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Abstract: The density of states (𝐷𝑂𝑆) plays a very central role to determine how well something conducts, 

basically material conducts if there are many (𝐷𝑂𝑆) around the equilibrium chemical potential or Fermi Level. 

The aim of this paper is to adopt specific model of  (𝐷𝑂𝑆), because most physicist assume that they have the  

(𝐷𝑂𝑆) without discussing the  (𝐷𝑂𝑆) itself. This paper emphasized on discussing the  (𝐷𝑂𝑆) itself for the 

purpose to show where it comes from and how it could be modeled. The model used depends on solid state 

physics, the very complicated subject, where the solid is considered as a very complicated object. It is quite 

important to explain specifically the energy model to give the  𝐷𝑂𝑆  and relate it to the conductivity in diffusive 

conductors and then compare it to the Drude formula of conductivity to connect them up. Because of the nice 

feature of the ballistic conductance to describe the ballistic transport as well as the diffusive one, since both 

originate from the same viewpoint. Also, it is possible to express the ballistic conductance  𝐺𝐵 ,  in quantum 

form as; 

𝐺𝐵 = 𝑀𝑞2/𝑕 

Where, 𝑞 is the electron charge,  𝑕 is the Planck’s constant,  𝑀 is number of modes. 

From the above expression of the ballistic conductance, the number of modes (𝑀) can be expressed in either of 

the dimensions (1𝐷, 2𝐷, 3𝐷) respectively as; 

𝑀 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  1,
2𝑤

 
𝑕

𝑃
 

,
𝜋𝐴

 
𝑕

𝑃
 

2  
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I. Introduction 
The basic idea for explaining what is the density of states (𝐷𝑂𝑆), is by taking a hydrogen atom discrete 

levels spaced by few electron volts (𝑒𝑉), for large atoms and molecules energy levels get closer together, and 

for solids lots of energy levels are allowed to form a band. To discuss conductors made from hundreds of atoms, 

it is quite convenient to talk about the (𝐷𝑂𝑆) to tell how many states there are, in a given range of energy. 

Therefore, (𝐷𝑂𝑆) can be defined as the number of states per unit energy, given by the following relation; 

(𝐷𝑂𝑆)  = 𝑛/𝑞𝑉  (1) 

Where, (𝑛) is the number of the states.  (𝑞𝑉)  is the energy in electron volts. 

(𝐷𝑂𝑆) can be measured by photoemission experiments to hit the solid by an ultraviolet beam of light to 

see how much energy is required to knockout an electron from the solid. That energy is given by; 

𝐸 = 𝑕𝜈   (2) 

Where, (𝑕) is the Planck’s constant. (𝜈) is the light frequency. 

The suggested theoretical model is based upon the idea of the energy momentum relation, 𝐸(𝑃). 

Generally, an electron could have any momentum that corresponds to have any energy, in this case it is not clear 

to calculate the  𝐷𝑂𝑆 , because it is continuum without end, but an electron within a finite size solid can be 

relied on in this argument. Since all the momenta are not allowed, therefore, the discrete values of momentum 

inside the solid could have allowed values of (energy levels). This set of discrete momenta can be translated into 

discrete set of energies, which in turn can be translated also into density of states (𝐷𝑂𝑆), or into number of 

modes (𝑀) as well. For that purpose , usually, people start from Schrodinger equation to see something that 
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takes into account the wave nature of the electron, but not trying to go deep in quantum mechanics, it can be 

done in an elementary way by using the idea of DeBrogle wave length, after discretizing the momentum. 

 

II. The Model 
A relatively simple model was suggested, based on the idea of Energy -Momentum relationship 𝐸 𝑃 . 

Since 1930’s it well known from solid state physics, electrons in solids behave as if they are in vacuum, but with 

different energy-momentum relationship or with different mass known as the effective mass. 

The starting point with this model is 𝐸 𝑃 , or 𝐸(𝐾) relations to be plotted as a function of the 

momentum(𝑃), or (𝐾), their curves may be similar to the curves of the density of states 𝐷(𝐸) as a function of 

energy . Although 𝐸(𝑃) and 𝐷(𝐸) are totally different, because momentum is a vector and can point in any 

direction, either the positive or the negative  (𝑃) sides of the curve, while the density of states is an scaler value 

representing the number of levels per unit energy, so they stay at the positive side of the curve. 

