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Summary 

In this work, we wanted to know the behavior of the soils, near the thermal springs, in Kankule in Katana in South 

Kivu, in terms of heat transfer. We then aimed to determine first the exact solution of the Fourier equation. Then 

find the constants involved in the geotherms of each site of our study. Also deduce the temperature gradient, for 

each site, starting from the geotherm of the place. Finally, make a projection of the type of geothermal energy 

that can be used on each site. To do this work, we then sampled the soil, thermal water and air temperatures at 

14 kankule sites that we had identified. This from 2010 to 2014, from 6 a.m. to 2 p.m., three times a week. Soil 

and water samples taken by site, we made analyzes of the physical and chemical properties of the soil and water 

of each site. We then made an analytical resolution of the one-dimensional Fourier equation. Thanks to statistical 

methods, we were able to determine the damping coefficients "d" intervened in each geotherm as well as the 

coefficient of thermal diffusivity α. Combining the analytical and statistical method, we were able to find the 

distribution of the temperature gradient for all sites, and the maximum gradient for each site. Finally, we 

compared the average kankule gradient of 11.7 ° C per 100 meters to the global thermal gradient of 3.3 ° C per 

100 meters. This comparison was made in order to see between low, medium or high energy geothermal energy, 

which could be exploited in Kankule. The exact solution of the Fourier equation we had obtained is T = T (z, t) = 

𝑇𝑎 + 𝐴0𝑒−
𝑧

𝑑 sin [ 
2𝜋(𝑡−𝑡0)

365
  -  

𝑧

𝑑
 + 

3𝜋

4
 ] . From this geotherm we found the thermal gradient given by grad (z, t) = - 

√2
𝐴𝑜

𝑑
𝑒− 

𝑧

𝑑 cos ( 
2 𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
  + 

𝜋

2
 ), in general. The differences stand out with the various values of the constants 

of the geotherm. The average gradient of any Kankule found is 11.7 ° C per 100 meters. A gradient 3.5 times 

greater than the global average thermal gradient. Exploiting such a gradient per site, we can exploit different 

geothermal energy in Kankule: low, medium and high energy, as indicated in the table by Lindal, accepted by the 

Bureau of Geological and Mining Resources (BRGM, in acronym) 

Keywords: Geothermal or Integral curve and Geothermal gradient 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 13-05-2020                                                                           Date of Acceptance: 25-05-2020 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Literature Review 
The problem of the electric energy deficit in the DRC is becoming a recurring problem which the 

National Electricity Company "SNEL" is facing to serve its customers [SNEL, March 29, 2018]. This had led the 

Congolese parliament to vote on May 13, 2013 on the article on the liberalization of the electricity sector. But the 

problem remains, because SNEL still retains a monopoly in the marketing of electrical energy, and its services 

suffer from the numerous load shedding observed to date. Despite that the DR Congo has a high hydroelectric 

potential, as Jolien Schure et al. [2011]. Thus the dam like Inga operates only at 40% of its capacity, and most of 

its production is exported instead of serving national needs. In addition, the National Electricity Company (SNEL) 

is experiencing great difficulties in maintaining facilities for the production, transport and distribution of 

electricity. The rate of access to electricity in the country is estimated at an average of 6%, 1% for rural areas and 

30% for urban areas (Democratic Republic of Congo 2006, Société Nationale d'Electricité [SNEL, Kisangani The 

consequence is then The wood energy sector occupies an increasingly important place in the DRC The reasons 

which explain this trend are: the demographic growth of the populations in the big cities, the deterioration of the 

existing hydro energy infrastructures, the lack of access to other forms of energy, the extreme poverty of the 

population seeking a means of subsistence, the weakness in the application of forestry legislation and a 

reforestation policy for unsustainable energy purposes [Jolien Schure et al.]. Also in the countryside, only 1% of 

the population has access to electricity; in the city, the rate is 30%. Nationally, 6% of the population is supplied 

with electricity, a rate well below the low average of sub-Saharan Africa (24.6%) (DRC, 2007). ”[Friedel Hütz-

Adams, January 2008]. This situation accentuates the high dependence of the population on biomass energy. The 

exploitation of other forms of energy could significantly reduce dependence on biomass [Karume, 2006], and 
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allow the Congolese population to always have energy which is an index of development. The more a people is 

developed, the more it consumes energy [Duncan T, 2000]. South Kivu, in particular the city of Katana is rich in 

biodiversity with the Kahuzi-Biega Park in the world heritage. However, this biodiversity is threatened by 

excessive consumption of firewood by a poor population and impoverished by repeated wars [Ministry of ECN-

EF, 2006]. This province has an unexploited geothermal potential which, once developed, would encourage 

increased investment and job creation [MEM, 1999]. This state of affairs is an urgent necessity to stimulate 

economic growth and alleviate poverty in the region and the environment. The increase in the population and its 

demand for energy in the area, requires that we think of other alternatives. Other than hydroelectric which 

demonstrates its limits to the way of serving the population. Different types of exploitation of the geothermal 

potential, which take into account environmental requirements are then to be examined. Their management and 

evaluation are essential [Adelin Mulenda, 2013]. This study seeks to answer the question of How to determine the 

geothermal potentials of Kankule, for a possible exploitation in electrical energy. 

It is therefore important to find the temperature gradient, heat transfer, usable at Kankule in Katana in 

South Kivu: 

- by modeling the shape of the geothermal wave of the sites studied; 

- by finding the solution to the Fourier equation, heat transfer, by site by determining the constants involved; 

- by determining the temperature gradient per site and; 

- by identifying economic holdings. 

