
IOSR Journal Of Applied Physics (IOSR-JAP) 

e-ISSN: 2278-4861.Volume 12, Issue 2 Ser. II (Mar. – Apr. 2020), PP 01-07 

www.Iosrjournals.Org 

DOI: 10.9790/4861-1202020107                            www.iosrjournals.org                                                   1 | Page 

 

Study of frictional ratchet where asymmetry arises due to the 

phase difference between the periodic friction coefficient and the 

periodic potential considering the movement of Brownian 

particles 
 

Dipak Nath
1
, B. Dutta

2
, B. Dkhar

3
, Pokjum Yomjam

4
 and D. Kharkongor

5  

1 
Assistant Professor, Department of Physics, Sao Chang  College, Tuensang, Nagaland, 798612, India 

2 
Assistant Professor, Department of Physics, Sibsagar Girl’s College, Sivasagar, Assam,785640, India 

3 
Assistant Professor, Department of Physics, Lady Keane College, Shillong, Meghalaya,793001, India 

4 
Assistant Professor,

 
Department of Physics, J.N. College, Pasighat, Arunachal Pradesh,791103, India 

5 
Assistant Professor, Department of Physics, St. Anthony’s College, Shillong, Meghalaya, 793001, India 

Corresponding Author:-Dipak Nath 

 

Abstract:- Noise has been usually considered to be a hindrance for quite some time. However, in the last two 

decades of the last century, its beneficial aspects have been rigorously studied. In this paper I have presented a 

special form of noise – thermal noise. The dynamics of a Brownian particle suspended in a heat bath (which 

acts as a source of thermal noise) at some temperature is considered. Under equilibrium conditions, the 

observance of directed transport or the so called ratchet effect is excluded. However, in a non-equilibrium 

situation, the Brownian particle exhibits ratchet effect if the medium in which it undergoes motion offers 

asymmetry. As a result of this, various forms of ratchets have been proposed. Here, I write up one form of a 

ratchet (inhomogeneous frictional ratchet) where the asymmetry arises due to the phase difference between the 

periodic friction coefficient and the periodic potential where the Brownian particle moves. This simple model is 

found to approximately mimic many real systems like molecular motors moving along microtubules and also 

systems that can be designed artificially.  
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I. Introduction 
Nature manifests itself in sublime ways and one of its manifestations is in its beneficial application of 

noise. Usually noise is normally thought of as a nuisance - as a destructive interference in signal detection and a 

hindrance in transmission of information. For example, one-to-one conversation in a crowded room, difficulty 

in focusing when the mind is interrupted by various thoughts and inability of cell phone network detection due 

to unfavorable weather conditions, all just tending to eclipse and obscure the desired information. However, 

over the past thirty years or so, a wide range of studies in a variety of systems - climatic models [1, 2], 

electronic circuits [3], neurophysiologic systems [4, 5, 6, 7], perceptual systems [8, 9, 10] - to name a few, have 

shown that noise may indeed enhance signal detection and transmission. Its essential role in physical processes 

was pioneered by Smoluchowski [11] in 1912. In fact it was because of the random jittery motion of a 

suspended particle (Brownian particle) in a colloidal solution, first officially recorded by the Botanist Robert 

Brown [12], and then theorized by Einstein [13], that was led to the confirmation that matter has an underlying 

microscopic structure within it. In other words, the Brownian particle was undergoing motion in a noisy 

environment. Physically, noise is used to describe fluctuations about the mean deterministic stationary value of 

a physical quantity. From the mathematical viewpoint, noise is a random variable whose values fluctuate 

unpredictably in time. Nonetheless, it should have well-defined properties like the mean, correlation and the 

other moments. This means that although the random variable by itself can take different values for each of its 

“realizations”, its statistical properties however must remain constant. There is a large literature on the different 

kinds of noise that can arise in physical and physiological systems [14, 15]. In this review we focus mainly on 

one type of noise -thermal noise (also known as Johnson-Nyquist noise) -fluctuations that are ever present in 

any system due to its non-zero absolute temperature.  

The main motivation for studying noise induced processes is in the domain of cellular motion and 

transport, especially molecular motors which aid the motion of proteins along periodic structures called 

microtubules by converting ATP into mechanical work [16]. The idea of constructing machines on an atomic 
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scale was first discussed by Feynman in his talk on December 1959 [17]. Although not in the atomic scale, his 

dreams now seems to be a reality with the fabrication of molecular machines first developed by a French group 

led by Sauvage [18], Stoddart [19] and Feringa [20] who were eventually awarded with the Nobel Prize in 