In this model 𝐸 𝑃  relationship is assumed to be given from experiments or any other theory that the 

electrons are in the energy range of interest, and they behave as if they have a particular 𝐸 𝑃 . To obtain the 

 𝐷𝑂𝑆  from 𝐸 𝑃 , a function 𝑁 𝑃  should be defined to tell how many states there for the electrons are 

possessing all possible momenta up to a maximum value of  𝑃 . 𝑁 𝑃 could be defined as; 

𝑁 𝑃 = 𝐴𝑃𝜓    (3) 

Where, 𝜓  is number dimensions of the conductor used. 
 𝐴  is a constant, it takes different forms depending on the number of dimensions  𝜓 . 
The details of the constant  𝐴  need not to be known for the time being to combine 𝐸 𝑃  with 𝑁 𝑃  to get 

𝑁 𝐸 , where 𝑁 𝐸  is the number of energy states up to a maximum energy value  𝐸 , whose derivative is the 

density of states. 

Since 𝐸 𝑃  is known,  𝑃  can be eliminated to get the number of the energy states 𝑁 𝐸  for an energy value 

less than some value  𝐸 , where the density of states 𝐷 𝐸  will be given by; 

𝐷 𝐸 =
𝑑𝑁 𝐸 

𝑑𝐸
    (4) 

If the energy  𝐸  is increased by  𝑑𝐸 , extra states are added equal to the density of states 𝐷 𝐸 . To discretize 

the momentum,  𝜆𝐷  can be related to momentum  𝑃  by; 

𝜆𝐷 =
𝑕

𝑃
       (5) 

Where,  𝜆𝐷  is DeBrogle wavelength. 

 𝑕  is the Planck’s constant. 

 𝑃  is the momentum. 

For one dimensional conductor of length  𝐿 , only the following momenta are allowed; 

𝐿 = 𝑛  
𝑕

𝑃
       (6) 

The essence of this whole counting scheme, the way by which the states are counted, the length must be an 

integer  𝑛  times the wavelength  𝜆𝐷 =
𝑕

𝑃
  is called the period boundary conditions. Therefore, an electron 

can’t have any momentum other than certain values of  𝑃𝑛 . The imposed condition is that an electron with 

certain wavelength to fit into a box of length  𝐿 . 
To turn equation (6) around gives the spacing between allowed values of momenta as discrete multiples of 

 𝑕/𝐿 . 
2.1  For one dimensional conductor  𝟏𝑫 : 

 𝑃𝑛 = 𝑛  
𝑕

𝐿
     (7) 

So easily 𝑁 𝑃 can be found as; 

𝑁 𝑃 =
2𝑃

 
𝑕

𝐿
 

=  
2𝐿

𝑕
 𝑃 8  

 
The wave property of an electron possesses a wave number  𝐾 = 2𝜋/𝜆 , then; 

𝑃 = ħ𝐾   (9) 

Where, ħ is the reduced Planck’s constant (𝑕/2𝜋). 
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Equation (9) gives the particle duality, therefore the momentum (𝑝) and the wave number (𝐾) are related by the 

reduced Planck’s constant. (𝐾) is not more than an equivalent form of the momentum, 

𝐾 =
𝑃𝑛
ħ

=
𝑛  

𝑕

𝐿
 

ħ
= 2𝜋𝑛/𝐿 

 

2.2 For two-dimensional conductor (2D): 

The total number of states 𝑁 𝑃  in this case with the momentum happened to be less than  𝑃  is directly 

proportional to (𝑃2); 

 
 

Because each state occupies an area   
𝑕2

𝑊𝐿
 , then; 

𝑁 𝑃 =
𝜋𝑃2

 
𝑕

𝐿
  

𝑕

𝑊
 

=  
𝜋𝑊𝐿

𝑕2
 𝑃2    (10) 

Where, (𝐿) is the length in one direction, say  (𝑃𝑥). 

(𝑊) is the length in the other direction, say  (𝑃𝑦).  

2.3 For three-dimensional conductor  𝟑𝑫 :  
 Instead of an area as shown in the previous case, there will be a volume of a sphere this time, hence  𝑁(𝑃) is 

directly proportional to (𝑃3);  

 

Because each state occupies a volume of  
𝑕3

𝑊𝐿𝑍
 , then; 

𝑁 𝑃 =

4𝜋𝑃3

3

 
𝑕

𝑍
  

𝑕

𝐿
  

𝑕

𝑊
 

=  
4𝜋𝑍𝑊𝐿

3𝑕3
 𝑃3 =  

4𝜋𝐴𝐿

3𝑕3
 𝑃3    (11) 

Where, (𝑊𝑍 = 𝐴) is cross sectional area of each state. 