In thermo-statistics, we gather a set of physical phenomena of movement of molecules in fluids or solids in 

transport phenomena [Alonso et al, 1986, Alonso et al, 1977, Frederick Reif, 1989]. In the simplest case the 

equation of the transport phenomenon is of the form: 
𝝏𝝃

𝝏𝒕
 = a2𝝏² ξ      

𝝏𝒙𝟐       (1.1) , 

 where a is a constant characteristic of each physical situation and ξ is a quantity corresponding to the 

particular phenomenon of transport studied like the diffusion of the molecules, the viscosity and the 

conduction of heat. In this work, we will focus on the last case of these types of transport phenomena 

whose mathematical solutions relate to a temperature distribution. This phenomenon for heat is 

described by the Fourier equation which we will solve for a spatial dimension before modeling this 

solution for the site of Kankule IV. The solution to this equation is called the geotherm. 
The Fourier equation for the conduction of heat in the ground, when this energy varies as a function of time t and 

depth z is:  
𝜕2𝑇

𝜕𝑧2 −
1

𝛼

𝜕𝑇

𝜕𝑡
= 0       (1.2) 

 [CER, 2007; Antoine J.P, 2001 - 2002; Gisclon M, 1998 & Lavrentier M et al, 1972; Jean-Paul Barrand et al, 

1993; Srishti D. C, 1998] 

 being the coefficient of thermal diffusivity of the soil, z the depth and T the temperature characterizing the heat 

transported. 

With the boundary conditions of first species (Dirichlet problem), where the surface temperature is known at all 

times, this equation admits a sinusoidal solution of progressive wave of the form: T(z,t) = 𝑒𝑖(𝑘𝑧−𝜔𝑡)      (1.3) 

Starting from (1. 3), according to Wu and Nofziger [1999], taking into account the boundary conditions, the 

previous solution can be written:  T(z,t) = 𝑇0̅ + 𝐴0
̅̅ ̅ .𝑒− 

𝑧

𝑑 sin ( 
2𝜋(𝑡−𝑡0)

365
- 

𝑧

𝑑
- 

𝜋

2
)           (1.4) 

With 

𝑇0̅: Average annual soil temperature ,  

 𝐴0
̅̅ ̅ : The annual average thermal amplitude 

𝑡0: the "time - lag" where an arbitrary day of the month with the lowest temperature. 

Knowing that [JABOYEDOFF M, 1999], 

𝜎 = √2𝛼𝑡(1.5) 

where  is the "variance" of the data collected (we are talking about the standard deviation here although we 

talked about variance). 

     is the thermal diffusivity of the soil 

    t is the time measured during the same period as . 

Consequently, 

  𝑑 = √
2𝛼

𝜔
  =  

𝜎

√𝜔𝑡
   = 

𝜎

√2𝜋
 (1.6) 

Always starting from (1.3), we got rather as a solution 

 T(z,t) = 𝑇0̅ + 𝐴0
̅̅ ̅ .𝑒− 

𝑧

𝑑 sin ( 
2𝜋(𝑡−𝑡0)

365
 - 

𝑧

𝑑
+ 

3𝜋

4
  )    (1.7) 

These solutions (1.4) and (1.7) improve those proposed by [Alonso, 1986; Alonso, 1977]. 

 (1.4) and (1.7) express the dynamics of the propagation of heat at the sites considered. For this article, 

we are interested in the Kankule IV site. It is from these solutions that we will determine the temperature gradient 

of our site. 
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The Fourier equation describing the dynamics of heat propagation has many applications. Alonso-Finn 

stipulates its exploitation in soil physics and oceanography and Soil physics [Alonso, 1986; Alonso, 1977]. Their 

solution to the Fourier equation contains our explicit constants. The works of Wu and Nofziger [1999] give the 

meaning of some of these constants. These researchers give the general solution of equation (1.2), and apply their 

work to predict the temperature variation in the soil. By knowing the standard deviation σ, of the soil temperatures, 

we then find: The coefficient of thermal diffusivity  with the relation 𝜎 =  √2𝛼𝑡[CER, 2007; JABOYEDOFF 

M, 1999] and deduces thedepth of penetration 𝑑 = √
2𝛼

𝜔
knowing (J. Antoine, 2001 - 2002). R. Lemmela and 

Y.Suckdorf [R.Lmmela and Y.Suckdorf, 1981], rather exploit the particular solution suggested by Alonso. 

However, they specify how to find the constants in the geotherm. In order to be able to produce electricity, the 

temperature gradient of the study site will have to be exploited. Karim's work [Karim Bédard et al., 2016] exploits 

this principle well for the sedimentary basin of the Lowlands, in Canada. In this work, the authors have used 

temperature correction methods, taken from them. They are being corrected by thinking of increasing the thickness 

of faults, the deep resources of warm water. These waters, which rise by convection, keep almost the same 

temperature as areas where they were warmed. The Geoscience review of March 16, 2013, shows the operating 

conditions of geothermal energy to produce electricity. Having active tectonic or volcanic zones in which a surface 

heat source makes it possible to have a geothermal fluid at a temperature sufficient to produce electricit y 

[Géosciences, 2013]. On page 14, Figure 8, already shows that with a temperature of 50 ° C at 1 km deep, we can 

consider the production of electricity. It will then be necessary to dig for this to more than 3 km deep. In order to 

trap the geothermal fluid at more than 150 ° C. The same article presents a world map where high energy 

geothermal energy is likely to be exploited. Eastern DR. Congo is there, as in all the countries of the Albertine 

Rift (or Valley). From the ground temperature down to 90 ° C, electricity can already be produced [Ecorem s.a, 

2011]. 

 

The latest study distinguishes between surface and deep geothermal energy as follows: 

- <30 ° C and <500m: surface geothermal energy. This takes up the very low temperatures (enthalpy). 

- between 25-30 ° C and 150 ° C and> 500m: deep geothermal energy. This takes over the low and medium 

temperatures (enthalpy). 