Chemistry in 2016 [21]. Thermal fluctuations which can be safely ignored for the motion of macroscopic 

objects cannot be swept aside for microscopic objects like molecular machines. Thermal forces and viscous 

forces due to Brownian motion are more conspicuous and these small machines must either exploit the effects 

of thermal noise or otherwise overcome them altogether. Nature has provided a host of small machines, both 

linear and rotary, in the background of thermal noise. These natural biological machines perform their functions 

with remarkable efficiency and accuracy [22] and can thus serve as a guide for scientists who aim to design 

such artificial machinery.  

a spool that was attached to a load. The whole setup was enclosed by a gas at thermal equilibrium, say 

Under non-equilibrium conditions, the cooperation of noise with nonlinearity can be seemingly 

counterintuitive. Numerous theoretical, numerical and experimental works reveal that there are a plethora of 

non-equilibrium systems which use noise as a driving force. Some of these phenomena are noise-induced 

transitions [15, 23], coherence resonance [24], noise-induced transport in ratchets [25, 26], resonant activation 

[27], noise-induced pattern formation [28] and stochastic resonance [1, 29]. This classification is by no means 

exhaustive. In this review, we focus only on the phenomenon of ratchet effect. Below we give a simple 

description of this phenomenon. 

The concept of ratchet effect has dated many centuries back with the works of Archimedes, Seebeck, 

Maxwell, Curie, and others [26]. But the thought experiment by Smoluchowski [11] happens to be the first 

major contribution in this field. This was then popularized and extended some fifty years later by Feynman and 

was put as a chapter in his celebrated lectures on Physics [30]. The main idea was this: under isothermal 

conditions, it is impossible to rectify unbiased random fluctuations to generate directed transport for a 

microscopic system despite the presence of any intrinsic or fabricated asymmetry. We describe this thought 

experiment below in the same spirit as that of Feynman. 

As shown in Fig. 1, a ratchet and pawl device was considered to be connected to the vanes by an axle. 

Halfway along the length of the axle was considered at temperature ’T’. The gas molecules undergoes 

Brownian motion and on doing so will hit the vanes which will in turn rotate the ratchet (inherently 

asymmetric) either clockwise or anti-clockwise. The purpose of  

 

 
Fig.1: A ratchet and Pawl device 

 

this setup is to allow the ratchet to rotate either clockwise only or either anti-clockwise only and if it were 

supposed to rotate in both directions then the pawl must forbid such a scenario. So if the ratchet system can 

rotate say clockwise only (according to the diagram), then it may be able to lift the load, which in turns 

increases the potential energy of the load thus enabling the ratchet to perform work even though the load were 

applied in a direction opposite to the direction of the rotation of the ratchet. Looking at such a scenario, it seems 

quite possible and convincing enough that a net transport has occurred by rectifying Brownian motion. But 

knowing how natural systems behave at equilibrium, we know that such a process does not occur otherwise the 

gadget would end up violating the Second Law of Thermodynamics. What needs to be examined properly here 

is the working of the pawl which closely resembles a sort of Maxwell’s Demon [31]. It is important to stress 

that such a gadget was thought of to take place in the microscopic domain and the pawl itself must be extremely 

microscopic in order to allow a clockwise rotation only. But since the pawl is microscopic, it itself will also be 

subjected to undergo Brownian motion. So when if lifts itself up, it surely will not be in a position to prevent 

the ratchet from rotating anti-clockwise. Such kind of instances will on the average be anti-clockwise and hence 
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overall the gadget will prefer no net rotation thus keeping the Second Law intact. Since this device was initially 

thought of by Smoluchowski and later popularized by Feynman, it was called after them as Smoluchowski-

Feynman ratchet. Later this ratchet was experimentally realized on a molecular scale [32, 33, 34, 35]. Feynman 

however extended that the gadget may prefer a certain direction only if the gas molecules surrounding the vanes 

and those surrounding the ratchet and pawl are at different temperatures. Such a device is now under the 

domain of non-equilibrium thermodynamics since the isothermal condition is no longer kept. This device is 

named only after Feynman as the Feynman ratchet. So in perspective, directed transport in spatially periodic 

systems under isothermal conditions may occur only if the system were to be driven away from equilibrium by 

adding either a deterministic or a stochastic perturbation or in the presence of temperature gradients. In this 

review, we put a write up only of the effects of a co-sinusoid on a multi-stable periodic potential system at 

constant temperatures. But despite breaking thermodynamic equilibrium on periodic systems, the principle of 

detailed balance will still prevent a net transport to occur if the potential is symmetric. So an additional criterion 

to be realized is the breaking of this symmetry. This can be carried out either by introducing an asymmetric 

forcing of zero mean per period or by driving with a symmetrical force but introducing in homogeneities in the 

medium as in the form of friction. Following the above aforementioned criteria, many variations of ratchets 

have been proposed, developed and experimentally realized [26, 36, 37, 38]. All these proposed ratchets can be 

