑖 𝑁𝑖 𝑖 ,were measured, respectively. From the 

energymeasurements we can calculate the average energy, specific heatand energetic fourth-order parameter, 

given respectivelyby: 

 

 

𝑢 𝑇 =   𝐸  𝑎𝑣 𝑁  ,                                                                                                                                             (3) 
 

𝐶 𝑇 = 𝑇2𝑁  𝑒2 −  𝑒 2 𝑎𝑣  ,                                                                                                                                                                                  (4) 

 

B T = 1 −  
 e4 

3 e2 2
 

av

,                                                                                                                     (5) 

In the above equations <….> represents the averageof a time series and […]avrepresents the quench average. 

Similarly, we can calculate from the magnetization measurements the average magnetization, the susceptibility, 

and the fourth-order magnetic cumulant, 

 

𝑚 𝑇 =    𝑚   𝑎𝑣 ,                                                                                                                                               (6) 

 

χ =   TN   m2 −  m 2 av                                                                                                                                   (7) 
 

𝑈4 𝑇 = 1 −  
 𝑚4 

3  𝑚  4
 
𝑎𝑣

,                                                                                                                                (8) 
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In order to calculate the exponent ratios of this model,we apply finite-size scaling (FSS) theory. We then expect, 

for large system sizes, an asymptotic FSS behavior of the form: 

 

 

𝐶 = 𝐶𝑟𝑒𝑔 + 𝐿𝛼 𝑣 𝑓𝐶 𝑥  1 + ⋯ ,                                                                                                                          (9 ) 

   𝑚   
𝑎𝑣=𝐿−𝛽 𝑣 𝑓𝑚

 𝑥  1 + ⋯ ,                                                                                                                           (10) 

𝜒 = 𝐿𝛾 𝑣 𝑓𝜒 𝑥  1 + ⋯ ,                                                                                                                                        (11) 

where Creg is a regular background term, v, α, β and γ are the usual critical exponents, and 𝑓𝑖(𝑥) are FSS 

functions with: 

𝑥 =  𝑇 − 𝑇𝑐 𝐿
1 𝑣                                                                                                                                                    (12) 

 

being the scaling variable. The dots in the brackets[1 + …] indicate corrections-to-scaling terms. We have 

calculated the error bars from the fluctuations among the different realizations of. 

 

 
FIG. 1. (color online) Magnetization as a function of temperature for various lattice sizes with N = 100, 400, 

900, 1; 600,6; 400, 14; 400 and 25; 600 and rewiring probability p = 0:3. 

 

 
FIG. 2. (color online) The same as Figure 1 for order Binder cumulant as a function of temperature. 
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III. Results And Discussion 

By applying the standard heat bath and Wol_ algorithm to each of the R energy data we determine the 

temperature dependence of Ci(T), 𝜒𝑖 (T),..., i= 1,...,R. After the temperature dependence is determined for each 

realization, we can calculate the disorder average, e.g., C(T) = PTi=1 Ci(T)=R, and then determine the maxima 

of the averaged quantities, e.g., Cmax(Tmax) =maxTC(T). The variable R (= 50) represents the number of 

replicas in our simulations. 

 

 
FIG. 3. (color online) ln [Tc(L) - Tc] as a function of  L  for various values of  p. The solid lines are the best 

linear fits. 

 

In Figure 1, we show the behavior of the magnetizationversus temperature for different lattice sizes and 

rewiringprobability p = 0:3. From here on, we set J and kB tounity. One can see a typical behavior of a second-

orderphase transition. The critical temperature was estimatedby calculating the fourth-order Binder cumulant 

givenby eq. (8). It is known from the literature that thesequantities are independent of the system size and 

shouldintercept at the critical temperature [18]. In Figure 2 thefourth-order Binder cumulant is shown as a 

function ofT for several lattice sizes for the rewiring probability p =0:3. Taking the largest lattices we have Tc = 

3:018(5).To calculate U4 we note that it varies little at Tc, so wehave 𝑈4
∗= 0:293(4). One can see that 𝑈4

∗is 

di_erent fromthe universal value 𝑈4
∗~0.61for the Ising model on theregular d = 2 lattice. By following this same 

procedure,one can get the corresponding results for other values ofp. 