Still the same study, specifies that if the geothermal reservoir reaches a temperature above 150 ° C and 

is encountered at shallow depths, the resource must therefore be in a region where the geothermal gradient is 

normal (~ 30 ° C / km) or beyond normal. This for the production of electricity. This classification is consistent 

with that suggested by Lindal for France [Wikipedia, 2020]. 

The exploitation of high energy geothermal energy is favorable in areas which know geodynamic 

contexts, showing some form of volcanism. At these points, a significant part of the internal energy of the globe 

is released. The history of mountain chain formations and terrestrial magmatism allows us to understand the 

genesis of magma chambers. The latter are foci, zones with strong thermal gradient [J-P Boden et al., 1988] 

 

                         II.Methodology 
For this work, our methodology approach was as follows: 

2.1. Description of the study environment 

2.1.1. Geographical location of the environment 

Our field of study is the locality of Kankule which is located between the latitudes South - 2.241666 ° 

and - 2.249166 °, East longitude 28.834833 ° and 28.8415 ° and altitude varying between 1565.42 m and 1586 , 

44 m. 

It is part of the community of Kabare in the South Kivu province of the Democratic Republic of Congo. 

Kankule is located between the Bidagarha and Lwiro rivers which have their sources in the Kahuzi forest located 

in the Kahuzi Biega national park, approximately 7 km from our study environment [Adelin M, 2013] and 

[Bagalwa et alii, 2016]. An image of this site is given in Figure 3.1. below : 
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Figure 1: Geolocation of the thermal waters of Kankule, in Katana in South Kivu 

 

2.1.2. Weather 

Kankule is located on a part of the chain of Mount Mitumba which spreads over a large part to the east 

of the Democratic Republic of Congo. The prevailing climate is influenced by this positioning, also its location 

between Lake Kivu and the Kahuzi Biega National Park. We have a humid tropical climate, tempered by altitude 

with temperatures ranging from 18 ° C to 22 ° C and rainfall around 1590 mm [PNUD / UNOPS, 1998]. 

 

2.1.3. Fauna and vegetation 

The fauna is rich in invertebrates and birds which abound in the environment. The flora in some 

unexploited places remains alpine vegetation, savannas and bamboos, ... in extension of that of the Kahuzi -Biega 

national park. On the exploited grounds, one finds fields cultivated with predominance of banana plantations and 

coffee trees,… [PNUD / UNOPS, 1998], beans, cassava, sorghum, quinquinas, tea plants,… 

 

2.1.4. Soil and geology 

               Located about 7 km from the dormant volcanoes of Kahuzi and Tshibati, the mother rock of Kankule 

rests on basalts resulting from ancient volcanism and also rests on shales [PNUD / UNOPS, 1998] & [From the 

geological map of the South Kivu region, 1939]. In the environment abounds in ferrisol (calcite and dolomite of 

the family of carbonates) and a considerable reserve of travertines, evaluated at 3 million tons in all Katana, raw 

materials exploited at the cement factory of Katana for the production of cement [UNDP / UNOPS , 1998] with 

clay and peat also present in quantities not yet evaluated. There are also cold water sources and thermal water 

sources, the latter of which have greatly contributed to the formation of travertines in the environment [PNUD / 

UNOPS, 1998] & [From the geological map of the South Kivu region , 1939]. Silica, an important raw material 

for glassware, is also found on the site. We are here in the presence of a soil important for its physicochemical 

properties 
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2.1.5. Population and socio-economic life 

The population living in this environment is mainly made up of Bashi who live mainly and mainly from 

subsistence farming [PNUD / UNOPS, 1998]. The high density in all of Katana is around 300 inhabitants per km² 

and the growing insecurity around Kankule has seen this density grow strongly year by year, resulting in a strong 

demand for habitable and cultivable land. There are hardly any heavy industries which would exploit the 

workforce present in the area to alleviate the misery of the local population who is unable to meet their basic needs 

[UNDP / UNOPS, 1998]. 

 

2.2. Methodological approach 

To do this work our methodology was as follows: 

 

2.2.1. Experimental 

1 °) From 8h to 14h, with the ground thermometer, we took samples from 14 sites, called Kankule I, Kankule 

II,…, and Kankule XIV: 

- Soil temperatures at 15 cm depth, every day, in 52 weeks To exploit the holographic principle on a macroscopic 

scale. This principle stipulates that "the information contained on the surface is not less than that contained in 

volume" [Research, 2009]. This is to find a mechanism to reduce the cost of exploring geothermal energy; 

- The temperatures of the thermal waters, during the same period from September 2010 to December 2014. In 

order to see if the temperature of these waters depends on the study site. 

- Ambient air temperatures, at most 2m above the ground. This is to understand the interdependence between the 

temperatures of the thermal waters, the soil and the surrounding air. 

2 °) With a GPS, Garmin brand, we had taken, the geographical coordinates of each site to find the geomagnetic 

fields of each site, on the NOAA web site 

3 °) Excel, R or SPSS software; allowed to determine the constants that intervened in the geotheme (or solution 

of the Fourier equation) as reported by CER 2OO7 and Wu and Nofziger 1999. This facilitated the temperature 

gradient distribution analysis that we had obtained. 

 

2.2.2. Analytic 

- Solve the Fourier equation in one dimension, to determine the general solution (geotheme), of each site studied. 

- Deduce from each geotheme the temperature gradient function per site. 

- From the gradient function per site, determine algebraically where geometrically, the maximum gradient per site 

-  Compare the experimental gradient we obtained with the "theoretical thermal gradient". The latter obtained 

thanks to the geotheme given by Wu and Nofziger, which is more precise than that suggested by Alonso and Finn 

(1986). 

- Deduct from the average value, from the maximum gradient of the 14 Kankule sites, the depth that can be dug 

in order to generate electricity. 