clubbed together into two basic classes: pulsating ratchets and tilting ratchets. In pulsating ratchets, the 

perturbation varies the shape of the potential without affecting its periodicity. In such ratchets there may be 

cases where the particles need not surmount any potential barriers, yet noise is indispensable to generate current 

in such models. Pulsating ratchets are further divided into two basic forms: fluctuating potential ratchets (on-off 

ratchets or flashing ratchets) and travelling potential ratchets. Tilting ratchets on the other hand are those for 

which the perturbation changes the average slope of the potential keeping in mind that the average of the 

perturbation over a period is zero. When the potential is of the form of a ratchet potential and the perturbation is 

symmetric, the tilting ratchet is called a rocking ratchet. However a tilting ratchet is called an asymmetric tilting 

ratchet when the potential is symmetric but the perturbation is asymmetric (zero mean over a period). Another 

variant of a tilting ratchet could be by varying the friction of the medium which could be done either spatially 

or temporally. Here, both the potential and the perturbation may be symmetric but symmetry breaking is 

realized by considering a similar symmetric friction coefficient which is out of phase with respect to the 

potential. Such variants of the tilting ratchet scheme are called inhomogeneous ratchets or frictional ratchets. In 

this short review, we only put a write up about frictional ratchets and the essential idea of how they work. 

 

II. Frictional Ratchets: Modelling And Working 
 Frictional ratchets mentioned in this review are usually modeled by studying the motion of an 

ensemble of non-interacting Brownian particles, each of mass m, moving in a periodic potential 𝑉(𝑥)  =
 −𝑉0𝑠𝑖𝑛(𝑘𝑥) coupled to a heat bath at temperature T. This heat bath acts as a source of thermal noise 

represented by ξ. Moreover, the medium in which these particles move is inhomogeneous. An inhomogeneous 

medium is a medium where the friction coefficient 𝛾 𝑥  offered by it is also periodic in nature as the 

potential 𝑉(𝑥). The friction coefficient is taken to be of the form of 𝛾 𝑥 =  𝛾0 1 − 𝜆 sin 𝑘𝑥 +  𝜃  . Clearly, 

both the potential and the friction coefficient are sinusoidal in nature but have a phase difference 𝜃 between 

them. Fig. 2 shows a typical plot comparing the potential and the friction coefficient with a phase difference 

between them. This phase difference introduces the necessary asymmetry in the system. The quantity 𝛾0 is the 

average value of the friction coefficient for one period, λ is the in homogeneity parameter and it specifies the 

strength of the friction coefficient, 𝑉0 is the amplitude of the potential and k is the wave number. The non-

equilibrium condition in this problem is introduced by driving the system with a periodic forcing of the 

form 𝐹 𝑡 =  𝐹0cos⁡(𝜔𝑡), where 𝐹0 is the amplitude of the forcing with driving frequency 𝜔 (or driving 

period 𝜏 =  
2𝜋

𝜔
). The one – dimensional equation of motion of one such Brownian particle is given by the so 

called Langevin equation as 

𝑚
𝑑2𝑥

𝑑𝑡 2 =  −𝛾 𝑥 
𝑑𝑥

𝑑𝑡
+ 𝐹 𝑡 −  

𝑑𝑉(𝑥)

𝑑𝑥
+   𝛾 𝑥 𝑇𝜉(𝑡). 

The first term in the RHS of the above equation refers to the damping force as given by Stoke’s Law [39], the 

second term is the periodic force, the third term is the gradient of the potential and    
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Fig. 2: The curve with unbroken lines represents the potential V(x) and the broken line represents 𝛾 𝑥 . The 

horizontal lines denote the corresponding average value per period. Here, 𝜃 = 0.75𝜋. 

 

the last term represent the random forces (noise) at temperature T. Due to the presence of the periodic force, an 

effective potential 𝑈 𝑥 =  𝑉 𝑥 −  𝑥𝐹(𝑡), is manifested into the system. The periodic force not only tilts the 

potential but also changes the barrier height. This is shown in Fig. 3 below. 

 

 
Fig. 3: The middle curve is the potential V(x) which gets tilted at different times of the forcing F(t). For clarity 

we have chosen F0= 0.5. 

 

Due to the form of the potential and the frictional coefficient, analytical methods of solving such an 

equation have not yet been developed. Thus numerical methods are resorted to solving. The dimensionless form 

[40] of the equation (by setting 𝑚, 𝑉0 and 𝑘 = 1) is usually solved numerically, say by Heun’s method, for n 

Brownian particles and then ensemble averaging is done. In this review, we consider the case where the system 

is under damped (𝛾0 <  𝜔). Though over damped approximations have been earlier studied extensively [22, 41, 

42], yet the results presented when inertia is taken into consideration [43, 44] are also shown to be different and 

interesting in contrast to their over damped counterparts.  