To collect all these relations together in single expression for 𝑁(𝑃) in the three cases 

(1𝐷, 2𝐷, &3𝐷)respectively; 

𝑁 𝑃 = (𝑃/𝑕)𝜓 (2𝐿, 𝜋𝑊𝐿,
4𝜋𝐴𝐿

3
)   (12) 

Therefore, equation (12) is an equivalent to equation (3), where  𝜓  is the number of dimensions, and 

all the bracketed factors stand for the constant  𝐴 , which goes in front of the general relation of equation (3) 

depending on the size  of the conductor under consideration. 

Using the periodic boundary conditions, the rule of counting the states 𝑁 𝑃  is given by equation (12) 

above. This rule does not include any energy momentum relation𝐸 𝑃 , it is just based on the idea of 

discretization of momentum using DeBrogle wavelength to fit in a box. 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjU0_-iwc_kAhWl2eAKHUBrCoUQjRx6BAgBEAQ&url=https://www.math24.net/circle-ellipse/&psig=AOvVaw0iD-fGJfnS6bgITeT6YHSN&ust=1568522849245441
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The model can be completed by introducing a very useful relation independent of any specific 𝐸 𝑃  
relation, valid for all types of 𝐸 𝑃  relations. This relation can be arrived to by differentiating  𝑁 𝑃  with 

respect to  𝑃 ; 
𝑑𝑁 𝑃 

𝑑𝑃
=
𝜓

𝑕𝜓
(𝑃) 𝜓−1  2𝐿, 𝜋𝑊𝐿,

4𝜋𝐴𝐿

3
  

=
𝑑𝑁 𝐸 

𝑑𝐸
.
𝑑𝐸

𝑑𝑃
= 𝐷 𝐸 . 𝑣 

Multiply both sides by  𝑃 ; 

𝑃
𝑑𝑁 𝑃 

𝑑𝑃
= 𝑃. 𝐷 𝐸 . 𝑣 

Therefore; 

𝜓.𝑁 𝑃 = 𝑃. 𝐷 𝐸 . 𝑣     (13)  
 

Equation (13) is the required basic relation independent of 𝐸 𝑃 , despite that,   
𝑑𝐸 𝑃 

𝑑𝑃
 is representing the 

velocity  𝑣  without any assumption how 𝐸 𝑃  looks like. 

 

III. Computations and Results 
The rule of counting the states 𝑁 𝑃  obtained from the model simply by fitting only the corresponding 

momentum into a box using DeBrogle wavelength, making no use of any energy momentum relation. By 

coupling 𝑁 𝑃  with the energy momentum relation 𝐸 𝑃 , the number of states 𝑁 𝐸  allowed in the energy 

range happened to be less than energy value  𝐸  can be found. 𝐸 𝑃  in general, could have many complicated 

forms of relations, and by eliminating  𝑃 , 𝑁 𝐸  will be given. The derivative of 𝑁 𝐸  with respect to  𝐸  
gives the density of states 𝐷 𝐸 . 

Assume an isotropic momentum, i.e. energy is the same for any momentum in all directions. In figure 

below the shaded area corresponds to certain energy values less than  𝐸 . 
 

 
If the momentum increased a little bit, correspondingly  𝐸  will increase by an amount  𝑑𝐸 , so we have 

slightly bigger circle, hence the number of states available are increased representing the density of states at that 

energy. 

Generally, 𝐸 𝑃  can be described by: 

𝐸 𝑃 = 𝐸𝑐 +  𝛽𝑃𝛼   (14) 

Where,  𝐸𝑐  is the bottom end of the band,  𝐸𝑐  varies with  𝑃   in a certain way.   𝛽  is an important constant, 

multiplied by  𝑃𝛼 , depending on  𝛼 ,  𝛽  varies with 𝑃  in a certain way. 

When parabolic bands are dealt with  𝛼 = 2, 𝛽 =
1

2𝑚
 , but it is better to keep equation (14) in its general form 

for the purpose of other 𝐸 𝑃  relations. From equation (14), the momentum  𝑃  is given as; 

𝑃 =  
𝐸 𝑃 − 𝐸𝑐

𝛽
 

1

𝛼

  (15) 

Eliminate  𝑃 by substituting equation (15) in equation (3) to get 𝑁 𝐸 , 

𝑁(𝐸) = 𝐴  
𝐸 𝑃 − 𝐸𝑐

𝛽
 

𝜓

𝛼

  (16) 
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The general expression of the density of states 𝐷 𝐸 ,depends on the number of dimensions  𝜓  and the factor 
 𝛼  which describes how the 𝐸 𝑃  relation varies with the momentum. 