Indeed ; starting from the one-dimensional Fourier equation: 
𝜕2𝑇

𝜕𝑧2 −  
1

𝛼

𝜕𝑇

𝜕𝑡
= 0 : 

Wu and Nofziger had found the solution: T(z,t) = 𝑇0̅ + 𝐴0
̅̅ ̅ .𝑒− 

𝑧

𝑑 sin ( 
2𝜋(𝑡−𝑡0)

365
 - 

𝑧

𝑑
 - 

𝜋

2
  ) 

Our study rather leads to the result:   T(z,t) = 𝑇0̅ + 𝐴0
̅̅ ̅ .𝑒− 

𝑧

𝑑sin ( 
2𝜋(𝑡−𝑡0)

365
 - 

𝑧

𝑑
 +  

3𝜋

4
  )     

Using these solutions, we looked for the gradient, for each site, with the relation ∂T / ∂z = f (z). 

- Then we determined the maximum value of this temperature gradient. First using the solution from Wu and 

Nofziger. Then we determined the maximum value of this gradient for the solution we obtained. Finally, a 

comparative study of the distributions of temperature gradients was made. 

 

2.2.3. Statistics 

With the results obtained, we checked: 

- If there is independence of the soil temperature with the site studied, using the independence test. It is then 

checked whether the temperature of the thermal waters depended on the study site. 

- If the experimental Kankule thermal gradient of 0.117 ° C / m is equivalent to the global average thermal gradient 

of 0.033 ° C / m; using the compliance test. Here we made the comparison of the 2 means. In order to check 

whether the gradient of our sites is normal or not. 

- If the distribution of our maximum theoretical gradients follows the normal Laplace-Gauss law. Here we carried 

out the convergence test. This convergence makes it possible to pass from a discrete distribution to a continuous 

distribution of the temperature gradient; with its probabilistic implications. 

- If the distribution of our maximum experimental gradients follows the normal Laplace-Gauss law. Here we also 

performed the convergence test 

- If the distribution of our maximum theoretical gradients and the experimental one are the same, by comparing 

their: 
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1) average using the compliance test; 

2 °) variance thanks to the homoscedasticity test (or analysis of variances). 

This is to be able to check whether the two temperature gradient distributions are identical or not. 

 

2.2.4. Comparison of temperature gradient distributions 

 We have proceeded: 

- 1 ° to the Comparison of the results of the "theoretical maximum gradient" obtained from the solution of Wu 

and Nofziger with that which we had obtained, and which we had called experimental. This in order to see the 

solution to be adopted for the one-dimensional Fourier equation. 

- 2 °) to identify how deep we can descend in order to be able to do high or very high energy geothermal energy, 

for the production of electricity. Compared to what is done elsewhere in the world. 

 

                               III.Results And Analysis 
3.1. Theoretical solution of Wu and Nofziger of the one-dimensional Fourier equation and its normality 

3.1.1. Theoretical solution of the Fourier equation 

Using the Fourier equation, Wu and Nofziger came to solution (1.4). 

This geotherm gives for Kankule IV the figure 2 below. Showing the temperature distribution over time. 

 
Figure 2: Temperature variation as a function of time for Kankule IV 

 

This same geotherm (1.4), exploited as a function of the depth gives us the curve of figure 3. Indicating the 

variation of the temperature with the depth on the site of Kankule IV 

 

 
Figure 3: Variation of temperature as a function of depth for Kankule IV 

 

This figure shows that the thermal wave is amortized on a specific date 

It just happens that the temperature gradient on a fixed date (𝑡 − 𝑡0)is: 

grad (z,t) = -√2
𝐴0

𝑑
𝑒−

𝑧

𝑑cos( 
2𝜋(𝑡−𝑡0)

365
 - −

𝑧

𝑑
 - 

3𝜋

4
)    (3.1) 

In others words f(z) =
𝜕𝑇

𝜕𝑧
  = - 

𝐴0

𝑧
𝑒−

𝑧
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𝑧

𝑑
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𝑑 cos [ 
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 - 
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2
 ] . A function that various 

with the depth z 
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Let’s determine the maximum values of this function, using differential calculus. It comes at a given depth 

{

𝑓 (𝑧) ≠ 0

𝑓′(𝑧) = 0

𝑓"(𝑧) < 0

 ⇔ {

 − 
𝐴0

𝑧
𝑒−

𝑧

𝑑 sin [ 
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𝑧

𝑑
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𝜋

2
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𝑧
𝑒−

𝑧
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𝑧

𝑑
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𝜋

2
 ] ≠ 0 

 2 
𝐴0
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𝑧

𝑑 cos [
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  −  

𝑧
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2
]  = 0 

 2 
𝐴0

𝑑3 𝑒−
𝑧

𝑑 (sin [
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𝑧

𝑑
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𝜋

2
]   −   cos [

2𝜋(𝑡−𝑡0)
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𝑧

𝑑
−  

𝜋

2
]  ) < 0

 

⇔ {

𝑓(𝑧) =
𝐴0

𝑧
𝑒−

𝑧

𝑑  ≠ 0 

2𝜋(𝑡−𝑡0)

365
  −   

𝑧

𝑑
−  

𝜋

2
= (2𝑘 + 1)

𝜋

2
  ; 𝑤𝑖𝑡ℎ 𝑘 ∈ 𝕫

𝑠𝑖𝑛(2𝑘 + 1)
𝜋

2
< 0

              (3.2) 

With z / d> 0, the first value of z which makes the gradient maximum, is obtained for k = -1. 

We then find the following results for the Kankule IV site: (Abscissa of the maximum) z = d 60π / 365 = 

0.527398921 m and the maximum gradient f (z) = ∂T / ∂z = 6.368167457 0C / m     (3.3). 