 Fig. 4 shows a plot of ratchet current < 𝑣 > as a function of noise strength T (temperature) for a 

typical under damped system (the symbol <...> represent ensemble averaging carried over n Brownian 

particles). The values of the parameters taken are described in the caption of the figure. In Fig. 4, it is seen that 

as temperature is increased, the system generates a current in the negative direction (along –X axis). For every 

value of temperature considered, the error bars over the velocity has also been shown.  
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Fig. 4: Here the parameters taken are 𝜃 = 0.5𝜋, 𝜆 = 0.9, 𝛾0 = 0.07, 𝜏 = 7.7, 𝐹0 = 0.2. 

 

In Fig. 5, we give a brief plausible explanation of how the system generates a current leftwards for the 

parameters considered. It may be mentioned here that since taking 𝛾0 = 0.07, 𝐹0 = 0.2, the clarity of the graph 

may be reduced, so instead 𝛾0 = 1.0 , 𝐹0 = 0.5 is taken without compromising the working of the ratchet. 

 

 
Fig. 5: Variation of 𝑉 𝑥 , 𝑈 𝑥 , 𝛾(𝑥) as a function of 𝑥. Here, 𝜃 = 0.5𝜋, 𝜆 = 0.9, 𝛾0 = 1 with 𝐹0 = −0.5 in (a) 

and 𝐹0 = 0.5 in (b). 

 

Let us consider Fig. 5a where the forcing tilts the potential with positive slope thus generating an 

effective potential U(x) as shown in the figure. On traversing U(x) from A to B (rightward) and from C to B 

(leftward), it is seen that the potential barrier rightward is much larger in comparison to that of leftward motion. 

Moreover, it is seen from the figure that the average friction (bold curve and bold- dotted curve) from A to B is 

also larger than that from C to B. Also, since U(x) tilts with positive slope, it is preferable for the particle to 

move leftwards. 
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Now let us consider Fig. 5b where the forcing tilts the potential with negative slope thus generating an 

effective potential U(x) as shown in the figure. On traversing U(x) from A to B (rightward) and from C to B 

(leftward), it is seen that the potential barrier rightward is much smaller in comparison to that of leftward 

motion. Moreover, it is seen from the figure that the average friction (bold curve and bold- dotted curve) from 

A to B is larger than that from C to B.  

Summarizing the above two scenarios, we see that:  

a) When potential is tilted with positive slope: 

Rightwards: potential barrier is large and so is average friction 

Leftwards: potential barrier is small and so is average friction 

b) When potential is tilted with negative slope: 

       Rightwards: Potential barrier is small but average friction is large 

 Leftwards: Potential barrier is large but average friction is small 

Thus, on an average the Brownian particles prefer small potential barrier to surmount with smaller average 

friction being offered by the medium so that mobility is enhanced. Thus, in such a case, it is understandable that 

the average displacement is leftwards.  

  

III. Systems With Space-Dependent Friction 
At a glance, it appears as though systems having space-dependent friction are artificial but they do 

actually occur in nature especially in biological systems, for example molecular motors moving along the 

periodic structure of microtubules experience space-dependent friction [45]. Also, in Josephson junctions the 

equation of motion have terms analogous to space-dependent friction [46] and the motion of ad atoms on the 

surface of a crystal of identical atoms have been justified by the mode-coupling theory that friction is 

periodically varying [47]. Systems with space dependent friction can also be designed artificially. For example, 

the case of Brownian motion in confined geometries [48] where the experimenters studied the diffusion of silica 

spheres (between 10
-6

 m and 3 x 10
-6

m in diameter) diluted and subjected to ultrasonic vibrations in ultrapure 

water confined in a glass chamber. Fine wires with diameters ranging from 6 to 100 micrometer were used as 

spacers thus mimicking the periodic potential. On calculating the diffusion coefficient of the silica spheres, a 

deviation from the usual Stoke-Einstein law was observed.   

 

IV. Conclusion 
I presented above a short article on a class of ratchet – the frictional ratchet. In order to obtain a net 

current, it is important to drive the system out of equilibrium in conjunction with asymmetry. Here, the 

asymmetry is obtained by introducing a phase difference between the periodic potential and the friction 

coefficient whilst the non-equilibrium condition arises by driving the potential with a periodic force. In such 

ratchets noise plays an important role whereby it assists the particles to surmount the potential barriers. A 

plausible explanation of how this ratchet works has also been written in the text. A possible application of such 

a ratchet is in separation of micro sized particles having different diffusion constants. Much of the work on 

these ratchets is still left to be researched. For example, the quantitative behavior of the magnitude of average 

velocity with particle of different masses is still unexplored. 
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