𝐷 𝐸 =  
𝜓𝐴

𝛼
  

1

𝛽
 

𝜓

𝛼

 𝐸 𝑃 − 𝐸𝑐 
 
𝜓

𝛼
−1    (17) 

To apply these results for specific case, the most common one is the parabolic band, where   𝛼 = 2 : 
3.1 For one dimensional conductor  𝟏𝑫 : 
 𝛼 = 2, 𝜓 = 1 , therefore; 

𝐷 𝐸 ∿ 𝐸 𝑃 − 𝐸𝑐 
−

1

2 

𝐷 𝐸  can be represented by the following figure; 

 
The figure has a singularity right near the band edge  𝐸𝑐 with energy.  

3.2 For two-dimensional conductor  𝟐𝑫 : 
 𝛼 = 2, 𝜓 = 2 , therefore; 

𝐷 𝐸 ∿ 𝐸 𝑃 − 𝐸𝑐 
0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  

ψA

αβ
  

 
3.3 For three-dimensional conductor  𝟑𝑫 : 

 𝛼 = 2, 𝜓 = 3 , therefore; 

𝐷 𝐸 ∿ 𝐸 𝑃 − 𝐸𝑐 
1

2 

 
 

Comments 
There are many popular materials such as the graphene where energy momentum relation 𝐸 𝑃 , can take a 

linear relationship with  𝑃 ; 
𝐸 𝑃 = 𝑉0𝑃

𝛼  

𝑃 =  
𝐸

𝑉0

 
1/𝛼

 

Where,  𝛼 = 1  for graphene, so 𝐸 𝑃  can be combined with the rule of counting states 𝑁 𝑃  to obtain 𝑁 𝐸  
by eliminating the momentum  𝑃 ; 

𝑁 𝑃 = 𝐴𝑃𝜓  

𝑁 𝐸 = 𝐴  
𝐸

𝑉0

 

𝜓

𝛼

 

𝐷 𝐸 =
𝑑𝑁 𝐸 

𝑑𝐸
=  

𝜓𝐴

𝛼
  

1

𝑉0

 

𝜓

𝛼

𝐸 
𝜓

𝛼
−1 

 

Instead of the parabolic 𝐸 𝑃 relationship, it is linear now and all the above results will change to another shapes 

as follows; 

 

 

 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiQhoWb7NLkAhVVDmMBHVZFDfQQjRx6BAgBEAQ&url=http://electrons.wikidot.com/density-of-states&psig=AOvVaw0ABHV3UasRBwNi7m_LLc09&ust=1568637489507296
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiQhoWb7NLkAhVVDmMBHVZFDfQQjRx6BAgBEAQ&url=http://electrons.wikidot.com/density-of-states&psig=AOvVaw0ABHV3UasRBwNi7m_LLc09&ust=1568637489507296
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiQhoWb7NLkAhVVDmMBHVZFDfQQjRx6BAgBEAQ&url=http://electrons.wikidot.com/density-of-states&psig=AOvVaw0ABHV3UasRBwNi7m_LLc09&ust=1568637489507296
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Conductor size ψ α Density of the state’s relationship Shape 𝐷 𝐸 ⌵𝐸 

1D 1 1 𝐷 𝐸 ∿ 𝐸 0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Step function  

2D 2 1 𝐷 𝐸 ∿E Straight line 

3D 3 1 𝐷 𝐸 ∿ 𝐸 2 Parabola 

 

The energy momentum relationship can be more complicated than that, it could have been in relativistic form, 

where energy is the square of some constant and some (𝑃2); 

𝐸 𝑃 = (𝐸𝑔
2𝑉0

2𝑃2)
1

2 

In this case we can’t use the relation; 

𝐷 𝐸 =  
𝜓𝐴

𝛼
  

1

𝛽
 

𝜓

𝛼

 𝐸 𝑃 − 𝐸𝑐 
 
𝜓

𝛼
−1 

 

Energy momentum relation 𝐸 𝑃  and 𝑁 𝑃  should be taken to find 𝑁 𝐸 , then the derivative of   
𝑑𝑁 𝐸 

𝑑𝐸
 , is 

taken to get 𝐷 𝐸 . 
The rule of counting the number of states 𝑁 𝑃 , can be used to obtain an expression for the number of modes 

𝑀 𝐸 , at the same time the number of modes 𝑀 𝐸  can be related to the ballistic conductance  𝐺𝐵  given by; 

𝐺𝐵 = 𝑞2𝐷  
⊽

2𝐿
  

Where, 𝑞 is the electron charge.   𝐷 is the density of states. 