The curve from (3.1), for Kankule IV, gives the graph below: 

 

 
Figure 4: Variation of the Kankule IV temperature gradient as a function of depth z 

 

3.1.2. Normality of the theoretical gradient obtained 

For our 14 Kankule sites, the maximum theoretical gradients are given in table 1, below: 

 

Table 1: Maximum gradient per Kankule site, with the Wu and Nofziger model of the geotheme (1.4) 

 
 

The normality test of these values gives the following results: 

 
Figure 5: Normality test of the theoretical gradient with the Gaussian curve 
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The temperature gradient distribution histogram is close to the normal blue Laplace-Gauss curve 

 
Figure 6: Normality test with Q-Q Plot and Henry's line 

 

The cloud of temperature distribution points is close to the right of Henry 

shapiro.test (grad_theorique) 

        Shapiro-Wilk normality test 

data: grad_theorique 

W = 0.9342, p-value = 0.349 

We see that at the probability threshold of α = 0.05, p-value = 0.349 is greater than 0.05. So we accept the null 

hypothesis of normality of our temperature gradient distribution. 

These 3 tests express that the theoretical gradient follows the normal Laplace-Gauss law. 

 

3.2. Analytical solution of the one-dimensional Fourier equation and its normality 

3.2.1. Analytic-experimental solution of the one-dimensional Fourier equation 

The solution of the Fourier equation that we obtained, analytically, is the geotherm (1.7). Its representative curve, 

as a function of time, at a fixed depth of 15cm, gives for Kankule IV the figure below: 

 

 
Figure 1.7: Analytical geotherm obtained for Kankule IV 

 

This result is similar to that of figure 1.2, with a shift of the sinusoid extremes. We also obtain a curve similar to 

that of FIG. 3, for the thermal wave. What about the temperature gradient then? 

Calculations analogous to those of paragraph 4.1, allowed us to obtain the following gradient: 

   grad (z,t) = -√2
𝐴0

𝑑
𝑒−

𝑧

𝑑cos( 
2𝜋(𝑡−𝑡0)

365
 - −

𝑧

𝑑
+

𝜋

2
)                                  (3.4). 

Is g (z) = 
𝜕𝑇

𝜕𝑧
z =- 

𝐴0

𝑧
𝑒−

𝑧

𝑑 sin [ 
2𝜋(𝑡−𝑡0)

365
  -  

𝑧

𝑑
 + 

3𝜋

4
 ]  -  

𝐴0

𝑧
𝑒−

𝑧

𝑑 cos [ 
2𝜋(𝑡−𝑡0)

365
  -  

𝑧

𝑑
 + 

3𝜋

4
 ]  ,  

a function that varies with depth z. 
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Let’s determine the maximum values of this function, using differential calculus. It comes at a given depth 

{

𝑔(𝑧) > 0

𝑔′(𝑧) = 0

𝑔"(𝑧) < 0

 ⇔ {

 − 
𝐴0

𝑧
𝑒−

𝑧

𝑑 (sin [
2𝜋(𝑡−𝑡0)

365
  −   

𝑧

𝑑
+  

3𝜋

4
]  +  𝑒−

𝑧

𝑑 cos [
2𝜋(𝑡−𝑡0)

365
  −   

𝑧

𝑑
+  

3𝜋

4
]) > 0 

 2 
𝐴0

𝑑2 𝑒−
𝑧

𝑑 cos [
2𝜋(𝑡−𝑡0)

365
  −   

𝑧

𝑑
+  

3𝜋

4
]  = 0 

 2 
𝐴0

𝑑3 𝑒−
𝑧

𝑑 (sin [
2𝜋(𝑡−𝑡0)

365
  −   

𝑧

𝑑
+  

3𝜋

4
]   −   cos [

2𝜋(𝑡−𝑡0)

365
  −   

𝑧

𝑑
+  

3𝜋

4
]  ) < 0

 

⇔ {

𝑔(𝑧) =
𝐴0

𝑧
𝑒−

𝑧

𝑑 > 0 

2𝜋(𝑡−𝑡0)

365
  −   

𝑧

𝑑
+  

3𝜋

4
= (2𝑘 + 1)

𝜋

2
  ; 𝑤𝑖𝑡ℎ 𝑘 ∈ 𝕫

𝑠𝑖𝑛(2𝑘 + 1)
𝜋

2
< 0

       (3.5) 

With z / d> 0, the first value of z which makes the gradient maximum, is obtained for k = -1. 

We then find the following results for the Kankule IV site: 

(Abscissa of the maximum) z = d * π (1.25 + 60/365) = 4.537828208 m and the maximum gradient g (z) = ∂T / 

∂z = 0.125471195 0C / m    (3.6). What can be seen in the figure below: 

 

 
Figure 1.8: Variation of the Kankule IV temperature gradient with the depth z 

 

This gradient obtained is a reflection of the experimental results in situ, through thermal waters. It is a gradient 

3.5 times greater than the average continental gradient of 0.033 ° C / m. 

3.2.2. On the normality of the analytical-experimental gradient 

Starting from solution (3.4), we find for our 14 Kankule sites, the maximum gradients that we present in the 

following table: 

 

Table 2: Maximum gradient of the 14 Kankule sites starting from our geotherm (1.7) 

 
 

Comparing this experimental temperature gradient distribution to the normal Laplace-Gauss law, we statistically 

obtained the following results: 
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Figure 9: Test of normality of the experimental gradient with the Gauss curve 

 

We observe that the histogram, of experimental temperature gradient distribution, is close to the blue, normal 

Laplace-Gauss curve. We then agree that the theoretical temperature gradient distribution follows the normal law 

 
Figure 10: Q-Q Plot and Henry's line of experimental temperature gradient 

Same observation as in analogous figure 1.6 

The Shapiro-Wilk test gives us the result below: 

> shapiro.test (grad_temp_sol) 