The correlation length exponent 1 𝑣 can be estimated from 𝑇𝑐 𝐿 = 𝑇𝑐 + 𝑏𝐿−1 𝑣 ,  where Tc(L) is the 

pseudocritical temperature for the lattice size L, Tc is the critical temperature in the thermodynamic limit, and b 

is a non-universal constant. In Figure 3 it is shown a plot of ln [Tc(L) - Tc] as a function of lnL for various 

values of p. One can clearly see that the exponent is, within the errors, independent of p, in agreement with 

universality ideas. The actual values of 1 𝑣 are shown in Table I. In order to go further in the present analysis 

we have also computed the modulus of the magnetization at the inflection point and the magnetic susceptibility 

at Tc. 

The Log-log plot of these quantities as a function of L are presented in Figures 4 and 5, respectively. A 

linear fit of these data gives 𝛽 𝑣  from the magnetization and 𝛾 𝑣   from the susceptibility. In addition, we 

plotted in Figure 6 the logarithm of the maximum value of the susceptibility 𝜒𝑚𝑎𝑥  as a function of lnL for 

several values of p. One can also see that the exponents 𝛽 𝑣  and 𝛾 𝑣   are also independent of p, as expected. 

They are different from 𝛽 𝑣 = 0.125 and 𝛾 𝑣   = 1.75obtained for a regular  d = 2 lattice, but obey hyper-

scaling relation (within the error bars) 

 

 

2
𝛽

𝑣
+

𝛾

𝑣
= 𝑑 ,                                                                                                                                                                                                (13) 

 

 

where d = 2. The numerical values of the ratio 𝛽 𝑣  and  𝛾 𝑣    are also shown in Table I.  
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FIG. 4. (color online) Log-log plot of the modulus of themagnetization at the inflection point (Tc) as a function 

of L. 

 

 
FIG. 5. (color online) Log-log plot of the susceptibility𝜒at Tc as a function of the logarithm of L. 
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FIG. 6. (color online) Log-log plot of the susceptibility maxima𝜒𝑚𝑎𝑥 as a function of the logarithm of L. 

 

In Figure 7, we display the data collapse for the magnetization, susceptibility and the Binder cumulant for p = 

0:01 (a, b and c) 0.1 (d, e, and f). In these cases, we see that the estimates of the critical exponent ratios 𝛽 𝑣  

and  𝛾 𝑣   are in good agreement for all lattice sizes. The same qualitative results are obtained for other values of 

p. 

 

 
FIG. 7. (color online) Data collapse of magnetization, susceptibility and Binder cumulant for various values of 

L and for p = 0:01 (a, b and c) and 0:1 (d, e and f). 
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IV. Conclusion 
Through numerical simulations, we have studied thespin-1/2 Ising model on DSWN with non-local 

interactions. We have calculated the critical temperature and the critical exponents ratios 𝛽 𝑣 ,  𝛾 𝑣   and 1 𝑣  for 

several values of the rewiring probability p. In summary, from the above results, there is a strong indication that 

the spin-1/2 Ising model on a non-local DSWN is in a different universality class than the model on a regular 

two-dimensional lattice. The exponents' ratio here esteemed are independent of p for p = 0.1; 0.3; and 0.5 and 

dependent on p for p = 0:01 and 0:05 whichare less than p = 1 and for both cases are different fromthe Ising 

model on regular d = 2 lattices. One possible explanation for this change in the universality can be ascribed to 

the influence of directed non local interactions that occur with the presence of p directed bonds [13]. 

However, we observe that the obtained exponents' ratio are independent of the facts of the interactions 

being local or non-local. We observe also that our results agree with the Harris criterion for DSWN.  
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