⊽ is the average velocity,  𝐿 is the conductor (channel) length. 

The average velocity  ⊽ , involve some numerical factors depending on the number of dimensions. 

𝐺𝐵 =
𝑞2𝐷𝑉

2𝐿
 1,

2

𝜋
 ,

1

2
     (18) 

Where,   𝑉  is the maximum velocity to be averaged according to number of dimensions. 

 The quantity  
⊽

2𝐿
 ,  is called the density of modes, defined as the number of modes 𝑀 𝐸  divided by the 

Planck’s constant; 

 
⊽

2𝐿
=
𝑀 𝐸 

𝑕
  

The density of modes is the material property, which has special significance. 

From equation (18) above the ballistic conductance can be expressed in quantum form as; 

𝐺𝐵 = 𝑀𝑞2/𝑕 
 

Then; 

𝑀 𝐸 = 𝑕
𝐷𝑉

2𝐿
 1,

2

𝜋
 ,

1

2
       (19) 

If an expression for the density of states𝐷 𝐸  is at hand, it can be multiplied by the velocity to find the number 

of modes 𝑀 𝐸 , alternatively the general relation given by equation (13) can be introduced in the model, 

namely; 

𝜓.𝑁 𝑃 = 𝑃. 𝐷 𝐸 . 𝑣 
Then,  

𝐷 𝐸 . 𝑣 =
𝜓.𝑁 𝑃 

𝑃
 

Substitute in equation (19) above to get; 

𝑀(𝐸) =
𝜓.𝑁 𝑃 𝑕

2𝑃𝐿
 1,

2

𝜋
 ,

1

2
  

Bring in 𝑁 𝑃  from equation (12), and with a little algebra and rearrangement; 

𝑀 𝐸 =  
𝑃

𝑕
 
 𝜓−1 

 1,2𝑊, 𝜋𝐴  

This result gives totally different interpretation if rewritten in a different way by taking the factor  
𝑃

𝑕
 
 𝜓−1 

 into 

the bracket 

𝑀 𝐸 =  1,
𝑊

 
𝑕

2𝑃
 

,
𝜋𝐴

4  
𝑕

2𝑃
 

2  

𝑀 𝐸 =  1,
𝑊

 
𝜆

2
 

,
𝜋𝐴

4  
𝜆

2
 

2       (20)   
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 Therefore, the number of modes physically equal to (one) for (1D) conductor, (2D) conductor tells 

how many wavelengths of De-Broglie fit into the width, and (3D) conductor tells how many DeBrogle 

wavelengths fit in either direction of the cross-sectional area. 

Note the word mode originates from the same idea of the electromagnetic wave guides when the 

transverse modes for electromagnetic wave guides need to be determined. 

An important consequence of equation (20), if multiplied by the constant value   
𝑞2

𝑕
 , gives the ballistic 

conductance  𝐺𝐵 . Since the number of modes 𝑀 𝐸 , is directly proportional to the width  𝑊 , or the cross-

sectional area  𝐴  of the conductor, this has been observed in 1970’s, and it is sometimes called Shaven 

resistance; 

 

 
 

In 1990 a very important development took place, that is in small devices with   very small cross 

sections, where the number of modes in the order of ten to twenty thousands, it was observed that the ballistic 

conductance takes a quantized form rather than go linearly with  𝑊, 𝑜𝑟𝐴 , it goes in steps (see figure below);      

 

 
 To understand the phenomena, 𝑀 𝐸  is not exactly equal to the bracketed quantities in equation (20), 

if any of the bracketed quantities happened to be a rational number, it should be a whole positive number, 

because the number of modes is given by how many states available in that width or cross sectional area, 

therefore the correct expression should be the integer part of either of them. When 𝑀 𝐸  is small and  𝐺𝐵  is 

quantized, 𝑀 𝐸  should be an integer value of the quantities bracketed in equation (20); 

𝑀 𝐸 = integer  1,
𝑊

 
𝜆

2
 

,
𝜋𝐴

4  
𝜆

2
 

2  

But normally no care attention is given to that when 𝑀 𝐸  is large enough in the order of thousands 

and more, because it makes no difference if it is (1000 or 1001). Since this big number causes the steps to be 
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very close together, it needs to be averaged with  −𝜕𝑓/𝜕𝐸  factor over an energy range  𝐾𝑇 . The steps 

smoothed out at higher temperatures; with low temperatures the phenomenon is very well established with 

conductors of small cross sections. This was first seen in semiconductors like  𝐺𝑎𝐴𝑠 , since then people see it in 

all kinds of materials even in hydrogen molecules. 
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