        Shapiro-Wilk normality test 

data: grad_temp_sol 

W = 0.9342, p-value = 0.349 

 

3.3. On the independence of temperatures with the sites 

Wanting to know if the temperatures sampled in situ depend on the study site, we then carried out the 

independence test. The results are given below: 

 
Figure 11: Normality of temperature distribution 

This graph shows us that the distribution of the temperatures taken follows the normal law. 
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The independence test, gave us the following result, with the R software: 

 

Table 3: ResuElt of the temperature independence test with the study site 

> summary (model) 
 Df Sum Sq Mean Sq F value     Pr(>F)      

data_indep$Site     13 25326.1 1948.2   83.521 < 2.2e-16  *** 

Residuals 714  16654.3     23.3    

 

Significant. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 

 

3.3.3. On the conformity of the Kankule temperature gradient 

Wondering if the average experimental Kankule thermal gradient, which gives m = 0.117 [° C / m], if it is equal 

to the global average thermal gradient of mo = 0.033 [° C / m]; we carry out the comparison test of the means 

below, in R: 

> t.test (grad_temp_sol, mu = 0.033) 

        One Sample t-test 

data: grad_temp_sol 

t = 17.1116, df = 13, p-value = 2.692e-10 

alternative hypothesis: true mean is not equal to 0.033 

95 percent confidence interval: 

0.1064298 0.1276502 

sample estimates: 

mean of x 

0.11704 

 

3.3.5. The homogeneity of the theoretical gradient and the experimental Kankule gradient. 

The comparison of the means of the maximum gradients, obtained with the theoretical formula of Wu and 

Nofziger and that which we had obtained analytically and experimentally; we get the results below: 

> t.test (grad_temp_sol, grad_theorique) 

Welch Two Sample t-test 

data: grad_temp_sol and grad_theorique 

t = -23.3567, df = 13.01, p-value = 5.243e-12 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -6.361783 -5.284637 

sample estimates: 

mean of x mean of y 

0.11704 5.94025 

This result means that the means of the gradients obtained, with the theoretical gradient and the experimental 

gradient, are not the same. We therefore reject the null hypothesis of equality of the means of these two 

distributions. Which brings us to check if the two distributions are identical, by comparing their variances 

 

3.3.6 Homoscedasticity of the two distributions 

The Anova test, on the variances of distribution of the theoretical and experimental maximum gradients, we 

obtain the results below, with software R: 

var.test (grad_temp_sol, grad_theorique) 

        F test to compare two variances 

data: grad_temp_sol and grad_theorique 

F = 4e-04, num df = 13, denom df = 13, p-value <2.2e-16 

alternative hypothesis: true ratio of variances is not equal to 1 

95 percent confidence interval: 

0.0001246224 0.0012092669 

sample estimates: 

ratio of variances 

      0.0003882032 
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                                      IV.Discussion Of The Results 
1) Is the average experimental Kankule thermal gradient, which gives m = 0.117 [° C / m], equal to the 

global average thermal gradient of mo = 0.033 [° C / m]? The temperature gradient compliance test, in paragraph 

3.3, rejects this assumption at the threshold of 0.05. This test accepts the alternative hypothesis, which implies 

that the thermal gradient depends on the study site. Adelin MULENDA, 2013, already finds that the temperature 

of thermal waters depends on that of the soil of the study site. And the intensity of this dependence is 58.8%. 

Results which implied that the physico-chemical properties of the soil of the study site had also influenced the 

temperature of the thermal waters. 

2) Do the solutions (1.4) and (1.7) of (1.2) reflect the same physical reality? We can observe that these 

solutions present similarity and dissimilarity. Figures 1 and 6 show two sinusoids, one translation of the other. 

This in terms of temperature variation depending on the site studied. Figures n ° 5 or 8, as well as n ° 9 or 10 

reinforce this resemblance. This in terms of convergence to the normal law, temperature gradient distributions 

resulting from (1 .4) via (3 .1) and from (1.3) via (3.4). On the other hand, the tables of temperature gradients, 

obtained in paragraphs 4 .1. and 4.2., show that the temperature gradient distributions, from (1.4) and (1.7), are 

not the same. Figures 4 and 8 illustrate this dissimilarity in temperature gradient distribution. What about the 

temperature gradient distribution around their mean value; with these two distributions? The homogeneity test, in 

section 4.3.5, further demonstrates that the temperature gradient distributions, resulting (1.4) and (1.7), are not 

identical. Consequently one of the solutions of the Fourier equation (1.2), here (1.4) or (1.7), will have to be 

retained and the other rejected. Since for a differential equation, with the conditions of Cauchy and Dirichlet, the 

solution is unique. Let us then analyze which solution should be retained. 

3) Let us carry out the comparative study of the two temperature gradient distributions as a function of 

the realities observed in situ. With solution (1.4), we arrive at an average gradient of 5.94 ° C / m. 

The theoretical gradient which gave us an average of 5.94 ° C / m at shallow depth, should allow thermal 

waters, taken at least 100m deep, to have temperatures above 594 ° C. This situation is therefore not observed on 

land, where these waters have maximum temperatures of 75 ° C. To have such temperatures, the water sources 

should be 11m deep. This in accordance with [Adelin, 2013], which gives: 

 Twater = 43.789 + 0.481 Tsoil        (4.1) 

This implies that water sources, like Bidagarha, from at least 5 m deep would be hot. What is not observed 

on the ground because these waters on the ground surface with temperatures of less than 15 ° C. On the other 

hand, the solution (1.7) gives an average thermal gradient of 0.117 ° C / m. This is consistent with the surface 

temperature of the Bidagarha source, which is below the ambient air temperature. This gradient of 0.117 ° C / m 

also helps to understand the abundance of travertine in this area. This raw material of cement results from the 

formation of stalactites and stalagmites, at a temperature of less than 15 ° C [Robers J and al, 1998]. Thus cold 

water sources, circulating even at a depth of 100m, will not have a temperature of 12 ° C. In view of these 

observations, we then reject solution (1.4) obtained by Wu and Nofziger. For equation (1.2), we only retain 

solution (1.7). The analysis carried out in paragraph (4.3.6), also led us to reject the solution that Wu and Nofziger 

use for the Fourier heat transfer equation (1.2). 

                    4)Which of the geotherms (1.4) and (1 .7) verify (1.2)?  

To find out, we then introduce these results into equation (1.2) and see more 

For equation (1.2) for which Wu and Nofziger find the solution 

T = T (z, t) = 𝑇𝑎 + 𝐴0𝑒−
𝑧

𝑑 sin [ 
2𝜋(𝑡−𝑡0)

365
  -  

𝑧

𝑑
 - 

𝜋

2
 ] (1.4), with d = √

2𝛼

𝜔
 and ω = 2π / 365 

 He then comes 

   (1 *) 𝑇𝑡
′(  z ;t )= 

1

𝛼

𝜕𝑇

𝜕𝑡
 = 

1

𝛼

2𝜋

365
𝐴0𝑒−

𝑧

𝑑 Cos [ 
2𝜋(𝑡−𝑡0)

365
  -  

𝑧

𝑑
 - 

𝜋

2
 ]    

                                = 
𝐴0

𝛼
𝜔𝑒−

𝑧

𝑑 Cos [ 
2𝜋(𝑡−𝑡0)

365
  -  

𝑧

𝑑
 - 

𝜋

2
 ] (4.2) 

(2*)   𝑇′𝑧
′ (  z ;t )  = 

𝜕2𝑇

𝜕𝑧2  = 
𝜕

𝜕𝑧
(

𝜕𝑇

𝜕𝑧
) 

= 
𝜕

𝜕𝑧
[ - 

𝐴𝑜

𝑑
𝑒− 

𝑧

𝑑 sin( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 - 

𝜋

2
 ) -  

𝐴𝑜

𝑑
𝑒− 

𝑧

𝑑 cos( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 - 

𝜋

2
 ) ) ] 

                               = -  
𝐴𝑜

𝑑

𝜕

𝜕𝑧
 [𝑒− 

𝑧

𝑑 (cos( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 - 

𝜋

2
 ) - cos( 

2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
  ) ] 

                               = 
2 𝐴𝑜

𝑑

𝜕

𝜕𝑧
 [𝑒− 

𝑧

𝑑sin( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 - 

𝜋

4
 ) sin (- 

𝜋

4
 ) ] 

                               = - 
√2

𝑑
𝐴𝑜

𝜕

𝜕𝑧
 [𝑒− 

𝑧

𝑑sin( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 - 

𝜋

4
 ) ] 

                               = - 
√2

𝑑
𝐴𝑜[ - 

1

𝑑
𝑒− 

𝑧

𝑑sin( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 - 

𝜋

4
 ) - 

1

𝑑
𝑒− 

𝑧

𝑑cos( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 - 

𝜋

4
 ) ] 

                              = 
√2

𝑑2 𝐴𝑜𝑒− 
𝑧

𝑑 [sin( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 - 

𝜋

4
 ) + cos( 

2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 - 

𝜋

4
 ) ] 

                              =  
√2

𝑑2 𝐴𝑜𝑒− 
𝑧

𝑑 [sin ( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 - 

𝜋

4
 )  +  sin( 

2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 - 

𝜋

4
  + 

2 𝜋

4
  ) ] 
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                              =  
√2

𝑑2 𝐴𝑜𝑒− 
𝑧

𝑑 [sin ( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 - 

𝜋

4
 )  +  sin( 

2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
  + 

 𝜋

4
  ) ] 

                              =  
2

𝑑2 𝐴𝑜𝑒− 
𝑧

𝑑sin( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
)   

                               = 
𝐴0

𝛼
𝜔𝑒−

𝑧

𝑑 sin [ 
2𝜋(𝑡−𝑡0)

365
  -  

𝑧

𝑑
 ]                             (4.3)     

Comparing solutions (4.2) and (4.3), we find that the two results differ. We then conclude that solution (1.4), 

given by Wu and Nofziger is not suitable as solution of (1.2). 

The result that we found for the geotherm being 

T = T (z, t) = 𝑇𝑎 + 𝐴0𝑒−
𝑧

𝑑 sin [ 
2𝜋(𝑡−𝑡0)

365
  -  

𝑧

𝑑
 + 

3𝜋

4
 ](1.7), with d = √

2𝛼

𝜔
 and ω = 

2𝜋

365
; 

  Then he comes: 

   (*)𝑇𝑡
′(  z ;t ) = 

1

𝛼

𝜕𝑇

𝜕𝑡
 = 

1

𝛼

2𝜋

365
𝐴0𝑒−

𝑧

𝑑 Cos [ 
2𝜋(𝑡−𝑡0)

365
  -  

𝑧

𝑑
 + 

3𝜋

4
 ] 

                         = 
𝐴0

𝛼
𝜔𝑒−

𝑧

𝑑 Cos [ 
2𝜋(𝑡−𝑡0)

365
  -  

𝑧

𝑑
 + 

3𝜋

4
 ]               (4.4) 

(2*)   𝑇′𝑧
′ (  z ;t )  = 

𝜕2𝑇

𝜕𝑧2  = 
𝜕

𝜕𝑧
(

𝜕𝑇

𝜕𝑧
) 

                            = 
𝜕

𝜕𝑧
[ - 

𝐴𝑜

𝑑
𝑒− 

𝑧

𝑑 sin( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 + 

3𝜋

4
 )  -   

𝐴𝑜

𝑑
𝑒− 

𝑧

𝑑 cos( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 + 

3𝜋

4
 ) ] 

                            = -  
𝐴𝑜

𝑑

𝜕

𝜕𝑧
 [𝑒− 

𝑧

𝑑 (sin ( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 + 

3𝜋

4
 ) + sin ( 

2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 + 

3𝜋

4
 + 

2𝜋

4
 ) ] 

                             = - 
2 𝐴𝑜

𝑑

𝜕

𝜕𝑧
 [𝑒− 

𝑧

𝑑sin( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 + 

3𝜋

4
 + 

𝜋

4
 ) cos ( 

𝜋

4
 ) ] 

                              = - 
√2

𝑑
𝐴𝑜

𝜕

𝜕𝑧
 [𝑒− 

𝑧

𝑑sin( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 + 𝜋) ] 

                              =  
√2

𝑑
𝐴𝑜

𝜕

𝜕𝑧
 [𝑒− 

𝑧

𝑑sin( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
  ) ] 

                               =  
√2

𝑑
𝐴𝑜[ - 

1

𝑑
𝑒− 

𝑧

𝑑sin( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
) - 

1

𝑑
𝑒− 

𝑧

𝑑cos( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 ) ] 

                               = -  
√2

𝑑2 𝐴𝑜𝑒− 
𝑧

𝑑 [sin( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
  ) + sin( 

2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 + 

𝜋

2
 ) ] 

                                = -  
√2

𝑑2 𝐴𝑜𝑒− 
𝑧

𝑑 [ 2 sin ( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
 + 

𝜋

4
 ) cos (- 

𝜋

4
 ) ] 

                                = -  
2

𝑑2 𝐴𝑜𝑒− 
𝑧

𝑑sin( 
2𝜋 ( 𝑡− 𝑡𝑜 )

365
 - 

𝑧

𝑑
  +

𝜋

4
  )   

                                = - 
𝐴0

𝛼
𝜔𝑒−

𝑧

𝑑 sin [ 
2𝜋(𝑡−𝑡0)

365
  -  

𝑧

𝑑
 + 

𝜋

4
 ] 

                                = 
𝐴0

𝛼
𝜔𝑒−

𝑧

𝑑 cos [ 
2𝜋(𝑡−𝑡0)

365
  -  

𝑧

𝑑
 + 

𝜋

4
  + 

2𝜋

4
 ] 

                                 = 
𝐴0

𝛼
𝜔𝑒−

𝑧

𝑑 cos [ 
2𝜋(𝑡−𝑡0)

365
  -  

𝑧

𝑑
 + 

3𝜋

4
 ]                          (4.5)     

Comparing solutions (4.4) and (4.5), we find that the two results are equal. We then conclude that the relation 

(1.7), is suitable as solution of (1.2) 

This analysis of the solution used by Wu and Nofziger shows that it is not the integral of the one-

dimensional Fourier equation (1.2). This is why it has not been exploited by Alonso / Finn [1986]. The result of 

the latter verifies the Fourier equation. Its only problem is that some constants of the geotheme are not well 

specified. 

5) Is the Kankule thermal gradient normal or not? In other words, is the average experimental Kankule 

thermal gradient, which gives m = 0.117 [° C / m], equal to the global average thermal gradient of mo = 0.033 [° 

C / m]? The conformance test, in section 3.4, allows us to see that the average Kankule thermal gradient of 0.117 

° C / m differs from the global average thermal gradient of 0.033 ° C / m. This Kankule gradient is 3.5 times 

greater than the global average thermal gradient. With this average Kankule thermal gradient, we should be able 

to exploit different types of geothermal energy as indicated [Ecorem s.a, 2011]. The different types of geothermal 

energy that can be used in Kankule are: 

• <30 ° C and <500m: surface geothermal energy. This takes up the very low temperatures (enthalpy). Because at 

257m deep, we will have temperatures of at most 30 ° C 

• between 25-30 ° C and 150 ° C and> 500m: deep geothermal energy. Because at a depth of 500m, we will 

already have a temperature of 58.5 ° C. In order to generate electricity, it would have to be over 100 ° C. By 

digging up to 1500m, or 1.5km, deep, we will have temperatures reaching 175.5 ° C. Going up to 2000m deep, 

we will have a temperature of 234 ° C. The production of electricity is then possible from 50 ° C as already pointed 

out [Géoscience, 2013]. 

• For Kankule IV, with a gradient of 125, 471195 ° C / km. You can reach desired temperatures by drawing water 

more than 2 km deep, reaching temperatures of 234 ° C. A good result when we already compare them to that of 

Soultz in France [SVT, 2019] and [Wikipedia, 2020]. 
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5. Conclusion 
Our study made it possible to find the temperature gradient, heat transfer, usable at Kankule in Katana 

in South Kivu, given by the relation (1.7). 

It also made it possible to see that the solution of the Fourier equation of heat transfer, given by Wu and 

Nofziger, is rejected by what is observed in situ. Knowledge of an exact solution to the Fourier equation was 

necessary to estimate the geothermal potential that could be exploited at Kankule. 

When geothermal water has a temperature of 90 to 160 ° C, it can be used in liquid form in the production 

of electricity: it is medium energy geothermal energy. If the temperature of geothermal water exceeds 160 ° C, 

this water can be used directly, in the form of steam, to turn turbines generating electricity: we speak of high 

energy geothermal energy. For Kankule IV, with a gradient of 125, 471195 ° C / km. You can reach desired 

temperatures by drawing water more than 2 km deep, reaching temperatures of 234 ° C. A good result when we 

already compare them to that of Soultz in France. Indeed, in this French site in Alsace, to reach the temperature 

of 203 ° C, one would have to dig up to 5.01 km deep [SVT, 2019]. And the electric power supplied on this site 

is 13 MW, including 2, 1 MW of raw electric production [Wikipedia, 2020]. 
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